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ON INTEGERS OF THE FORM p + 2 k

+ 2 k , where p is a prime and k a nonnegative integer.

Introduction

Troughout this paper, the symbol p will denote a prime and k will be a nonnegative integer. Romanov [R] proved that the integers of the form p + 2 k have positive density. He also raised the following question : does there exists an arithmetic progression consisting only of odd numbers, no term of which is of the form p + 2 k ? Erdős [E] found such an arithmetic progression by considering integers which are congruent to 172677 modulo 5592405 = (2 24 -1)/3. Thus the density of numbers of the form p+ 2 k is less than 1/2, the trivial bound obtained from the odd integers. For convenience we introduce

d = lim inf x→∞ #{p + 2 k ≤ x} x/2 and d = lim sup x→∞ #{p + 2 k ≤ x} x/2 .
The aim of this paper is to give an explicit version of the estimates 0 < d ≤ d < 1.

Theorem 1. We have 0.1866 < d ≤ d < 0.9819 .

This range is pretty large and Bombieri conjectured the more precise value 0.86 [P].

In section 2, we obtain the lower bound 0.1866 < d, by slightly refining a straightforward application of a recent result of Pintz and Ruzsa [PR], in their study of Linnik's approximation of Goldbach problem (see also [HB-P]). In section 3, we get the upper bound, using computations on residue classes.

The lower bound

Let N be a large integer and put L = ⌊log N/ log 2⌋. Define the functions To get the bound from the theorem, we need further notations. Put

r(n) = #{(p, k) : n = p + 2 k , p ≤ N , 1 ≤ k ≤ L} and s(N ) = #{(p 1 , p 2 , k 1 , k 2 ) : p 1 -p 2 = 2 k2 -2 k1 , p j ≤ N , 1 ≤ k j ≤ L , j = 1, 2} , so that s(N ) = N n=1 r 2 (n) .
ǫ N = 1≤n≤N , r(n)>0 r(n) 1≤n≤N , r(n)>0 1 and ǫ = 2 d log 2
.

By the definitions, there exists a subsequence of (ǫ N ) N ∈N which converges to ǫ. Let us now refine the Cauchy-Schwarz inequality by studying

∆ N = 1≤n≤N , r(n)>0 (r(n) -ǫ N ) 2 , so that ∆ N = 1≤n≤N r 2 (n) - 1≤n≤N r(n) 2 1≤n≤N , r(n)>0 1 = s(N ) - (π(N )L) 2 d(N ) ≤ 5.3636 - 1 d + o(1) 2N log 2 2 ,
for infinitely many N . Without loss of generality we may assume that ǫ ∈]15, 15.5[: otherwise we would get either d ≥ 0.19 which would be better, or d ≤ 0.1862 which is false. For infinitely many N we thus have

∆ N ≥ 1≤n≤N , r(n)>0 (15 -ǫ N ) 2 ≥   1≤n≤N , r(n)>0 (15 -ǫ) 2 + o(1)   N = d 2 15 - 2 d log 2 2 + o(1) N .
We deduce from these estimates the inequality

d 2 15 - 2 d log 2 2 ≤ 2 log 2 2 5.3636 - 1 d ,
which may be written as 56.25 log 2 2d 2 -(15 log 2 + 5.3636)d + 1 ≤ 0 .

The lower bound d ≥ 0.1866 then follows.

The upper bound

A. Basic ideas.

Let us introduce further notations. Let M be a positive odd integer and let ω denote the order of 2 in (Z/M Z) * . For m a residue class modulo M , put

f M (m) = {k ∈ Z/ωZ : m -2 k ∈ (Z/M Z) * } , and δ M (ν) = |{m ∈ Z/M Z : |f M (m)| = ν}| .
The basic tool to get an upper bound for d is the following lemma.

Lemma 2. With the previous notations, we have

d ≤ ω ν=0 δ M (ν) min 1 M , 2ν ωϕ(M ) log 2 ,
where ϕ denotes Euler's function.

Proof. Let m be a congruence class modulo M , with |f M (m)| = ν. Let us study the proportion of odd integers congruent to m that may be written in the form p + 2 k . This proportion is clearly at most 1/M , and we only need to prove the alternative upper bound. Since all the primes but a finite number are invertible modulo M , there almost surely exist ν congruence equations m = p i + 2 ki , i ∈ {1, . . . , ν}, such that any representation p + 2 k comes from one of these congruence equations. The number of primes up to N which are congruent to p i modulo M is equivalent to N/(ϕ(M ) log N ), while the number of powers of 2 which are congruent to 2 ki modulo M is equivalent to log N/(ω log 2). Thus the number of integers congruent to m that may be written in the form p + 2 k is at most (ν/(ϕ(M )ω log 2) + o(1))N . This implies that the proportion of odd integers enjoying these properties is at most 2ν/(ϕ(M )ω log 2) and the lemma follows.

This lemma provides a non trivial upper bound for d as soon as there exist residue classes m modulo M such that

f M (m) < ωϕ(M ) log 2 2M , (1) 
a condition that occur for a small number of classes. The main problem is to compute the distribution of the f M (m)'s in an efficient way. The direct computation of all the f M (m)'s is quickly limited by memory problems. However one can obtain significant results this way. Take M = 23205 = (2 24 -1)/723, so that ω = 24 and ϕ(M ) = 9216. The condition (1) is equivalent to f M (m) ≤ 3. We find (δ M (0), δ M (1), δ M (2), δ M (3)) = (0, 48, 720, 320) , and we get this way d ≤ 0.985049.

B. Refined algorithms and results.

It appears that the function f M takes a very few possible values, when compared to the subset set of Z/ωZ. So let us introduce

g M (I) = {m ∈ Z/M Z : f M (m) = I} and G M (I) = |g M (I)| , for I ⊂ Z/ωZ. Note that δ M (ν) = |I|=ν G M (I) .
So it is sufficient to know the distribution of the G M (I)'s to compute an upper bound for d.

The main advantage of the function g M is that it is easily computable by induction on the number of prime factors of M . The initial case is given by g 0 ({0}) = {0}.

Let M 1 , M 2 be two positive odd squarefree integers, with M 2 = pM 1 for some prime p not dividing M 1 . Let ω 1 , ω 2 and ω p denote the order of 2 in (Z/M 1 Z) * , (Z/M 2 Z) * and (Z/pZ) * , respectively. The image of f p is easy to compute. There is the subset

I p,0 = { 2k ∈ (Z/pZ) * : k ∈ Z/ω p Z} with G p (I p,0 ) = p -ω p , for each j ∈ Z/ω p Z the subset I p, j = { 2k ∈ (Z/pZ) * : k ∈ Z/ω p Z, k = j} with G p (I p, j ) = 1
. Now, let I 2 and I p be in the image of f M2 and f p respectively. Denote by Ĩ2 and Ĩp the subsets of Z/M 1 Z which are inverse image of I 2 and I p by the map on subsets induced by the natural surjections Z/M 1 Z → Z/M 2 Z and Z/M 1 Z → Z/pZ respectively. Then it is easy to see that Ĩ2 ∩ Ĩp is in the image of f M1 with G M1 ( Ĩ2 ∩ Ĩp ) = G M2 (I 2 )G p (I p ), and that all subsets in the image of f M1 are obtained in this way.

This constructions allows to build recursively the image of f M . It also enables us to know how many classes have the same image. Therefore, one can compute G M (I) without knowing g M (I). Let us give an example. For M = 5592405 = 3.5.7.13.17.241 = (2 24 -1)/3, we have ω = 24. There are 16401 subsets in the image of f M , which is much fewer that 2 24 . Each of these subsets is obtained in r ways, with 1 ≤ r ≤ 250068. Only subsets of cardinality at most 3 lead to an improved upper bound. The empty set appears 48 times. Each of the singletons from Z/24Z appears 540 times. For 2-subsets, the situation is slightly more complicated to describe. The subsets of the form {a, a ± 8} appear 3625 times (there are 24 of them) while those of the from {a, a + 12} appear 7170 times (there are 12 of them). There are 224 interesting 3-subsets, appearing 3, 6, 225 or 9520 times.

This method requires much less memory than the algorithm from the previous subsection. It is still possible to save a bit more memory. Indeed the representation problem (by an invertible plus a power of 2) is invariant when multiplied by a power of 2. So we can use a representative of a collection of subsets, each of them being obtained by translation from the representative, instead of subsets of Z/ωZ.

The best result found so far is given by M = 3.5.7.11.13.17.19.31.41.73.241.257. It leads to the improvement d < 0.9818818607968211912960156368 , and the upper bound from Theorem 1 follows. This computation took 35 minutes on an Intel Xeon 2.4GHz with a memory stack of 2.1Go. Indeed, the real limitation is the memory. Note that during the computations, subsets for which G M (I) was quite large and thus unlikely to contribute in the density were dropped (still there were a total of 4469837 different subsets at the end). Hence the density obtained may be a little bigger then the actual density for this value of M .
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Lemma 1 .

 1 For N large enough, we have s(N ) ≤ 2 log 2 2 CN , where C < 5.3636. Let d(N ) denote the number of positive integers n ≤ N which may be written in the form n = p + 2 k . The Cauchy-Schwarz inequality implies easily that (π(N )L) 2 ≤ d(N )s(N ) , where π(N ) denotes the number of primes p ≤ N . we deduce from Lemma 1 and from the prime number theorem that 2Cd(N ) ≥ (1 + o(1))N , and the lower bound d ≥ 1/C > 0.1864 follows from the definitions.