
HAL Id: hal-00863147
https://hal.science/hal-00863147

Submitted on 18 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Biased Random Key Genetic Algorithm with Hybrid
Decoding for Multi-objective Optimization

Panwadee Tangpattanakul, Nicolas Jozefowiez, Pierre Lopez

To cite this version:
Panwadee Tangpattanakul, Nicolas Jozefowiez, Pierre Lopez. Biased Random Key Genetic Algorithm
with Hybrid Decoding for Multi-objective Optimization. WCO’13 - 6th Workshop on Computational
Optimization, Sep 2013, Kraków, Poland. pp.393-400. �hal-00863147�

https://hal.science/hal-00863147
https://hal.archives-ouvertes.fr


Biased Random Key Genetic Algorithm with
Hybrid Decoding for Multi-objective Optimization

Panwadee Tangpattanakul
CNRS, LAAS

7 avenue du Colonel Roche and
Univ de Toulouse, LAAS
F-31400 Toulouse, France
Email: ptangpat@laas.fr

Nicolas Jozefowiez
CNRS, LAAS

7 avenue du Colonel Roche and
Univ de Toulouse, INSA, LAAS

F-31400 Toulouse, France
Email: njozefow@laas.fr

Pierre Lopez
CNRS, LAAS

7 avenue du Colonel Roche and
Univ de Toulouse, LAAS
F-31400 Toulouse, France

Email: lopez@laas.fr

Abstract—A biased random key genetic algorithm (BRKGA)
is an efficient method for solving combinatorial optimization
problems. It can be applied to solve both single-objective and
multi-objective optimization problems. The BRKGA operates on
a chromosome encoded as a key vector of real values between
[0, 1]. Generally, the chromosome has to be decoded by using a
single decoding method in order to obtain a feasible solution.
This paper presents a hybrid decoding, which combines the
operation of two single decoding methods. This hybrid decoding
gives two feasible solutions from the decoding of one chromosome.
Experiments are conducted on realistic instances, which concern
acquisition scheduling of agile Earth observing satellites.

I. INTRODUCTION

THIS PAPER proposes a hybrid decoding to apply with
a biased random key genetic algorithm (BRKGA) for

solving multi-objective optimization problems. We experiment
on instances of multi-user observation scheduling problem for
agile Earth observing satellites (EOSs).

The biased random key genetic algorithm (BRKGA) was
first presented in [1]. BRKGA combines the concept of ran-
dom key and the principles of genetic algorithms. The random
key vector represents one solution. In the process to apply
BRKGA for solving combinatorial problems, there is a step,
which depends on the considered problem. It is a decoding
step, which is used to decode the random key chromosome
to become a feasible solution. The efficient decoding method
can obtain a good solution. Hence, the specification of the
decoding step is an important issue for BRKGA.

BRKGA was used to solve combinatorial optimization
problems in various domains (e.g. communication, transporta-
tion, scheduling) [3]. For example, BRKGA was applied to
solve the fiber installation in an optical network optimization
problem [4]. The objective function was to minimize the cost
of the optical components necessary to operate the network.
In [5], a resource-constrained project scheduling problem with
makespan minimization was solved by BRKGA. Nevertheless,
all these works address optimization problems involving a
single objective function. This paper considers multi-objective
optimization. Several real world problems, e.g., in the area
of engineering research and design, can be modeled as multi-
objective optimization problems. When many objectives are
considered, the search will not give a unique solution but a

set of solutions. Hence, our idea for improving the efficiency
of BRKGA for solving multi-objective optimization problems,
is to combine the importance of its decoding step and the need
of a non-unique solution of multi-objective optimization.

A hybrid decoding, which combines two single decoding
methods, is proposed in this paper. A hybrid decoding can
obtain more than one solution from the decoding of one
chromosome. Two separate single-decoding and the hybrid
decoding are experimented on the multi-user observation
scheduling problem for agile Earth observing satellites.

The mission of Earth observing satellites (EOSs) is to obtain
photographs of the Earth surface satisfying users’ require-
ments. When the ground station center receives the requests
from users, it has to manage the requirements by selecting and
scheduling a subset of photographs and transmit the schedule,
which consists of a sequence of selected photographs, to the
satellites. We consider an agile satellite, which has only one
on-board camera that can move around three axes: roll, pitch,
and yaw. The starting time of each photograph is not fixed;
it can slide within a given visible time interval. The problem
description of agile EOSs scheduling problem is presented in
the ROADEF 2003 challenge [10]. This challenge required the
scheduling solutions that maximize total profit of the acquired
photographs for a single user and have to satisfy all physical
constraints of agile EOSs. Algorithms based on simulated
annealing [11] and tabu search [12] were particularly proposed
for this challenge. In [13], multiple users have been consid-
ered. However, a single objective is considered.

The originality of our work also lies in the consideration of
multi-user requests, but we need to optimize two objectives.
The ground station center should maximize the total profit
of the acquired photographs and simultaneously share fairly
the satellite resources for all users by minimizing the maxi-
mum profit difference between users. In [9], we proposed a
biased random-key genetic algorithm (BRKGA) with a single
decoding method to solve this multi-objective optimization
problem. BRKGA with a single decoding succeeded to obtain
quite good solutions. However, the average value of the
obtained hypervolumes and the range of the solutions should
be improved.

For our study, the ROADEF 2003 instances of the observa-
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Fig. 1. A polygon is decomposed into several strips; one of two possible
directions can be selected for the acquisition of each strip

tion scheduling problem for agile EOSs are modified in order
to consider in case of multi-user requirements. Two possible
shapes of area can be required: spot or polygon. The polygon is
a big area that the camera cannot take instantaneously. Hence it
has to be decomposed into several strips of rectangular shape
with fixed width but variable length, as shown in Figure 1.
Among two possible directions, one acquisition can be selected
for each strip. Two types of photograph can be required:
a mono photograph is taken only once, whereas a stereo
photograph should be acquired twice in the same direction
but from different angles.

The possible starting time interval for taking each acqui-
sition is calculated, depending on the acquired direction, its
earliest/latest visible time of the two extremities and the
taking duration time of the strip. Moreover, adjacent selected
acquisitions must also respect a sufficient transition time. It
is a necessary time in order to move the camera from the
ending point of the previous acquisition to the beginning point
of the next acquisition. These imperative constraints have to
be satisfied for finding the feasible solutions, which are the
sequences of the selected acquisitions for being transmitted
to the satellite. For each solution, the two objective function
values can be calculated by using a piecewise linear function
of gain. This function is associated with a partial acquisition
of the acquired request, as illustrated in Figure 2.

The article is organized as follows. Section II explains the
BRKGA for solving multi-objective optimization problems.
The proposed hybrid decoding is presented in Section III. Sec-
tion IV reports the computational results. Finally, conclusions
are discussed in Section V.

II. BIASED RANDOM KEY GENETIC ALGORITHM FOR
MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A genetic algorithm is a metaheuristic method, which
operates on several individuals in a population. Individuals
should spread through the search space. The genetic algorithm
uses the concept of survival of the fittest to find the optimal
solutions. Each individual consists of a chromosome, which
represents a solution. The process of genetic algorithm is
started by generating an initial population with its size equal

1

0 1
x

0.1

0.4 0.7

0.4

P(x)

Fig. 2. Piecewise linear function of gain P (x) depending on the effective
ratio x of acquired area [10]

to p. For generating the next generations, selection, crossover,
and mutation operators are applied. The iterations are repeated
until a stopping criterion is satisfied.

A biased random key genetic algorithm (BRKGA) was first
presented in [1]. The BRKGA has different ways to select
two parents for the crossover operation, compared with the
original of random key genetic algorithm (RKGA) [2]. For
BRKGA, the random key chromosome is formed by several
genes, which are encoded by real values in the interval [0, 1].
Then, the chromosome is decoded in order to obtain the
solution. The decoding strategy is problem dependent. The
fitness value of solution is computed in this decoding step.
The current population is divided into two groups by using
the selection mechanism. Selections are applied to choose pe
preferred chromosomes from the current population to become
the elite set. The remaining chromosomes will be stored in the
other group of non-elite chromosomes. Then, the process to
generate the population in the next generation begins.

The standard procedure for BRKGA can be found in [3]. We
will now explain how BRKGA was adapted for multi-objective
optimization [9]. We will focus on the selection phase, fitness
computation, and population recombination.

A. Population generation for the next iteration

The population of the new generation is generated from
three parts, as in Figure 3. The first part is an elite set, which
contains pe preferred chromosomes. The second part is a set of
pm chromosomes, which are generated to avoid the entrapment
in a local optimum. These chromosomes are called mutant.
They are randomly generated by the same methods, which is
used to generate the initial population. The last part is filled
by generating offspring from the crossover operation of the
elite set and another solution from the current population.
Each element in the offspring is obtained from the element
of elite parent with the probability ρe. Otherwise, the element
of offspring is copied from the non-elite parent. Hence, the
size of crossover offspring set is equal to p − pe − pm. The
recommended parameter value setting is displayed in Table I.

In [3], BRKGA is applied to solve optimization problems
arising in several applications. However, all problems consider
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Fig. 3. The population of the new generation by using BRKGA

TABLE I
RECOMMENDED PARAMETER VALUES OF BRKGA [3]

Parameter Recommended value
p p = a.n,

where 1 ≤ a ∈ R is a constant and
n is the length of the chromosome

pe 0.10p ≤ pe ≤ 0.25p

pm 0.10p ≤ pm ≤ 0.30p

ρe 0.5 ≤ ρe ≤ 0.8

only one objective. In this work, we study BRKGA for solving
a multi-objective optimization problem. The fitness of each
chromosome must be taken into account for all objective
functions. Algorithms for selecting the preferred chromosomes
are needed.

B. Algorithm to select the preferred chromosomes in the
context of a multi-objective optimization problem

Three strategies are proposed to select individuals.
1) Fast nondominated sorting and crowding distance as-

signment: Fast nondominated sorting and crowding distance
assignment methods were proposed in the Nondominated Sort-
ing Genetic Algorithm II (NSGA-II) [6]. In our work, the fast
nondominated sorting method is used to find the nondominated
solutions. If the number of nondominated solutions is more
than the parameter setting value of maximum size of elite set,
the crowding distance assignment method is applied to select
some solutions from the nondominated set to become the elite
set. Otherwise all nondominated solutions will become the
elite set.

2) S metric selection evolutionary multi-objective opti-
mization algorithm: S metric selection evolutionary multi-
objective optimization algorithm (SMS-EMOA), which was
proposed in [7], is applied to select some solutions in the
current population to become the elite set. In our work, we use
SMS-EMOA combining with the fast nondominated sorting
from NSGA-II. The fast nondominated sorting is applied in
order to find the nondominated solutions and SMS-EMOA
compute the hypervolume as selection criterion for limiting
the size of elite set. The hypervolume selection discards
the solution, which obtains the least hypervolume in the set
of nondominated solutions and the remaining solutions will

become the elite set.
3) Indicator-based evolutionary algorithm based on the

hypervolume concept: The use of an indicator based on the hy-
pervolume concept was proposed in the Indicator-Based Evo-
lutionary Algorithm (IBEA) [8]. The indicator based method
is used to assign fitness values based on the hypervolume
concept to the population members. Then, some solutions in
the current population are selected to become elite set for
the next population. The indicator based method performs
binary tournaments for all solutions in the current population.
The selection is implemented environmentally by removing
the worst solution from the population and updating the
fitness values of the remaining solutions. The worst solution
is removed repeatedly until the number of remaining solutions
satisfies the recommended size of elite set for BRKGA.

III. DECODING METHODS

In this section, the decoding methods, which are used for
obtaining the solutions from the random key chromosomes,
are described. A chromosome consists of several genes. Each
gene represents one job, which needs to be scheduled. When
the processes of genetic algorithm finish, the chromosome is
decoded in order to obtain a sequence of jobs, which become
the solution of the problem. In this decoding step, the sequence
of jobs will be generated. The order to consider each job
depends on the priority, which is computed from its associated
gene value. The job, which has the highest priority, will be
firstly considered to be assigned in a sequence. Then, the
next jobs are considered according to the priority order. The
considered job can be scheduled in the sequence, only if all
constraints are satisfied. Three decoding methods for assigning
the priority are studied in this paper. The three methods are:

A. Basic decoding (D1)

The first decoding method is a basic decoding: the priority
is assigned by using directly the gene value:

Priorityj = genej (1)

This decoding method was implemented in the context of
multi-objective optimization in [9]. Albeit it gave quite good
results, we are convinced that the results regarding average
values and standard deviations of hypervolumes can be yet
improved. Thus, we searched for an idea to apply some useful
data of the problem for assisting the basic decoding.

B. Decoding of gene value and ideal priority combination
(D2)

This decoding is presented in [5]. It considers the priority
depending on the gene value, and also an ideal priority. For
the concept of the ideal priority, the job, which has the
earliest possible starting time, should be selected firstly and be
scheduled at the beginning of the sequence. Hence the ideal
priority gives a higher priority to select and schedule the job
which has the earlier possible starting time. This ideal priority
is the real value in the interval [0, 1] which is given by

LLPj

LCP
, (2)
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Fig. 4. Example of ideal priority calculation

where LLPj is the longest length path from the beginning of
job j to the end of the project and LCP is the length along
the critical path of the project.

The factor that adjusts the priority to account for the
gene values of the random key chromosome is given by
(1+ genej)/2. Thus, the second decoding expression of each
job j is

Priorityj =
LLPj

LCP
×
[
1 + genej

2

]
(3)

This second decoding method was applied to solve
the resource-constrained project scheduling problem with
makespan minimization in [5]. In our paper, the second de-
coding will be implemented to the considered multi-objective
optimization problem, which is the multi-user observation
scheduling problem for agile Earth observing satellites. Hence,
the second decoding expression of each acquisition j becomes:

Priorityj =
TmaxL − Tminj

TmaxL
×
[
1 + genej

2

]
(4)

where TmaxL is the latest starting time of the last possible
acquisition and Tminj is the earliest starting time of acquisi-
tion j.

The example of the ideal priority calculation of the second
decoding method is shown in Figure 4. It is applied to the
multi-user observation scheduling problem for agile Earth
observing satellites, which needs to select and schedule four
acquisitions, which are acquisitions a, b, c, and d. For this
example, the sequence of the acquisitions according to the
ideal priority, is b, c, d, and a.

C. Hybrid decoding (HD)

Finally, we propose the third decoding method which is the
hybrid method. It combines together the first and the second
decoding methods. This hybrid method obtains two solutions
from one chromosome. When applying the hybrid decoding,
the methods to manage the elite set, must be defined. Three
methods are tested for selecting the elite set.

1) Elite set management - Method 1 (M1): Both solutions,
obtained by the two decodings, are compared by using the
dominance relation in the Pareto sense. If a solution can
dominate the other one, the dominant solution is selected
to be stored in the set of solutions. Otherwise, one of the
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Fig. 6. Elite set management for hybrid decoding - method 2

two solutions is selected randomly. The decoding process is
repeated until all chromosomes in the population are decoded.
When it finishes, the size of the solution set is equal to p.
Then, the pe solutions are selected to become the elite set by
using the same methods with only one decoding. The principle
of elite set management - method 1 is shown in Figure 5.

2) Elite set management - Method 2 (M2): All chromo-
somes in the population are decoded by using the two decoding
methods. Two solutions are obtained from the decoding of
one chromosome. Both of them are stored in the solution set.
Hence, the size of the solution set is equal to 2p, when all
chromosomes from the current population are decoded. Then,
the pe solutions are selected from the solution set to become
the elite set. The principle of elite set management - method
2 is shown in Figure 6.

3) Elite set management - Method 3 (M3): Each chromo-
some in the population is firstly decoded by using the priority
equation of basic decoding, and the obtained solution is stored
in the first solution set. Similarly, the same chromosome is
decoded by using the priority equation of the decoding of
gene value with ideal priority combination. Then, the obtained
solution from this decoding is stored in the second solution
set. When all chromosomes in the population are decoded and
the solutions are stored into two solution sets, the selection
methods are applied to select pe solutions for becoming the
elite set. Hence, the pe/2 preferred solutions must be chosen
from each solution set, as shown in Figure 7.

In the decoding step for solving the multi-user observation
scheduling problem for agile Earth observing satellites, the
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priorities for selecting and scheduling each acquisition are
computed depending on the decoding methods as previously
presented. Then, the solution, which is the sequence of the
selected acquisitions, can be generated. The imperative con-
straints are verified for each acquisition sequentially according
to its priority. Each considered acquisition can be assigned
in the sequence, only if the obtained sequence can satisfy
all constraints. The flowchart of constraint verification and
acquisition assignment is depicted in Figure 8. The example of
one solution from the smallest size instance is shown in Figure
9. This instance consists of two strips. Hence the number of
random key genes, which are associated with the acquisitions,
equals to four. This example shows the solution, which is
decoded from the basic decoding (the priority to select and
schedule of each acquisition equals to its gene value). This
decoding step is used to obtain the sequence of the selected
acquisitions and the values of the two objective functions.

IV. COMPUTATIONAL RESULTS

The ROADEF 2003 challenge instances (Subset A) are
modified for 4-user requirements. The format of instance
names are changed to a_b_c, where a is the number of
requests, b is the number of stereo requests, and c is the
number of strips.

For the proposed biased random-key genetic algorithm
(BRKGA), parameter values of the algorithm were experimen-
tally tuned for our work. The population size of BRKGA is set
equal to the length of the random-key chromosome or twice
the number of strips. The sizes of the three parts, which are
generated to become the population in the next generation, are
set in accordance with the recommended values in Table I.
The size of the elite set is equal to the number of non-
repeating schedules from the nondominated solutions, but it
is not over 0.15p. The size of mutant set is equal to 0.3p. The
probability of elite element inheritance for crossover operation
is set to 0.6. In each iteration, the nondominated solutions are
stored in an archive. If there is at least one solution from the
current population that can dominate some solutions in the
archive, the archive will be updated. Therefore, we use the
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Fig. 9. Solution example from the modified instance, which needs to schedule
two strips

number of iterations since the last archive improvement to be
a stopping criterion. We opt for 50 iterations. Moreover, the
computation time is used to be the second stopping criterion. It
is adapted to the instance size. The iteration of BRKGA will be
stopped, when one of the two stopping criteria is satisfied. The
algorithm is implemented in C++ and ten runs per instance are
tested. The hypervolumes of the approximate Pareto front are
computed by using a reference point of 0 for the first objective
(maximizing the total profit) and the maximum of the profit
summations of each user for the second one (minimizing the
profit difference between users). Three elite selecting methods
from three efficient algorithms: NSGA-II, SMS-EMOA, and
IBEA, are applied to select some solutions to become the
elite set. The set of testing instances consists of ten instances.
However, the results of the smallest instance (instance 2_0_2)
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Fig. 10. Comparison of the results of the three methods for management of
the elite set for hybrid decoding (M1, M2, and M3) by using the method for
elite set selection borrowed from NSGA-II

cannot be reached, when using the population size equal to
the length of the chromosome or twice of number of strips,
because the population size is too small for generating the new
population from the three sets of chromosomes in BRKGA
process. Hence, the results of nine instances will be presented
in the experimental results.

Firstly, the three methods of elite set management for
hybrid decoding (M1–M3) are tested. The results, which are
obtained from each method, are compared. The hypervolume
values of the approximate Pareto front are computed. The
maximum value, the median value, the minimum value, and
the interquartile range are displayed in box plot. The box
plots and the average computation times associated with the
mechanisms of NSGA-II, SMS-EMOA, and IBEA are reported
in Figures 10, 11, and 12, respectively.

The results show that the three methods obtain similar
solutions regarding the hypervolume values. Each method
has advantages in different instances. However, M2 spends
more computation time for the large instances, especially,
when using the elite set selection method borrowed from
IBEA. Furthermore, M3 spends more computation time for the
small instances, particularly when using the elite set selection
method borrowed from NSGA-II or SMS-EMOA. Therefore,
in the sequel only method M1 will be kept to compare the
results between the hybrid decoding (HD-M1) and the two
single ones (D1 and D2).

Secondly, the three decoding methods (D1, D2, and HD) are
tested and the obtained results are compared. The box plots
from the three elite set selection methods, which borrowed
from NSGA-II, SMS-EMOA, and IBEA, are reported in
Figures 13, 14, and 15, respectively. The graph illustrates
the box plots of the hypervolume values, and the average
computation times are presented.

Most of the results show that the hybrid decoding obtains
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Fig. 11. Comparison of the results of the three methods for management of
the elite set for hybrid decoding (M1, M2, and M3) by using the method for
elite set selection borrowed from SMS-EMOA
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Fig. 12. Comparison of the results of the three methods for management of
the elite set for hybrid decoding (M1, M2, and M3) by using the method for
elite set selection borrowed from IBEA

the results close to the best ones, when comparing the two
single decodings. Indeed, it can preserve the advantages of
the two single decodings for all instances. For example, in
instance 12_2_26, the first decoding method obtains better
results than the second one, thus the hybrid decoding obtains
results similar to the first one. For instance 77_40_147, the
hybrid decoding obtains results similar to the second decoding,
which obtains better results than the first one. Thus, the hybrid
decoding method is efficient for solving most of the instances.
Compared with D1, it can reduce the range of hypervolume
values. This means that the hybrid decoding can provide
results with better standard deviations. Moreover, for some
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Fig. 13. Comparison of the results of the three decoding methods (D1, D2, and
HD-M1) by using the method for elite set selection borrowed from NSGA-II
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Fig. 14. Comparison of the results of the three decoding methods (D1, D2,
and HD-M1) by using the method for elite set selection borrowed from SMS-
EMOA

instances where the second decoding entraps in local optima,
the hybrid decoding is able to reach the global optimum.
Regarding the computation time, the hybrid decoding method
spends longer time in each iteration, however it can obtain
good solutions in a reasonable computation time, which is
limited by the second stopping criterion of BRKGA process.

V. CONCLUSIONS

A biased random-key genetic algorithm or BRKGA is
used for solving a multi-objective optimization problem. The
BRKGA works on a chromosome encoded as a key vector.
The chromosome consists of several genes, which are encoded
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Fig. 15. Comparison of the results of the three decoding methods (D1, D2,
and HD-M1) by using the method for elite set selection borrowed from IBEA

by the real values in the interval [0, 1]. During each iteration
of BRKGA, the chromosomes are decoded to obtain the
feasible solutions. A hybrid decoding, which combines two
single decodings, is proposed in this paper. Two solutions
are obtained from the decoding of one chromosome, when
using the hybrid decoding. Thus, the methods for elite set
management have to be defined and three methods are tested.

The experiments are conducted on the multi-user observa-
tion scheduling problem for agile Earth observing satellites.
The requests are required from multiple users. The objectives
of this problem are to maximize the total profit and simultane-
ously minimize the maximum profit difference between users
for ensure the sharing fairness. Three elite selecting methods,
which are borrowed from NSGA-II, SMS-EMOA, and IBEA,
are used for selecting a set of preferred solutions to become
the elite set of the population. For the three elite selecting
methods, the hypervolume values, which are obtained from
two single decodings and the hybrid decoding, are compared.
The hybrid decoding can preserve the advantages of the two
single decodings, since it obtains results close to the best
results of the two single decodings in reasonable computation
times. Moreover, it can improve the standard deviation of
the hypervolume values and avoid to entrap in local optima.
Finally, the hybrid decoding is proper to be applied in BRKGA
process for solving multi-objective optimization problems,
which need several feasible solutions on the Pareto front.
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