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Verifying a p-Adic Abelian Stark Conjecture at s = 1
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IGD, Université Lyon I King’s College London

November 21, 2005

Abstract

In a previous paper [13], the second author developed a new approach to the abelian
p-adic Stark conjecture at s = 1 and stated related conjectures. The aim of the present
paper is to develop and apply techniques to numerically investigate one of these — the
‘Weak Refined Combined Conjecture’ — in fifteen cases.

1 Introduction

In the 1970’s and 80’s Harold Stark [14] made a series of conjectures concerning the values
at s = 1 and s = 0 of complex Artin L-series attached to a Galois extension of number
fields K /k. Subsequently, much theoretical and computational work has been done, extend-
ing and testing these conjectures, with particular attention paid recently to certain refined
conjectures in the case where K/k is abelian ([7], [5]).

In [13], a new approach to the abelian case of the p-adic conjecture at s = 1 was developed
and several related conjectures were stated. The main aim of the present paper is to develop
and apply techniques to numerically investigate one of these — the ‘Weak Refined Combined
Conjecture’ (Conjecture 3.6 of [13], here Conjecture 2.2) — in a number of cases.

In Section 2, we shall recall the definitions of the complex and p-adic ‘twisted zeta
functions’. They depend on two parameters: a proper ideal | of Oy, and a set T' of primes
ideals of O (which, for the purpose of p-adic interpolation, must contain the primes above
p). Then the statements of the two ‘combined conjectures’ of [13] are given. (The term
‘combined’ refers to the fact that each conjecture predicts both a complex and a p-adic
equality.) The main reference for this section is, of course, [13], but also [12] which contains
a reformulation developed by the second author of a refined complex abelian conjecture at
s = 0 originally made by Rubin in [7]. Briefly, the ‘Weak Refined Combined Conjecture’
takes the following form: we assemble all the complex (resp. p-adic) twisted zeta-functions
for given § and T into a single group-ring-valued function ®;r(s) (resp. ®jr,(s), assuming
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that 7' contains the primes above p). Then, assuming that the primes in 7" do not divide f,
the value of the latter at s = 1 is conjectured to be equal to the complex (resp. p-adic) group-
ring-valued regulator of a certain element n;7 multiplied by an explicit algebraic constant.
The element 7;p is constructed from certain S-units of the field K which in this case is
simply the ray-class field k(f).

Section 3 develops a new formula to compute the element ®;7,(1). We concentrate on
the case where k is real quadratic although our technique should extend to other totally
real fields. Relying as it does on Shintani’s method and the theory of p-adic measures, this
technique is very different in nature from that used to evaluate complex L-functions. (For
the latter we use [1].) We stress that it passes most naturally not by the analogous p-adic
L-functions but by the p-adic twisted zeta-functions themselves. Indeed, this was one of the
major reasons for introducing these functions and, in preparation, their complex analogues.

Finally, Section 4 is devoted to the numerical investigation of the ‘Weak Refined Com-
bined Conjecture’ over a real quadratic field. We first explain some procedures (for example
a continued fraction method based on ideas of Zagier) that greatly shorten the calculation of
@ 1,(1) using the formula of the previous section. Then we explain the basis of our method
for verifying the conjecture. Since [k : Q] = 2 and K is totally real, our conjectures are
‘second order’ in the sense that the relevant complex L-functions have at least a double zero
at s = 0. The corresponding fact on the ‘other side’ of the conjectures is that both the com-
plex and p-adic regulators must be of rank 2. One consequence is that, unlike verifications
of the (complex) first order abelian Stark Conjectures (see for example [6]), the regulators
themselves do not determine S-units of K. We therefore need different methods for finding
K and n;r and new criteria for affirming that the latter satisfies the combined conjecture to
the precision of our computations. In fact, we use the methods of [6] (which actually rely on
the first-order complex conjecture!) to independently and verifiably construct the ray-class
field K. We then illustrate our methodology by numerically confirming the conjecture in
fifteen different examples, using a number of different primes p in each example. The result-
ing data are displayed in tables at the end of the paper. We hope that they will serve to
stimulate further interest in these conjectures, their possible refinements and extensions.

2 The p-adic Stark conjectures at s =1

The main reference for this section are [12] (for the complex twisted functions) and [13].

2.1 Complex twisted zeta functions

Let k € Q C C be any number field of finite degree over Q and let O its ring of integers.
Let I be any fractional ideal of k and ¢ any character on (the additive group of) I with
values in p(C), the complex roots of unity. The annihilator of ¢ is the ideal f < O given by
f={a€ O : &axr)=1Vx e I}. Suppose that 3 is the formal product of some subset of
the real places of £ and write m for the cycle that is the formal product f3. We denote by



E., the subgroup of finite index in F(K) := O* consisting of the units that are congruent
to 1 modulo m in the usual sense. For any finite set T' of finite places (prime ideals) of O,
the group E, acts by multiplication on the following subset of I

S(I,3,T):={acl:ack]and (al',T)=1}

where £ denotes the elements of £ which are positive at all places dividing 3 and the
notation (J,7) = 1 indicates that an ideal J of O has support disjoint from 7. For s €
C, R(s) > 1 we consider the absolutely convergent Dirichlet series, called the ‘twisted zeta-
function’ for these data, defined by

Zr(s;&,Im) = Y ﬂ _ 3 £(a)

o T @ N{al1)
a ,317)/Em a€S(1,3,T)/En

= NI°Y T &a)Nijgla) (1)

a68(1737T)/Em

Let Wj be the set of all pairs (¢, J), where v is a character of annihilator f on a fractional
ideal J. In [13] a natural equivalence relation (depending on 3) was defined on Wj in such
a way that Zp(s;€,1,m) equals Zp(s;&, I',m) if (£, 1) and (¢, I’) are equivalent. Let 20,
denote the quotient set of W by this equivalence relation. Then for any equivalence class
w € W, we can unambiguously define Zr(s;w) = Zp(s;€, I, m) for any (£,1) € w. Let
Cli(k) denote the ray-class group of £ modulo m. Thus Cly(k) := Zs(k)/Pw(k) where Z;(k)
denotes the group of fractional ideals prime to f and Py(k) the subgroup consisting of those
of the form (a) for some a € k*, a =1 (mod m). For any ¢ in Cly,(k) and to in 20, we
let ¢ - 1o denote the element of 2, given by the equivalence class of the pair (§|as, al) € W
where (&, 1) is any pair in the class w and a € Zj(k) any integral ideal in the class ¢. This
map is well-defined and determines an action of Cly(k) on 20,,. One can check that this
action is free and transitive.

Let D < O denote the absolute different of £ and write 5? for the character on D!
which sends a to exp(2mi Try/g(a)). Thus the pair (£, §7'D~") lies in W and we write 1),
for its class in 2W,,. Let k(m) C C be the ray-class field over k modulo m. The Galois group
G := Gal(k(m)/k) is isomorphic to Cly(k) via the Artin map which sends ¢ € Cly,(k) to
Ocm = 0 € G. We let CGyy, denote the complex group-ring of Gy, and make the

Definition 2.1 For any cycle m = 3 for k and any finite set T' of prime ideals of O, we
write Pu 7 for the function

Opr : {s€C:R(s) >1} — CGy

s — Z Zr(s;c-mw)o !
¢€Cln (k)

The basic properties of @, r(s) are given in [12, §3] and [13, §2]. In particular Theorem 2.2
of [13] gives a relation between @7 and the primitive L-functions of the characters of Gy,

(or Clu(k)).



2.2 p-Adic interpolation

We turn now to the definition of the p-adic analogue of @, by p-adic interpolation. For
this we need k to be totally real which we shall assume henceforth.

We choose a prime number p, write C, for the completion of an algebraic closure of the
field Q, of p-adic numbers and fix an embedding j : Q — C,. We let 1(Q,) be the group of
roots of unity in Q,, w, its cardinality, and consider the set of rational integers defined by

Mp)={meZ: m<0, m=1 (modw,)}

Let L(s,1) denote the complex L-function of a primitive ray-class character ¢. It is well-
known that its values at the points of M(p) are algebraic and that their images under j
may be ‘interpolated’ to define a p-adic L-function attached to the primitive p-adic-valued
ray-class character j o 1 (this is summarised in [13, Theorem 2.4]). It can also be shown
(see [13, Theorem/Definition 2.1]) that the values of ®y 7 on M(p) lie in QGy, and using,
for example, the p-adic L-functions one may interpolate these values whenever the following
condition is satisfied

T contains the set T}, of all primes dividing p in O. (2)

More precisely, let D(p) denotes the set 1 + 2Z,, the closure of M(p) in Q,. Then under
condition (2) there exists a unique p-adic valued function ®y,7,(s), defined on D(p) and
depending on j, such that

o rp(m) = j(Pmr(m)) Vm € M(p). (3)

(here, j has been extended to a homomorphism QGy, — C,G, by acting on the coefficients).
Furthermore @, 1, is p-adic meromorphic on D(p). If § is not a product of distinct primes
lying in 7', then ®., 7, is actually analytic on this domain. Otherwise it has at most a
unique, simple pole at s = 1. In all cases 2Py r,(s) is analytic in D(p) for any x in the

augmentation ideal [(C,Gy) of C,Gn. Note that we shall write (I)](i)Typ instead of @1,
whenever the dependence on j needs to be made explicit.

2.3 The conjectures

We recall the combined conjectures stated in [13, §3]. These are made up of a complex and
a p-adic part formulated side by side for the same field k (of degree r say, over Q), cycle
m = f3 and set 7', but in terms of ®y, (1) and @y 7,(1) respectively. We make the

Hypothesis 2.1
(i). k is totally real,

(7). f is not a product of distinct primes lying in T (in particular, § is not trivial), and

(#1i). 3 is trivial, i.e. m = §



Hypothesis 2.1 will be assumed from now on unless the contrary is explicitly stated, so that,
in general, we can write @ etc. in place of @, 1 etc. We shall also write K for the ray-class
field k(m) = k(f) C C (necessarily totally real) and G for G; = Gal(K/k). Let S, and
So = So(f) denote respectively the set of infinite (real) places of k and the set of finite places
dividing f in k. We let S = So,USy. The notations So.(K), So(K) and S(K) refer to the sets
of places of K dividing those in these three sets. We abbreviate to Ug(K) or Us the group
Us(k)(K) of S(K)-units of K. Let ¢1,...,t denote the embeddings of k into Q (¢ is the
inclusion). For each i = 1,...,r we choose an embedding i; : K — Q extending ¢;. We write
Lip for the p-adic embedding j o¢; of k into C,, and also 7;, for its extension joi; : K — C,.
We then define logarithmic maps A; : Us — RG and A, : Us — C,G by setting

Ai(u) = Zlog |z oo(u)|o™t and A, (u) := Zlogp(iivp oo(u))o?t for all u € Us.

oeG oeG

where ‘log,” denotes Iwasawa’s p-adic logarithm. Both A; and A;, are clearly ZG-linear and
so ‘extend’ by Q-linearity to QUs := Q®zUs. (Henceforth, we shall often write RA in place
of R ®z A considered as an R-module, for any commutative ring R and abelian group A.)
These extensions in turn define unique, QG-linear, group-ring-valued ‘regulator maps’ R and
R, sending the rth exterior power A\g; QUs = Q ® A\ Us into RG and C,G respectively
and satisfying

R(uiA. . .Au,) = det(X(w))i = and Rp(urA. . Au,) = det(Nip(w))i = Yui,...,u, € QUs

We shall use an additive notation for /g, QUs as ZG-module and write )\EQ and R,()j ) instead
of \; , and R, whenever their dependence on j (via the 7; ,) needs to be made explicit. Finally,

we let v/dy € R denote the positive square-root of the (positive) absolute discriminant dj, of
k.

Conjecture 2.1 (Basic Combined Conjecture) If Hypothesis 2.1 and condition (2) hold
then, there exists nsr € /\TQG QUg such that

27’

b:7(1) = ———R mn CG 4
f’T< ) Vi | |peT Np <nf’T) " (4)
and o
oY) (1) = RU) m C,G. 5
f’T7p< ) j(\/dk)HpET Np * (nfyT) g ©)

REMARK 2.1 It is proved in [13, Prop. 3.3] that if n;r satisfies equation (5) for one embed-
ding j : Q — C, then it also satisfies it for any other embedding.

In [13, §3] ‘basic’ conjectures were formulated concerning the existence of elements 7 sepa-
rately satisfying (4) and (5). These were followed — under certain conditions — by ‘refined’
versions that require 7 to lie in a certain ZG-lattice inside /\E@G QUs. (These are ‘conjectures



over Z’ in the terminology of [15] and [7], indeed the complex version is closely linked to that
of the latter paper, see [12], [13]). A weakened, combined version of these conjectures was
then given which nevertheless refines Conjecture 2.1. It is stated simultaneously for all (eli-
gible) primes p. Before giving this we first recall some notations: For any x in G* (identified
with Cli(k)*) we set (S, x) := dimc(e,CUg). Let xo € G* denote the trivial character and
for any place v of k, let G(v) denote the decomposition subgroup of G associated to each of
the places w of K dividing v. It can be shown that

_ r+{a : qlf, Xlew =1} if x # xo, and
%X = { r—1+{q: Clh‘}\q if x = xo
= 1+ ords_; (X(Pmr(s))) (6)

where the last equation holds provided that (f,T) = 1. Because f # O, it follows that
r(S,x) > r for every x € G* and (S, xo) = r if and only if { is a (non-trivial) power of a
prime ideal. The latter condition will be denoted simply ‘f = q"’. If it does not hold then
r(S,x0) > r and we shall write ‘f # q'’. We set

egy 1= Z e, and egs,:=1—eg, = Z ey (7)

xXEG* XEG*

r(S,x)=r r(S,x)>r
These idempotents actually lie in QG. Let g denote the cardinality of G, then ég, := geg,
and ég~, = gegs, clearly lie in ZG. For any ZG-module A, we shall write AlS" .=
ker ég~,|A so that AT 5 €srAD gAlS™ For any ZG-submodule M of Ug, we denote by
Nza M the image of the exterior power Ay, M in Ay, QUs. The conjecture that will be
numerically verified in this article is the following

Conjecture 2.2 (Weak Refined Combined Conjecture) Suppose that k is totally real
and f # O is any proper integral ideal. Then, in the above notations, there exists a unique

element n; of (/\TQG QUS)[S’T} with the following properties
(1).
27”

\/—d—kR(m) = D5p(1) (8)

(ii). For every prime number p with (p,f) = 1 and for every embedding j : Q — C, we have

T

T[(— N opp)- (j(m R (ny) = 2. (1) (©)

peTp J

(iii). If f # q' then o

0 € 2 g NegUs " = 21/ g Nog B (K) (10)



(iv). If f = q' then X
AT 7 157
R

and
[S,r]

H(ZG)ny € Z[1/9) N Us
where I(ZG) is the augmentation ideal of ZG.

REMARK 2.2 The point of introducing the condition n; € (/\TQG QUS) 5] s that, essentially

without cost, it allows us to insist upon the uniqueness of n; (c¢f. [13, Prop. 3.8]). Given this
uniqueness and the relation between ®;y and @57, when (p, f) =1 (see [13, eq. (29)]), it can
be shown that equation (9) is actually a consequence of Conjecture 2.1 (with 7" = T,) and (8).
Moreover, the extra conditions of parts (iii) and (iv), which refine Conjecture 2.1, also follow
from it together with the assumption of the ‘refined complex conjecture’ mentioned above for
certain sets T'. For more details, we refer to Prop. 3.10 of [13]. Note also (cf. the preceding
remark) that for given p, (9) actually holds for all embeddings j if and only if it holds for
one. Finally, for the (non-conjectural!) equality in (10), we refer to [13, Lemma 3.5].

3 An expression for ;7 ,(1) in the quadratic case

3.1 An application of Shintani’s method

We start with a more general situation than the one suggested by the title of this section.
The data, notated in the usual way as k, m = 3, T" and p, are subject only to parts (i) and (ii)
of Hypothesis 2.1 and to Condition (2). In particular, f # O. For any j: Q — C,, we know

by Theorem /Definition 2.1 and Lemma 3.3 of [13] that @g?T’p is a p-adic analytic map from

D(p) to the group ring Q,(s)"G. By taking its coefficients we obtain, for each ro € 20,
an analytic map Z%;( ;) : D(p) — Qp(uys)™ (the p-adic twisted zeta-function attached to
T, w and j). More precisely, since the action of Cly,(k) on 20, is free and transitive, we can

actually define the Z;{;( -;1) by the equation

@fgv)T’p(s) =: Z Zj({;(s; - m?n)ac_l
¢€Cly (k)

Thus Definition 2.1 and equation (3) give the interpolation property
Z{ (m;w) = j(Zr(miw))  for all m € M(p) (13)

which, by density, uniquely characterises Zé{;( -;10) as a continuous map from D(p) to C,.
(4)

We are interested in calculating 7,

)

p .
little easier to calculate Zq({;)(l; ¢ - w{, ) where the infinite cycle ‘+’ is the formal product of

(1) in the case 3 = 0, m = f and it clearly suffices

to calculate Zj(ﬂ]; (1;¢-w{) for each ¢ € Cly(k). However, it is technically and conceptually a

7



all the real places of k and ¢ lies in Clg (k). To get back to f, we use the natural surjection
miyi - Clip (k) — Cli(k) and the fact that Zé{;(l; ¢-1?)) equals | ker g | Z%])D(l; ¢-wf,) for
any ¢ € Clyy (k) such that 7y 5(¢) = ¢ (this follows from [13, Cor. 2.1]). We therefore fix until
further notice an element to of W;, and a pair (£, 1) € W; representing w. Define f € Z-
by fNZ = fZ and denote by s the group of fth roots of unity in C. Then Im(§) = py
(see [13, §3]) and when R(s) > 1, we have

Zr(s;w) = Zp(s; €, 1,§+) = Z L)S — NJ* Z £(a)

aGS(I,+,T)/Ef+ |I : (a)| GGS(I,—F,T)/EPF (Ll (CL) e Lr(a/))s
(14)

where ¢1,...,4, : k— Q C C are as in Subsection 2.3.

Shintani’s method allows us to analytically continue the second factor in the fourth
member of (14) and then find its value at any m € Z<,. To explain how, we shall simplify
matters by assuming from now on that k is real quadratic (r = 2). We require the following
notation. Let 7 and 75 be two elements of I NkZ, linearly independent over Q and such that
&(m1), €(m2) # 1. Then 7 and 75 define a half-open ‘parallelogram’ and ‘cone’ in ki given
respectively by:

P(r,m) ={\+pun: ApeQ, 0<A<1 0<pu<l1}

and

Clr,m) ={A A +pun: ApeQ, 0< A 0<u} = U (P(11,72) + nim + +nams)

n1,n2EN

Let ¢ denote the embedding of &k into R? N Q? which sends a € k to (t1(a), t2(a)). Figure 1
illustrates t(P(m, 7)) and ¢(C(7m,72)) in the case where det ( Un) ) < 0 Clearly, I N

U72)
P(7y, 1) is a fundamental domain for the additive action of Zm + Z7, on I, so given a class
A € I/(Zm + Z7y), we shall write a = a(A) for the unique element of AN P(7y, 7). Then
A=a+7Zr +Zr and ANC(m,72) = a+ N7 + N7y, We define complex analytic functions
on the set {s: R(s) > 1} (see e.g. Theorem 3.1 for convergence and analyticity) by setting

) o £(a) _ £(a+nim + nato)
2(8,&, A, 1, m) = Z (t1(a)ia(a))® Z 01 (@ + naT1 + 1a72) 2@ + niT1 + NaTe)®

aGAﬁC(Tl,TQ) n1,n2€N

and also

R R D S e = o D DI IV R

a€INC (11,72 (t(a)ea(a) AET /(L +Z7s)

Let R[[X]] denote the ring of formal power series in X = (X7, X53), a pair of formal variables.
For any pair u = (u1,us) € R? we write (1 4+ X)% for the product (1 + X7)“*(1 4+ X2)*2 of

8



Figure 1: ((P(7,72)) and t(C(71, 7))

o) / _
/-
4
_ - A(TQ)
-

two (formal) binomial series in R[[X]] and we set

g@)(1 + X)«@
(1= &(m) (1 + X)«m)(1 = £(72) (1 + X))

FA(K) 57 A7 71, 7-2) =

and also

Fg(&aéa 177—177—2) = Z FA(K;é-JA?TlaTQ) =
A€l /(Zm1+Z72)
Zae[ﬂP (T1,72) 6( )(1 + X)L( 2
(1 =&(m) (1 + X)) (1 = £(m) (1 + X))
(The sum in the numerator is of course finite.) A priori these lie in the fraction field of

Q[[X]]. However the constant term (1 —&(71))(1 — £(72)) of their denominators is non-zero
by hypothesis, so they actually lie in Q[[X]] itself (in fact, in k(us)[[X]], as is easily seen).

(15)

REMARK 3.1 Note that intuitively (but illegally) we could also imagine ‘expanding the
denominator of F,(X;¢&, A, 71, 72) as an infinite series in (1 + X)’. We could then write

CF(XGE6A T, R) = Z &(a)(1 +X)£(a) ”

a€ANC(11,72)

We use quotation marks because the sum fails to converge in @[[ ]] but the idea is useful.

Let us write A for the differential operator (1 + X1)(1 + X3) 355
series in X; and Xs.

aX B acting on any power



Theorem 3.1 Let k be a real quadratic field, f # O an integral ideal with fNZ = fZ, (f €
Zo) and let (§,1) be an element of W;. Suppose that 11, T2 are two Q-linearly independent
elements of I Nk \ ker&. Then for any element A of 1/(Zr + ZTy), we have

(i). The function z(s;&, A, 11, T2) converges absolutely for R(s) > 1 and possesses a mero-
morphic continuation to C.

(i1). For each m € Z<q this continuation is analytic at m and for any v, we have

Z(m;§7A77_177—2> = A_WL|X:() Fg(&;§7A77—17T2> (16>

(111). z(m; &, A, 11, 72) € Q(uy) for allm € Z<y.

PROOF Parts (i) and (ii) follow from [9, Prop. 1] with substitutions “r”=“n"=2, “x;”= £(7;),
1 = 1,2, etc. Because the “y;” are different from 1, the Laurent series defining Shintani’s
“Bp(a,y, x)M” and “B,(a,y, x)?” are actually power series. Substituting 14 X; = e~%,
1+ Xy =e“and 1+ X, = e 1+ X, = e ¥ in these two series respectively and combining
them gives (16) after a little manipulation. (Strictly speaking, Shintani’s condition that his
“r,” and “xy” be strictly positive is only met if our @ lies in the interior of P(1, 72). However,
his proof seems to require only that ¢(a) belong to R3! In any case, even if @ does lie on
the ray Q}7, Equation (16) can still be recovered from Shintani’s full result (see [10, Rem.
2.2].)) As for part (iii) of the Theorem, Equation (16) already implies that z(m;&, A, 71, T2)
lies in Q (in fact, in k(us)). Now any a € Gal(Q/Q) acts coefficientwise on Q[[X]] and it is
clear from the definitions that

F(X;E6 A, m,7)" = Foo (X;a08 A 11, 72) (17)
where o ¢ denotes (o iy, 01). Since A commutes with «, Equations (16) and (17) give

a(z(m;§7A77—17T2>> = A_m|5:() (FA(X;g,A,Tl,TQ)a>
= AT"|x=0 Fool(X5 008, A, 71, 7o)
= z(mjao& Ay, 1) forallm e Z (18)

and the result follows on letting o run through Gal(Q/Q(&)) = Gal(Q/Q(y)). O

REMARK 3.2 For R(s) > 1, the function z(s;&, A, 7y, 72) clearly does not depend on the
ordering of the ¢;’s in ¢. By analytic continuation, neither does the L.H.S. of (16) and so
the R.H.S. cannot either. This latter fact was used implicitly in the proof of part (iii) of the
Theorem but is easy to see independently. Indeed if t' = (tr(1), tr(2)) for some m € Sy then
clearly Fy/(X1, Xo;&, A, 1, 72) = Fi(Xp101), Xe102); €, A, 71, 72). But A™™|x_ is symmetric
in Xy, Xo, 50 A" x0 Fy(X;8, A, 1, 10) = A x—0 F(X;E, A 1, 7o), as required.

ExaMPLE 3.1 By way of illustration, we show how these methods can be used to prove facts
about the values Zy(m;w) = Zy(m;&, I, f+) which, in a more general context, were used
in [13] (see Lemma 3.2, ibid.). Let € be any generator of Ef; = Z and p any element of

10



I'NkZ not in ker . Then ep also lies in I N k3 but not in Qp and &(ep) = &(p) # 1. Thus
we can define z(s;&, I, p,ep) and since it is well known that I N C(p,ep) is a fundamental
domain for the action of Efy on I NEkZ, Equation (14) shows that

Zy(s;&,1,§4) = NI°2(s; 6, Ip,ep) = NI' Y 2(s;6, A, p,ep) (19)
A€I/(Zp+Zep)

whenever R(s) > 1. Now apply Theorem 3.1 to equation (19). Part (i) of the Theorem
allows us to analytically continue the equalities to s = m € Z<y. Taking 71 = p, 72 = €p in
parts (i) and (iii), summing over A € I/(Zp + Zep) and combining with equation (19) gives
the explicit formula

Zy(m; &, 1 f+) = NIMA™ | x_o F(X;E, I, pep) Vm € Ze

and shows that
Zy(m; &, 1, §+) € Q(uy) for all m € Z<y

The same procedure applied to equation (18) gives
Zo(m; €, 1,§)* = Zg(my a0 €, 1,§+).  for all m € Zy and a € Gal(Q/Q)

Lemma 3.2 of [13] asserts that last two statements hold for more general k (totally real),
T and m but the suggested proof is essentially an elaboration of the above method due to
Shintani.

3.2 Introduction of the prime p

We now introduce a fixed prime number p such that (p,f) = 1. To p-adically interpolate
Qo 1(s) (i.e. Zr(s;w)) in Subsection 2.2, we had to assume that 7" contained 7},. Therefore,
taking 7' = T, and 71,7, to be Q-linearly independent and lying in I N kY but not in
ker ¢, as before, we now define a complex analytic function (see Theorem 3.2) on the set
{s: R(s) > 1} by setting

§(a)
61T, = (i (o (a))® .
et Z (@ a@) H

and also

> @)1+ X)“@
acINP(pty,pT2)
ptlI:(a)]

FprA(X;ga I,7,7m) = (1—&(pm)(1 _|_X)A(p7'1))(1 —&(pr) (1 + X)A(prz))

which is again an element of k(uf)[[X]], since (p,f) = 1 implies {(pm1),&(pT2) # 1.

11



Theorem 3.2 We use the hypotheses and notation of Theorem 3.1. For any prime number
p with (p,f) =1 we have:

(i). The function zr,(s;§, 1,71, 72) converges absolutely for $(s) > 1 and possesses a mero-
morphic continuation to C.

(i1). For each m € Z<q this continuation is analytic at m and for any v, we have

ZTp (ma 57 Ia 1, 7—2) = A—m|£:0 FTP,A(X; 57 ]a T1, 7—2)

(iii). zr,(m; &, 1,11, 72) € Q(uy) for all m € Z<.

PROOF The condition pt|I : (a)| is equivalent to a ¢ pl for any prime ideal p of O dividing
p. Since Zpt, + Zpto C pl C mpl , pI, it follows that the set of a satisfying this condition is a
union of those cosets A € I/(Zpr + ZpTy) not contained in (i.e. not intersecting) pI for any
p|p. Letting A" denote the (finite) set of all such cosets, it follows from the definitions that

ZTP(S; 57 vaTl7p7—2) - Z 2(87 57 AapTlapTQ)
AcA’

and

FTP,A<X; 57 ]7 71, 7—2) = Z FA(K? 57 AuprpTQ)
AeA’

But C(1,72) = C(pr,pr2), so zr,(s:&,1,pm,p72) = 21,(5;&,1,71,72). The Proposition
therefore follows from Theorem 3.1 with pr; and pry in place of 7 and 7. O

Before proceeding with a p-adic interpolation of 27, (s;§, I, 71, 72), we formulate a hypoth-
esis and a definition and prove a lemma.

Hypothesis 3.1

(i) (p.f) =1,

(ii). p splits in k, i.e. pO = p1py with p1 # ps2, and
(111). I is prime to p, i.e. ordy,(I) =0 fori=1,2.

REMARK 3.3 Condition (i) has already been imposed. Without it the nature of the interpo-
lation problem would change significantly. Assuming it, and taking 7" = T}, Condition (ii)
of Hypothesis 2.1 is equivalent to the condition f # O. Condition (ii) of Hypothesis 3.1
is not necessary for (a generalized version of) the results that follow but it simplifies their
exposition and the computations based on them. Finally, Condition (iii) is no obstruction
to computing Zr, (s; 1) since any ro € 2s; can always be represented by some (&, 1) with /
prime to p.

12



Definition 3.1 Let {c,}>2 | be the sequence of rational integers given by

v=alp) = -1 =p 3 (1) @

(r=1 0<r<n/p
where ( runs through the pth roots of unity in any algebraic closure of Q.

(The second formula in (21) follows from the first by expanding (¢ —1)".) Let P(X) denote
the polynomial ((X + 1)» — 1)/X. Taking n > p, writing out the L.H.S. of the equation
(C—1)"=P=YP(¢ —1) = 0 as a polynomial in ¢ — 1 and summing over ¢, we obtain the useful
recurrence relation

p p p
Cn:—((1>cn1—|—(2>cn2++(p_1>cn—(p—1)> vnzp (22>

with the initial conditions ¢, = (—=1)"p for 1 < n < (p — 1) which follow from the second
formula in (21). Let | - |, denote the absolute value on C, normalised by |p|, = p~! and for
x € R, let [z] denote min{l € Z : z < }.

Lemma 3.1 For alln > 1, we have |c,|, < p~I™®=V1 and the quotient c,/pn is p-integral.

PROOF The estimate follows from the fact that |(—1|, = p~Y/®=1) for every ¢ not equal to 1,
or by induction from (22). For the p-integrality statement, define m € N by p™ < n < p™*!
and note that ord,(c,/pn) is at least [n/(p —1)] —1 —ord,(n) which is clearly zero if m =0
and is otherwise at least [p™/(p —1)] =1 —m =S (p' — 1) > 0. O

We can now state the main result of this section.

Theorem 3.3 We use the hypotheses and notation of Theorem 3.1. Suppose that p is any
prime number satisfying Hypothesis 3.1 and j : Q — C, any embedding. We have:

(i). There exists a unique p-adically continuous function z%)’p( & 1,1, m)  D(p) — C,
satisfying the interpolation condition
Z%,),p<m;£7]—77-177—2> :j(sz(m;§7[7717T2>> Vm € M<p) (23>

(ii). For any v, write (14+X) ' F(X;€, 1,71, 72) as 3, 500 X1 X5, Then ayy lies in Zy[juy]
for all t,1 > 0 and

) 1 Ci+1C14+104
Z%),p(l;&I’Tlﬂ?) = EZm < ZP[/JJf] <24>
4,{>0
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Note that we do mean F,(X;&,1,11,7)7, not Fr, ,(X;& 1,7,7) in part (ii) and that the
exponent indicates that j has been applied to the coefficients of the power-series. The esti-
mate of ord,(c,/pn) in the proof of Lemma 3.1 shows that the infinite sum in (24) converges
(p-adically). The proof of Theorem 3.3 will provide an expression for z% )Vp(s; & 1,m,72) as
a p-adic integral (see Equation (32)). We defer it while we deduce a result that allows us
in principle to calculate ZT({; )’p(l;m) for all w € 20, and hence ®;7, ,(1) as explained at
the beginning of this section. Let w : Z — u(Q,) be the Teichmiiller character which is
uniquely defined by the requirement that (z) := w™!(z)x should lie in 1+ pZ, for all z € /8
(and in 1 4 4Z, if p = 2).

Corollary 3.1 Under the hypotheses of the Theorem, let v be the class of (§,1) in Wi, let
e be any generator of Es and let p any element of I N kX not in ker{. Then

Zi),(s;w) = w(ND(NI)*2) (5:€, 1, p,ep) Vs € D(p) (25)
where z%)yp(s;f, I,p,ep) is as in part (i) of the Theorem. In particular,
() NI Ci+1Cl+104
Z i) = — ———cZ 26
Tp,P( ;1) 2 “Z>O(Z~+1)(l+1) € Zp|py] (26)

where v is the class of (§,1) in Wiy and the a;; are defined by (1+X) 'F(X;€, 1, p,ep)! =
Zi,lzo ai,lX{Xé Jor any ¢.

Note that Hypothesis 3.1 (iii) implies (NI,p) = 1, so that w(/NI) is well-defined and the
function (NI)* is both well-defined and analytic for s € Z,.

PROOF Arguing just as in Example 3.1, Equations (14) and (20) show that Zz, (s; tv) equals
NI®zp,(s;€,1, p,ep) for every s such that R(s) > 1 and hence, by analytic continuation, for
every m € M(p). But NI = w(NI)(NI)™ for such m, so part (i) of the Theorem gives

WINTYNT)" 25 (m; €, 1, p,ep) = NI™ (2, (mi &, 1, p,ep)) = §(Zz,(m,0)) ¥m € M(p)

Since the function w(NI)(NDSz%)’p(s;ﬁ,I,p, ep) is continuous on D(p) by part (i) of the
Theorem, the equality (25) now follows from the uniqueness of the interpolation in (13).
Equation (26) is then a direct consequence of part (ii) of the Theorem. O

3.3 Proof of theorem 3.3

Our methods of proof generalise those employed by Lang to evaluate L,(1, x) in [4, Ch. 4].
They use the theory of p-adic-valued measures on Z]% and their relation to formal power series.
We recall that such a measure is a C,-valued, bounded linear functional on the C,-Banach
algebra Cont(Z2, C,) of all continuous, C,-valued functions on Z2 under the (ultrametric)
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uniform norm || -||. The ‘boundedness’ requirement on such a functional v means that the set
{v(Hlp/IIfIl - f € Cont(Z2,C,), f # 0} is bounded. By writing ||v|| for its supremum we
define an ultrametric norm under which the set Meas(ZfD, C,) of all such measures acquires
the structure of a C,-Banach space. For v € Meas(Z2,C,) and f € Cont(Z2,C,) the value
v(f), will often be written as ftezg f(t)dv or just [ fdv. Clearly, Meas(Z2, C,) is a natural

Cont(Zf,, C,)-module where for v in the former and g in the latter, we define the measure
gv by [ fd(gv):= [ fgdv Vfe Cont(Zi, C,). When g is the characteristic function yg of
an open and closed subset S of Zg, we often write v|g for xsv (‘the restriction of v to S”)
and [, _¢ f(t)dv instead of [ fd(xsv) = [ fxsdv.

Let us write A(X) for the C,-subspace of C,[[X]] consisting of those power-series with (p-
adically) bounded coefficients. For such a power series F', we define the norm ||F’|| to be the
supremum of the p-adic absolute values of its coefficients. The power-series/measure cor-
respondence is then a norm-preserving isomorphism of C,-Banach spaces between A(X)
and Meas(Z2,C,). In [4, Ch. 4], Lang discusses in detail a restricted correspondence
O[[X]] « Meas"(Z,, C,) where @ denotes the ring {a € C, : |a|, < 1} and MeasV(Z,, C,)
the space of measures on Z, of norm < 1. By simply taking C,-spans we get a correspondence
between A(X) and Meas(Z,,C,) (see also Appendices 5 and 6 of [8]). The generalisation
of this from one to two (or more) variables seems to be well known although we have been
unable to find a full and detailed account in the published literature. In any case, it is very
straightforward. The facts we require are as follows (see also [11] for the r-variable case).
The correspondence can be characterised as associating v € Meas(Z2, C,) with F € A(X) if
and only if

/ (1+u)™" (1 4+ up)? dv = F(uy, uy) V (u1,uz) € C st fualy, |ugl, < 1 (27)

2
tez2

in which case we shall write v = N(F) and F' = F(v). By expanding Equation (27) as
a power series in u; and u; we can deduce (see [11]) that for all v € Meas(Z},C,) and
ny, N € ZZO

Fipe) - (@ x5 ) (04055 ) #0) 23)

We denote by D~ the open p-adic bidisc {(x1,22) € C} : |21],, |22], < 1} and by A (X) C
C,[X] the C,-algebra of power series convergent at every point of D~. Thus A;(X) contains
A(X). We define an action of the group 2 = 11,(C,)* on A (X) by setting ({8 F) (X1, X5) =
F(G(1+X1)— 1,614 X5) — 1) for any ¢ = (¢, G) € p and F € Ay (X). It is easy to check
that this indeed gives a well-defined C,-linear left action (see [10, Sec. 3.2]). Restricting to
the subgroup pu, x {1} C ,u]%, the idempotent corresponding to the trivial character of this
group is the operator V;:

Vi'F:IEZF(Cl(l—i‘Xl)—l,XQ)

=1
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An operator V, is defined similarly by acting on the variable X5 and we write U for the
idempotent operator U = (1 — V;)(1 — V3) = (1 — V5)(1 — V}). It can be checked ([10, Sec.
3.2]) that the ‘@’ action preserves A(X). Moreover, it follows easily from (27) that given
any ' € A(X) and (¢1,¢2) € 2, the measure N'((C1,(z) ® F) is simply the measure N'(F)
multiplied by the continuous (locally constant) function t ~— (!*¢%*. From this it follows that
NV e F) = xpz,x2,N(F), N(Vo @ F) = xz,xpz,N(F) and so

N(U o F) = xzx2N(F) (29)

We fix ¢, 71, 72 and j, and abbreviate the power series F,(X,&, 7, 72)’ and Fr, (X, &, 71, 72)’
to F¢ and F{ respectively.

Lemma 3.2 Fy lies in Zy[uy][[X]], hence in A(X). Furthermore F; = U o Fy.

PrROOF On the R.H.S of (15) we can multiply both the numerator and denominator by the
power series

(Z(f(ﬁ)(l +X)L(ﬁ))’“> (Z(f(fz)(l +X)L(”))"2> =

m=0 n2=0
p—1
Z E(nyTy + nam) (1 4 X )dmmitnarz)

n1,n2=0

But I N P(pm,p72) is the disjoint union of the translates nym + nome + (I N P(7, 7)) for
0 <nq,ng <p—1,so (after applying j to (15)) we see that F¢ can be written as

_ g(a)(1 + X
D DI e e eSSz [ e e e

acINP(pr1,pT2

Here for any a € k, the notation (1 + X )% indicates ((1+ X)49)/ = (1 + X1)* (14 X5)%,
the product of two formal p-adic binomial series with a; := jo¢i(a) and as := jog(a) which
are the two embeddings of a in C,. Now, parts (ii) and (iii) of Hypothesis 3.1 imply that a,
and ay lie in Z, whenever a lies in I. As is well known, this implies in turn that the series
(14 X;)* and (1 + X5)* have coefficients in Z, for any such a, hence that the numerator
and the (common) denominator of each term on the R.H.S. of (30) lie in Z,[x][[X]]. The
constant term of this denominator is (1—§(7m)?)(1—-£(72)?) =: ¢, say. Now, Hypothesis 3.1 (i)
of implies that (p, f) = 1 so £(m1) and £(72) are roots of unity of order prime to p, non-trivial
by assumption, so the same is true of their pth powers. It follows that ¢ lies in Z,[pus]*, so
that each term in (30) actually has denominator lying in Z,[us][[X]]* and hence itself lies
in Z,[us][[X]] € A[[X]]. The first statement in the Lemma follows. As for the second, it
is easy to show that for any a € I, the element ((i,(2) € uf) acts on (1 4+ X7)" (1 4+ X;)*?
by multiplication by (7*(5* (since ai,as € Z,). Thus if @ is an element of I N P(pr, p7)
then ((1,¢2) € g2 multiplies the corresponding term on the R.H.S. of (30) by ¢ ¢ (using
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the fact that it acts trivially on the denominator). It follows that V; acts on this term by
1 or 0 respectively, according as p does or does not divide a; in Z,, and similarly for V5,
mutatis mutandi with the result that U acts by 0 or 1 according as p does or does not divide
ayay = |O : I||I : (a)]. Here |O : I| € Q* is the (generalised) index and lies in ZX by
Hypothesis 3.1 (iii). Putting this all together and applying U to Equation (30) we get

a)(1+ X))@
3 §(a)( )

e (1= €lm)(1+ X)0)(1— €pm) (1 + X))

acINP(pty,pT2)
ptll:(a)]

and the R.H.S. is, by definition, the image of Fr, ,(X;&, 1,71, 72) under j, as required. O

Lemma 3.2 implies that both Fy and F} lie in A(X) and that if we set ve = N'(F) and
vi = N(F}) then vf = X(zx)2Ve- For any elements m of M(p) and F' of A(X), Equation (28)
implies that N (A™™F) = (t1t2) N (F) so Equation (27) with u; = uy = 0 gives

/(tth)_mdN(F) = A" x=oF
Z3
Applying this with F' = F}, and noting that A commutes with j, Theorem 3.2 part (ii)

gives, for all m € M(p):

jlzn,(m; & 1,1, 7)) = A_m|XoF§=/(t1t2)_de§

2
ZP

= /(tltg)_mdugz /w(t1t2)_1<t1t2>_md’/§ (31)

(Zy)? (Zy)?
For any s € D(p) we define

fS:ZZ—>Z

¢ [ wltit) Tt i e (Z))?
0 otherwise

Thus with our definitions, the last integral in (31) is strictly to be interpreted as [, fin (t)dve.
P

But f,(t) is easily seen to be uniformly continuous as a function of (s,t) € D(p) x Z2, so it
follows that on defining

(4) . . -1 —s
szm(s, E1,m,m) = [ f(t)dve = w(tita) ™ (tita) *dug (32)
Jowse- |

(Zp)?
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we have a p-adically continuous function which, by (31), satisfies the interpolation condi-
tion (23). Its unicity follows from the density of M(p) in D(p). This proves part (i) of
Theorem 3.3 and gives

zf(li;),p(l; 6, [,7’1, 7'2) = / (tth)_ldl/g = /fl(t)dl/€ = Gg(o, 0) (33)

5)? Z;
where we define G¢(X) € A(X) to be F(five) € A(X). To determine G¢ we use the

Lemma 3.3 If H is any element of Ai(X) satisfying AH = F then U e H = G¢. (In
particular, U @ H lies in A(X).)

PrROOF Since A commutes with the e-action, the condition on H, together with Equa-
tions (28) and (29), implies that

A(UOH— Gﬁ) = AUOH—F(tthfl(t)Vg) =Ue (AH) _f(X(Z;;)QVS) = U.Fg - U.Ff =0

Since (1 + X)) is an invertible power series, it follows from the definition of A that U e H —
Ge = B1(X1) + By(X>) for some single-variable power series By and B,. Since U @ H — G¢
lies in A;(X), it is easy to see that both B;(X;) and By(Xs) must too, and also that
Vo e Bi(X;) = B1(X;) and V] @ By(X5) = By(X3). Thus U @ By(X;) = U e By(X3) = 0. On
the other hand, U @ G¢ = G¢ (since X(Z;)Qfl = f1) and since U is idempotent, we obtain

UeH—-Ge=Ue(UeH—G¢)=Ue®(B(X;1)+ B(X3)) =0

proving the Lemma. a

Now let us write (1 4+ X)™"F; = 3, o0 X{ X} as in the statement of the Theorem.
Lemma 3.2 implies that the a;; lie in Z,[u] and so, by easy, standard estimates, the power
series Hy defined by

Qi ;
Ho(X) =) —— XX
4,01>0
lies in A; (X). Moreover, AHj equals F¢ by construction. Therefore, Lemma 3.3 gives
Ge=Ue H, (34)

Now, for any ( € p, we clearly have Hy(¢ — 1,0) = Hy(0,{ — 1) = Hy(0,0) = 0 from
which it follows in particular that (V; e Hy)(0,0) = (V5 e Hy)(0,0) = 0. Thus, combining
Equations (33) and (34), and expanding U as 1 — V; — V5 + V1V, we obtain

A (126, Lr,ma) = (U e H)(0,0) = (ViVh o Hy)(0,0) =
i Z Ho(Gt—1,(0—1) = i Z (CHICZH%I (35)

2 2 '
P wZo p* s (i 4 ({+1)

Finally, Lemma 3.1 shows that the last member of (35) lies in Z, [ ¢]. O
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4 Numerical investigation of conjecture 2.2

In this section we present a number of examples in which Conjecture 2.2 is verified up to the
precision of computation for a real quadratic field k. Of course, in each example, part (ii) of
the conjecture will only be checked for a (small) finite set of primes! (Moreover, these primes
will be subjected to certain further conditions that facilitate the calculation of ®;7, ,(1). See
below.) Before presenting the examples themselves, we explain some of our computational
techniques and methods.

4.1 Remarks on computational methods

To compute Psy(1), we use the decomposition given by [13, eq. (12)] and take s = 1 in [13,
eq. (10)], making use of the functional equation of L(s, X), to obtain the expression

4 @ e 0 if § # d',
o) =z 2 L 0=xE™EP0.5 et | Ciogvg 2t i = g
€G* p prime

x#xo PIFptF(x)

where L0, %) := hH(l) s 2L(s,x). (Note in particular that the Gauss Sums gum,)(X) dis-

appear. For more details, see Lemma 5.1 of [12].) The values of L®(0,%) can then be
computed using the method of [1].

As for the p-adic computations, since k is quadratic, the results of Section 3 can be used
to calculate ®;r (1) for any prime p such that p is prime to f and p splits in k. Suppose
also that f divides p — 1. This means that the additive character j o { takes values in p,_;
hence in Z for any (£, I) € W;. Consequently, Corollary 3.1 implies that ®yr, (1) € Z,G.
Moreover, the coefficients of the formal power series F'(X; &, 1, p,ep)? etec. lie in Z, (since [
will be prime to p and p splits). The assumption f|(p—1) therefore speeds up the calculations
considerably, although it is unnecessary from the theoretical viewpoint and places a major
restriction on p. We shall assume from now on that p satisfies the three conditions above.

The remarks at the beginning of Section 3 show that Corollary 3.1 now suffices in principle
for the numerical calculation @#T),p’p(l). In practice, however, the computation of the formal
power series F'(X;&, 1, p,ep) by means of (15) can still be prohibitively lengthy. This is
because the number of points @ in I N P(p,ep) equals the index |/ : Zp + Zep| which in
turn is proportional to the coefficients of ¢ in a Z-basis {1,b} of O (for fixed, optimal p
and I). But these coefficients can be extremely large, even for k of moderate discriminant
and (especially) f of moderate norm. (Recall that Ef; = (¢).) To tackle this problem the
approach of Corollary 3.1 can be refined as follows. Suppose that po, ..., pp lie in I NEZ but
not in ker &, with py = p, pr. = ep and

sgn (det ( é(f(’;)l) )) = sgn (det ( ;((6’2) )) (= sgn(ia(e) — 11(€))) for t = 1,..., L.
(36)
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This condition means that the cone on p and ep is a ‘fan’ of the cones on successive pairs
(pi—1, pt). More precisely, C(p,ep) is the disjoint union C(p;_1,p;) for t = 1,..., L and it
follows from (20) that 27, (s;&, 1, p,ep) is the sum of the 2z, (s;&, 1, pi—1, py) for R(s) > 1,
hence for all s € C by analytic continuation. Thus the uniqueness of the interpolation in
Theorem 3.3 (i) implies that

Z%)7p(8; §1,pep) = Z Z%,),p@; § 1, pi—1, pr) (37)

t=1

for all s € D(p), and in particular for s = 1. (In fact, the power series F'(X;¢, I, p,ep)
equals ZtL:1 F(X;&,1, pi1, pt) but we do not need to know this.) We can therefore calculate
Z%)’p(l; tv) by means of Equations (25), and (37), using (24) to determine z%)’p(l; &1, pi—1,pt)
for each t =1,2,..., L, once the corresponding F(X;&, I, p;_1, pr) has been calculated.

Following work of Zagier ([16]) Stark and others in similar contexts, we now explain
briefly how continued fractions may be used to obtain a sequence {p;}~, such that the
index |1 : Zp;_1+Zp;| is small for all t. Most of the details can also be found in [3]. Without
loss of generality we can assume that ¢;(¢) < 1 < 15(¢). Consider the following conditions
on a pair of points (z,y) € (I NkJ)?

(a) Zx+Zy=1, (b) u(z)>wu(y) and (c) det ( ig; ) >0

It is easy to find a pair (x,y) = (po, p1), say, satisfying these conditions and to see that they
must then also hold with (z,y) = (p1, p2) where

po = —po+bipr and by := [11(po/p1)] > 2

hence also for (x,y) = (p2,p3) where p3 := —p1 + bape := —p1 + [t1(p1/p2)]p2 and so
on inductively. In this way we produce an infinite sequence pg, p1, P2, P3, p4, - - - such that
Conditions (a)—(c) are obeyed for each successive pair (z,y) = (pn_1,pn) forn =1,2,3,..,
and P11 = —pPn_1+bnpn where by, := [11(pn_1/pn)] > 2. In fact, we have a ‘type II continued
fraction’ expansion converging to ¢1(po/p1):

Ll(ﬁO/ﬁl) = bl - —1
b _
2y — .

The discreteness of ¢(I) implies that one cannot have both ¢1(p,-1) > ¢t1(p,) > 0 and also
12(Pn-1) > t2(pn) > 0 indefinitely. Thus there exists N > 1 such that to(py—1) < t2(pn)
and one can show inductively that this property too is inherited from then on: for each
n > N the pair (x,y) = (pn-1, ) must satisfy Condition (a) together with the following
strengthening of Conditions (b) and (c)

(M) ulz) > uly) and () < a(y)
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In the terminology of [3], p,,—1 and p, are successive points of the ‘convezity polygon of I'. But
the group F(k), hence also Ej,, acts on this polygon and it follows that there exists A/ > 0
such that p,,y = €py, for all n > N. (This reflects the fact that the sequence {b,}>
is eventually periodic.) Thus, choosing any ng > N we obtain a finite sequence {p/, :=
Prorm tM_o with py, = epy and |I : Zpl,, | + Zp,,| = 1 for m = 1,..., M. Unfortunately,
we may have p! € ker(§) for some values of m, but, since £ is non-trivial on 7, such ‘bad’
terms must at least be non-consecutive. We can therefore choose ng such that pf, & ker(¢)
(so py & ker(€)) and by simply skipping the bad terms and renumbering, we finally arrive
at a subsequence py = pj, ..., Pt .-, pL = Py = €po in (I NEY) \ ker(§) satisfying (36).
Moreover, the indices |I : Zpi—1 + Zp| = |I 0 P(pi—1, pt)| are equal either to 1 or to some
‘partial quotient’ b, of the continued fraction. Hence (empirically at least) they are still
relatively small. In fact one easily checks the explicit formula:

( o) for

, if (pt—la Pt) = '/m 1
1P} some m, 1 <m < M
In P(pt—hpt) = .

)p, } if (pt_1, pt) = (p;nfb p;nJrl)

CoYULp 20 -1
{pm1} U0, 200, - s (bngm for somem, 2 <m < M—1

which serves to calculate each F(X;&, 1, p;_1, p;) and hence ZC(FZ; {p(l; tv), as explained above.
In practice this leads to massive time-savings compared with the use of py and p;, = epy
alone: The effect of the smaller indices greatly outweighs that of having L such calculations
instead of one.

We need to know how to ensure the accuracy of our calculated value of ®s7, ,(1) to a
given number N > 0, say, of p-adic places. By Equations (37) and (25), it suffices to calculate
each value z (1 1, ps,pi1), t =0,..., L with an error less than p~" in p-adic absolute
value. For thls, we fix ¢ and write (1 + X)) F(X;&, 1, ps, pr1) as ZZ 150 @i, 1 XX, Consider

the real function f,(z) defined for all x > —2 by f,(z) := %2 — log(z/2 + 1) — 2. We

p—1 10gp

note that f, is monotonic increasing and unbounded on the interval [ (é’ g;) 2, oo). The

following result therefore solves our error-control problems.

Proposition 4.1 With the above notations, choose M > logp) — 2 such that f,(M) > N
and suppose that for each pair (i,1) withi,l > 0 and i+ < M we have computed an element

iy of Zypluys) (= Zp) such that |a;; — aiyl, < p~™™. Then

1 Ci+1C1+104) _
ZT p(l §1,p, pr1) — p2 Z m <p (38)
0<i,l

i+I<M p

PROOF Lemma 3.1 shows that c;1c41/p*(i + 1)(I + 1) is p-integral for all 4,1 > 0. Tt is
therefore enough to show that Equation (38) holds with a@;,; replaced by a;; and by (24) it
suffices to prove that |c;i1c1a:,/p*(i + 1)(1 + 1)], < p~ for any 4,1 > 0 with i +1 > M.
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But the a;; are p-integral so the estimate of Lemma 3.1 together with the obvious estimate
1/G+ 1)1+ 1), < @+ +1) < (e +1+2)/2)* shows that, for such i,] we have
ciarcinasy /97 £ DI+ 1], < g0 < p=500 2 5N o required. .

In performing the calculations to compute (the approximations a;; to) the a;;, it is a
good idea to represent all power series A(X) € Z,[[X]] as the sum of their homogeneous
components A,(X) with v > 0. Indeed, if we are only interested in the coefficients of XX}
with ¢ + 1 < M then we can simply ignore the components A, (X) with v > M. Moreover,
if B(X) is another power series similarly represented as ) B,(X), then the homogeneous
components of the sum, product and (assuming p 1 By(X)) the quotient of A(X) by B(X)
can be calculated easily in terms of the A,(X) and B,(X). For instance, in the last case, if
By(X) = b€ Z) then (A/B)o(X) = b~"Ag(X) and for v > 1 there is the simple recurrence
(A/B)(X) = b [A(X) = By(X)(A/B)y1(X) ... = B(X)(A/B)o(X))]

We next explain the basis of our method for working in /\(QQG QUs. Let X = {X1,..., X},
say, be the set of Gal(Q/Q)-conjugacy classes of characters in G*. Then X can also be iden-
tified with the set of isomorphism classes of irreducible rational representations of G, a given
conjugacy class X; € X corresponding to the unique isomorphism class of representations
with character ) v x. We write e; for the rational idempotent > v x € QG of this
character and Q(X;) for ¢;QG. Considered as a QG-module, the latter is a representation
lying in X;. Considered as a ring, Q(X;) is a field and QG is the direct product [[;~, Q(X;).
Thus we obtain a decomposition as QG-module

QUs = @ e;QUs = @Q(Xi)” (39)
=1 =1

where r; denotes the common value of (S, y) for all x € X;. Clearly, for each i, there
exist Q(X;)-bases of ¢,QUg consisting of S-units (more precisely, elements of 1 ® Ug). For
small examples at least it is not hard to find such a basis by using the idempotents e;.
Let v;1,...,v;,, be such a basis, we then say that the elements v;;,...,v;,, realize the
decomposition (39). Passing to the exterior square, the product v; ; Avys j is zero in /\(ZQG QUg
unless ¢ = 7/, so we obtain a decomposition as QG-module

/\<2@G QUs = @;11 € /\éc QUs = @;11 ®1§j<j/§ri Q(X;)(vij Avigr)

Let d; denote the common order of each character y € X;. The linear extension of any
character x € X; defines an isomorphism x : Q(X;) — Q(ug,) of fields and of QG-modules (G

acting on Q(pg,) via x). It follows that Q(X;) has a Q-basis of form {e;, o;e; ... ,af(di)flei}
where o; € G is any chosen element of G such that x(o;) is a primitive d;th root of unity. We
thus obtain Q-bases £ of QUg and B of /\(QQG QUs, of the forms {oFv; ;} and {oFv; ; Av; ji}
respectively, where 7,7, 7 ksatisfy 1 <i<m, 1 <j<j <rjand 0 <k < ¢(d;) —1. A
basis for the subspace /\<2@G QUE’Q] consists of the subset By = {0Ffv;1 Av;o : 7; = 2} of B.

—— (52
Having fixed these bases, we now explain how to find a Z-basis for the lattice /\%G Us

expressed as column vectors in the basis By. First, let {uy,...,u;} be any Z-basis of the
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lattice 1@ Ug = Ug/{£1} in QUs. We easily express each u; as a rational linear combination
of the basis £. By distributivity, each product w; A uy is then expressed in the basis B. (For
k+ k' > ¢(d;), the product af““ v;; A\ v j» can be reexpressed in the basis B by using the

relations P(o;)v; ; A vy = 0 for any multiple P in Z[X] of the d;th cyclotomic polynomial.)

These products generate /\;G Us over Z. We form the matrix M of their rational column
vectors in the basis B, with the coefficients of By written first. Standard column operations
on M reduce it to an Hermite Normal FOI‘I% 2f]lrom which we can read off a Z-basis of the
intersection /\(QQG @Ugs’m NN Us = Nogs Us  written in the <[@—}])asis Bs. Exactly the same
5,2

method can be used to find a Z-basis for the lattice /\%GE(K )

4.2 The method of verification

In this section, we explain the method used to numerically verify Conjecture 2.2. We illus-
trate this method using the first example. Data on the verification of the conjecture in all
the examples (including the first one) are summarised in several tables given at the end of
this section. The first column of each table contains the number of the example, the meaning
of the other columns of these tables is explained in the following subsections.

All the examples have been verified using the PARI/GP system [2].

4.2.1 The extension K/k

The data concerning the extension K/k are summarised in Table 1. First, we list the ground
field k, its class number hy, the integral ideal f and the conductor f(K/k) dividing f of the
extension K /k. (This is the minimal cycle modulo which K is the ray-class field to k.)
The two integral ideals § and f(//k) are given as products of prime ideals in k, with q,, q;,
denoting prime ideals in k above the prime ¢ (if ¢ is inert, we write ¢Oy instead). In the
first example, we have k := Q(\/37), § := 20, (i.e. 2 is inert in k) and §(K/k) = }.

Next, we give the monic irreducible polynomial Pp(X) € Z[X] of an algebraic integer 6
such that K = Q(0) (these polynomials have been computed using the method of [6]), the
factorisation of the discriminant of K/Q, the class-number hx of K and the structure of the
Galois group G as a product of cyclic groups. Actually, in all examples but the last, the
group G is cyclic (it is isomorphic to C3 x C3 in the last example) and we let o denote a
(fixed) generator of G (07 and oy are two (fixed) generators in the last example). The next
column of the table gives the action of this generator o (resp. of o and 03) on the algebraic
integer 6. In some examples, the expression for o(#) is too long to be conveniently included
in the table. Finally, the last entry of the table is the degree n. of K¢/K where K€ is the
Galois closure of K/Q. Thus K/Q is Galois if and only if n, = 1.

In the first example, we have Pp(X) = X6 —3X% —2X* +9X3 —5X + 1, dy = 2*- 373,
hi =1, G~C3, 0(0) = —0° +20* + 46> — 60> — 40 + 3 and [K°: K] = 1.
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4.2.2 The modules QUgs and /\%G Us[w]
The corresponding data are summarised in Tables 2 and 3. We start with the columns of
Table 2. Whenever space allows it, the second column gives a Z-basis of 1 ® Us C QUg. We
abuse notation by writing u; both for an element of such a basis and for the corresponding
element of Ug itself (unique up to sign). The ranks of 1 ® F(K) and 1 ® Ug = Ug/{x1} are
[K: Q] — 1 and [K : Q] — 1+ |Sy| respectively. The first [K : Q] — 1 elements of the given
basis lie in 1 ® E(K).

In the first example, the Z-rank of Us is 6 and the rank of F(K) is 5. A Z-basis of
1 ® E(K) is given by: uy := 6% —20% — 0+ 1, uy := 0, ug := 0° — 20" — 303 4 46% + 20 — 1,
Uy =0 =30 — 03+ 702 — 20 — 1 and us := 0° — 20* — 303 + 50 + 20 — 2. To get a basis of
1 ® Ug we add to this system the element ug := 6% — 26% — 20 + 3.

Next, we give characters x generating the group G* of irreducible complex characters of
G. These characters are defined by their values on the specified generators of G. Finally,
we give the set X = {Xj,..., X;,} considered as irreducible rational characters of G. Thus
each X; is written as a sum of the elements of the corresponding Gal(Q/Q)-conjugacy class
in G*. In all the examples, the character yo denotes the trivial character.

In the first example, G* is generated by the character x with x(o) := e
are two irreducible rational characters X, := xo and X5 := x + x>

We now look at the columns of Table 3. The second column contains the structure of
QUs as QG-module as represented in Equation (39). For the examples in which Table 2
lists the Z-basis of 1 ® Ug used, the third column of Table 3 gives an isotypic Q-basis {v; ;}
of QUg, written relative to this base, which ‘realizes’ the decomposition in the first column
(see Section 4.1). Explicitly, the (integral) vector (ay,...,a;) represents the image of the
S-unit £uj’ -+ u" in 1 ® Ug. The fourth column contains the idempotent ég 5. Note that

(S,2]
/\%G Us = /\%G USL if and only if €5~ = 0.
[5.,2]

Finally, we give an element 7 generating a ZG-submodule of finite index in /\%G Us
the index being given in the last column. This element will be used below to verify the

conjecture. It can be found by looking among ‘small’, random integral combinations of the
5,2
Z-basis of /\%G Us  which in turn is found as described in the last part of Section 4.1. (Such

a combination generates a submodule of finite index if and only if, when it is expressed in
the Q-basis ‘By’ of /\TQG QUES’Q] (see idem), the coefficient of o¥v; ; Av; 5 is non-zero for some

k = k(i) for each i with r; = 2.) When the index is greater than 1, it is of course possible
[5,2]

2ir/3 and there

that there exists an element ' generating a ZG-submodule of smaller index in /\%G Us
We have expressed the element 7 as a sum of terms (ay, ..., a;) A (b, ..., b) where each term
(a1,...,a;)A(Dy, ..., b;) represents the image of the element wS" - - - uf Ault - - -l in A2, Us.

[a¥)

In the first example, we have QUs = Q(X;)? + Q(X>)?, isotypic elements realizing
this decomposition are viy = (—2,2,—1,—1,-3,0), vio = (—1,2,—1,-2,0,3), vy, :=
(—2,5,—4,-1,0,0) and vy 5 := (3,—3,3,3,0,0). The idempotent ég o vanishes so /\%G Ug =

(5,2 [5,2]
2
/\20 Us

b }
and we find that v := (0,0,0,0,1,0) A (0,0,0,0,0,1) generates /\ZG Ug over
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7G.

4.2.3 Verification of conjecture 2.2

The data concerning the numerical verification of Conjecture 2.2 are contained in Tables 4,
5, 6 and 7. More precisely, Tables 4 and 5 refer to parts (i), (iii) and the first statement of
part (iv) of the conjecture while Tables 7 and 8 refer to part (ii) and the second statement
of part (iv).

Tables 4 and 5 give the same data for the first eight and the last seven examples respec-
tively. Their first two columns give computed approximations to ﬁR(v) and to ®sp(1) (see
the beginning of Section 4.1 for the computation of the latter. To save some space, these
values are given to a smaller precision than that to which they were actually computed.)

Now, ( /\(QQG QUS)[S’Q] is free of rank 1 over QG52 generated by ~. It follows that if a solu-

tion 7; of part (i) of Conjecture 2.2 exists — that is, if there exists n; € (/\(2@0 QUS)[SQ] such

that %R(nf) = ®;(1) — then it must be of the form n; = A~y for some unique A € QG%2.
So the equation to be solved becomes

A%d_kw = Byy(1) (40)

We solve this by first finding any solution A of (40) in RG to a high real precision. This can
be done using an obvious matrix method. Applying ego to A gives the solution in RG?
which always turns out to be the approximation to the working precision of an ‘obvious’
element A of QG¥2. The latter is listed in the fourth column of Tables 4 and 5.

It is important to note that, whether or not the conjecture holds, the non-vanishing of
Ry implies that %R(v) is invertible in RG!S2 and hence that (40) always has a unique

solution in RG®? namely (v/di/4)R(7)"'®;p(1). On the other hand, parts (iii) and (iv)

of the conjecture predict that A actually lies in %Z[l[/sg]]G[S’Q] if f # g (resp. Z[1/g]G!5? if
2
f = q') where b denotes the index of ZG in /\%G Us . Even if the conjecture failed, such

a solution could always be ‘faked’ to any desired real precision, simply by approximating
coefficients of (v/di/4)R(v) ' ®;4(1) sufficiently closely by elements of $Z[1/g] (or 5:Z[1/g]).
Therefore, in order to verify the conjecture in a significant way, we must find that the ‘obvi-
ous’ element A € QG5 determined above has coefficients that lie naturally in 3 Z[1/g]G!*2
(or %Z[l /g]G1%2). Moreover, their numerators and denominators should be relatively small
and stabilise rapidly as the precision increases. This is indeed what we have observed in all
our examples.

We set n; := Ay as a solution of part (i) of the conjecture. The next column of Tables 4

and 5 indicates whether the condition f = g applies in this example and the last column
—5 182l
gives the smallest positive integer d; such that n; belongs dif /\%G Us . This is determined

—— (52
using the Z-basis of /\;G Us  found as described in Section 4.1. According to part (iii)
of the conjecture, we should have ds|g® for some e > 0 if f # ' (i.e. if the answer in the
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previous column is ‘No’), and by the first statement of part (iv) of the conjecture d;|2¢¢ for
some e > 0 if f = g' (i.e. if the answer in the previous column is ‘Yes’). Actually, in all

examples, we have found that d; = 1 if f # q' and d; = 2 if §f = q'. (In the former case,
——5,2] —5,2]
therefore, 75 lies in A2, Us . Indeed, using instead a Z-basis of A5, E(K)  we have

actually checked that it lies in this latter module, see [13, Rem. 3.4].)
We now illustrate this discussion using the first example. We have computed

4
\/7}%(7) ~1.48595058394237662527436547684+0.39280482164256390213294051602(c +0)
k

and
®;o(1) ~ 0.35017047032862441050424222240 — 0.74297529197118831263718273842(c + 02)
A solution of (40) in RG is then

A =~ 0.50000000000000000000000000000 — 0.50000000000000000000000000000(c + %)

Since egp=1 in this example, we take A to be the element 1(1 — o — o) of 1Z[1/3]G and
——5 152

we set n; := Av. In this example, f = q' and we find that 1; belongs to %/\;G Us but not

[5,2]

NoUs  sods = 2. Hence, part (i) and the first statement of part (iv) of Conjecture 2.2

are numerically verified for this example up to the precision of the computation.

REMARK 4.1 In this first example, as well as in numbers 6, 7, 10, 13 and 15, it will be
noticed that certain pairs of coefficients coincide in ®54(1). The explanation is as follows.
Suppose for a moment that k is any Galois extension of Q with I' = Gal(k/Q) and that
the cycle m and the set T are I'-stable in the obvious sense. This implies in particular
that k(m) is also Galois over Q and I' acts by ‘extension and conjugation’ on G, and RG,.
Explicitly, (3" ca. @09) = 2 geqn 4797 for any 7 € Gal(k(m)/Q) lifting any v € T In
this situation, one can show that

Drr(s) = Y(Pur(s) Yy eT, ¥VseC, R(s) > 1 (41)

By Theorem 2.3 of [13], this equation can be analytically continued to all s € C\ {1}
and even to s = 1 if Hypothesis 2.1 (ii) holds. All these conditions are clearly met in
the above-mentioned examples with I' & Z /27 and (41) therefore explains the coincidence
of coefficients in ®;p(1), since in each case I' acts by inversion on G = G;. (A similar
coincidence in those of @57, (1) will follow by interpolation from (the analytic continuation
of) Equation (41) for s = m € M(p).) To prove Equation (41), one uses obvious actions of
I' on W, and on Cly(k) in this situation (the latter corresponds by the Artin map to the
action on Gy,) noting that (%) = w? and that for all v € T, ¢ € Cly(k), w € W, and
R(s) > 1 we have y(c - w) = y(¢)v(w) and, crucially, Zr(s;y(w)) = Zr(s; w).

We now look at the entries of Tables 6 and 7 which concern part (ii) and the last statement
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of part (iv) of the conjecture. First, we list the prime numbers p for which part (ii) of the
conjecture has been tested. These prime numbers p must split in & and satisfy f|(p—1) (which
implies that (p,f) = 1). Furthermore they must be relatively small for the computation of
P17, p(1) to be feasible, cf. Proposition 4.1. Let C, s be the constant appearing on the L.H.S.
of part (ii) of the conjecture, i.e. Cp5 := 4(1 — p~ Loy, 1) (1 — p Loy, 1)i(vV/dx) " where py, ps
are the two prime ideals in k& above p. The next column contains the values of C,, R, (n;) for
the 7; computed above and for each of the primes p. (The p-adic precision to which these
are given is smaller in most examples than the one that was used to verify the conjecture.)
Each value of C,,;R,(n;) is checked against the computed value of ® . ,(1). The two always
turn out to be equal, again up to the precision of the computations. Thus, part (ii) of the
conjecture is satisfied to this precision for these primes.

Note that p-adic numbers are written using the expansion to the base p with digits in the
set {0,1,2,...,p — 1}. The digits before the ‘decimal point’ correspond to negative powers
of p. If p is larger than 10 then we use the letters A = 10, B = 11,... to denote the extra
digits. (The largest p occurring is 41 for which we use the notation (36), ..., (40) to denote
the remaining digits.) The subscript at the end of the number is simply p.

In the first example, part (ii) of Conjecture 2.2 has been numerically verified for p =3, 7
and 11. As mentioned above, we have found for each value of p that Cy,;R,(n5) = @51, (1)
(up to our fixed p-adic precision). We have found the following values

C55R3(v) = 0.2020212220012020220111222010012121212015
+0.0021122222121101202020102101100110000113(0 + 02)

C7 ;R (7) = 0.232034003422155306164163; + 0.624214462041162660106331 (0 + %)

The next column contains the smallest positive integer d;,_; such that (o — 1)n; belongs
-5 152
to df_’al_1 /\%G Us  (in the last example, the smallest positive integers d;,,—1 and dj,_1 such

— 15,2
that (o; — 1)n; belongs to dg;i_l/\;(; Us  for i = 1,2). Indeed, the second statement of
[52]
part (iv) of the conjecture asserts that if f = g’ then I(ZG)n; C Z[1/g|\og; Us - It is easy

to prove that if G is generated by o (resp. o1, 03 in the last example) then I(ZG) = (0 —1)ZG
(resp. I(ZG) = (01 — 1)ZG + (092 — 1)ZG). Therefore, this statement is true if and only if

(o — 1)ns (resp. (o — 1)y and (2 — 1)55) belongs to Z[1/g]\se US[SQ], that is, if d; ,_1 (resp.
dioi—1 and ds,,—1) divide g° for some e > 0. In fact, in all examples with f = g' we have
found that ds,_1 (resp. ds,—1 and dj,,—1) is actually 1. In other words, Condition (49) of
[13] is verified for these examples. Indeed, we have actually checked that [13, eq. (50)] is
verified (see Remark 3.4, ibid.).

—— (52
Finally, the last column gives the index of ZGn; in d;l /\ZG Us . In each case, we have

S.,2]
found that it is a small power of 2 if f = q' and that 7; actually generates /\%G Us iff#q.
[S.2]
We do not expect this last fact to generalise. There is no reason to expect /\%G Us to
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be cyclic over ZG in general, and even when it is, the index of ZGn; should reflect the class
number hgx of K as is the case with cyclotomic units, for £ = Q. Thus this index might
well be non-trivial in ‘larger’ examples. Nevertheless, the mere fact in all our examples this
index is always very small (if not trivial) is significant: we certainly would not expect this
if (v/di/4)R(v) 1 ®;p(1) were a random element of RG1%? and A a ‘faked” approximation to
the given precision, lying in $Z[1/g]G!? or LZ[1/g]G!S¥ (see discussion above).

—5 152
In the first example, ZGny is of index 4 in %/\%G Us
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Table 1: The extension K/k

# k hi f F(K/k) Pp(X) dr hx | G a(0) ne
1 Q(V37) 1 | 20, 20y X6 —3X5 —2X449X3 —5X+1 24.373 1 Cs —605 420 + 403 — 602 — 40 + 3 1
2 Q(V43 1 92 92 X6 —16Xx4 —12X3 +21X2 4+ 10X -7 26.34.433 1 Cs | +(76° — 360 — 10803 — 3502 + 1050 — 13 3
3 3 19
3 Q(v82) 4 2 O X8 +2X7 —21X6 — 78X5 — 53X4 212 . 414 1 Cy not given (too big) 1
+88X3 4+ 114X2 424X — 4
4 Q(V/89) 1 a5 a5 X4 4+2X3 —8X2_-9X -2 5. 892 1 Co —0-1 2
5 Q(v/321) 3 q2 Oy X6 4+2X5 —18X4 —55X3 —26X2 +21X +3 33.1073 1 Cs (=65 + 36 + 15603 — 2662 — 480 + 3) 1
6 | Q(v349) | 1 | 20, | 204 X6 43X5 —36X* — 77X3 +200X2 + 239X — 205 24 . 3493 1 | Cs3 | 52=(50° + 20% — 2160 + 3802 1
+ 18566 — 335)
7 Q(v/401) 5 | q2q5 Oy X104 2X9 —20X8 —2X7 4 69X6 4 X5 4015 1 Cs | 2 (=76% —80% + 15107 — 10605 — 47365 1
—69X* —2X3 +20X2 +2X — 1 + 3590% + 427603 — 22002 — 670 + 7)
8 Q(v401) 5 a5 a5 X20 p2x19 27X 18 _ 58X17 4 272X16 4 639X15 55 .40110 1 | Cio not given (too big) 2
—1245X 14 — 3339X 13 4 2469X12 + 8464 X 11
—1650X 10 — 9965X9 4 827X % + 6081X7
—914X6 — 1796 X5 + 510X* + 151X3 — 63X2 + X + 1
9 Q(V577) 7 qo Oy X144 ox13 _925x12 _ 69X 4 161X10 4 632X9 5777 1 Cr not given (too big) 1
—147X8 — 2146 X7 — 1171X6 + 2669X° 4 2682X4
— 667X3 — 1466X2 — 336X + 49
10 Q(+/709 1 | 204 20, X6 —56X* 4 784X2 — 2836 24 . 7093 1 Cs A (—96% + 42002 — 1060 — 3136 1
212
11| QW709) | 1 | 2g5 25 | X'2—53X104+970X8 — 7657X6 28.5%.7095 | 1 | Cs | sgsesg(—2316"" 41095369 — 16482507 2
+25350X4 — 29025X2 4 6125 + 920367605 — 132544503 — 7332250)
12 | Q(v1021) | 1 a5 95 X4 +2X3 —32X2 - 33X + 17 5-10212 1 Cs —-6-1 2
13 | Q(v/2069) | 1 | 204 20, X6 — 84X 4+ 1764X2 — 8276 24 .20693 1 Cs a5 (0% — 7002 — 300 + 784) 1
14 | Q(+/2069) | 1 | 2g5 2qs5 X12 _71X10 —134X° + 1128 X8 + 3138X 7 28.53.20696 | 1 Cs not given (too big) 2
—2847X6 — 12804 X5 — 2686 X4 4 13110X3
+9935X2 + 2150X + 125
15 | Q(+v9897) | 3 g2 g2 X18 —204X16 + 15822 X4 — 590238 X 12 32132999 3 | C2 | G has two generators o1 and oz which 1

+11246949X10 — 110721114X8 + 550866177X 6
— 1324310688X % + 1327290624 X2 — 364843008

are not given (too big)
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Table 2: The modules /\%G Us and /\;G Us

[5,2]

# S-units G* X
1 up =03 —-202—-0+1, uz:=60 (x) with x(o) := e2i7/3 X1 :=x0
uz :=6° —20% — 3603 +46%24+20—1, ug:=0°—-30*—03+760%2-20—1 Xo = x + x2
us := 0% —20% — 303 + 502 + 20 — 2, wug:= 03 —202 —20+3
2 not given (too big) (x) with x(o) := e2i7/3 X1 :=x0, X2 :=x +x2
3 not given (too big) (x) with x(c) :=1 X1:=x0, X2 :=%x2, X3 =x+x>
4 up :=0%+02—-100 -3, uz:=63+62-80-3 {x) with x(o) = —1 X1 := X0
uz =63 4+60%2+50+1, ug:=20+1 X9 i =x
5| up = 5(0% — 0% —190° — 20% + 480 + 9), ug := 5= (0° + 30 — 2703 — 5802 + 846 — 3), (x) with x(o) := e2i7/3 X1 :=xXo
uz = 75 (20° + 36% — 306° — 10162 — 1116 — 15), uy := $(6* — 1762 — 216 — 1), X9 :=x+x2
us = 5 (05 — 2163 — 2562 + 30 + 6), up := +(0° + 64 — 196% — 3662 + 100 + 11)
6 not given (too big) (x) with x(o) := e2i7/3 X1 :=x0, X2 :=x + x>
7 not given (too big) (x) with x(o) := e2i7/5 X1:=x0
Xo = x+x>+x° +x*
8 not given (too big) (x) with x(o) := e2i7/10 X1 := x0, X2 :=Xx°
X3 =X +x* +xC+x8
Xg=x+x*+x"+x°
9 not given (too big) (x) with x(o) := e2i7/7 X1:=x0
Xo = x4+ X2+ X7+ xt +x° +x°
10 not given (too big) (x) with x(o) := e7/3 X1 :=x0, X2 :=x+x?
11 not given (too big) (x) with x (o) := e2i7/6 X1 :== x0, X2 := x>
Xz =x"+x* Xa = x+x°
12 uy = $(50% 4+ 302 — 1660 + 62), ug := & (46° + 2462 — 140 — 53) {x) with x(0) := —1 X1 = X0
ug 1= 1(9380% — 402902 — 54580 + 2600), ugq := & (80% + 5762 + 440 — 25) Xo =%
13 not given (too big) (x) with x (o) := e2i7/3 X1 :=x0, X2 :=x +x2
14 not given (too big) (x) with x (o) := e2i7/6 X1 :== x0, X2 := x>
Xz =x"+x* Xa = x+x°
15 not given (too big) (x1, x2) with x1(o1) 1= e2i7/3, X1 :=x0

x1(02) :==1, x2(01) :=1
and x2(02) = e2im/3

Xo:=x1+x3, X3:=x2+x3
X4 = x1x2 + X3x3, X5 := xax3 + xix2
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Table 3: The modules /\;G Us and /\%G Us

(5,2]

# QUs generators of A\ QUs €552 5y index of ZGry
1 Q(X1)2+Q(X2)2 v1,1 = (—2,2,—-1,-1,-3,0), 0 (0,0,0,0,1,0) A (0,0,0,0,0,1) 1
V1,2 \= (_17 27 _]-7 _27 0? 3)7
V2,1 ‘= (_27 57 _47 _17 07 0)7

'U2,2 = (37 _37 37 37 07 0)
2 Q(X1)% +Q(X2)? not given 0 not given 1
3 Q(X1)? +Q(X2)% + Q(X3)? not given 1—0+0%—03 not given 1
4 Q(X1)% + Q(X2)? v1,1 = (1,0,-2,0), vi2 := (0,0,0,2) 0 (0,1,0,0) A (0,0,—1,0) 2

vo,1 := (1,-2,0,0), v2,2 := (0,—2,0,0) +(0,0,1,0) A (0,0,0,—1)

5 Q(X1)? +Q(X2)?2 v1,1 == (0,0,—-1,-1,-3,0), 0 (0,0,0,0,1,0) A (0,0,0,0,0,1) 1

V1,2 = (1’ _27 Oa 07 07 3)7

v2,1 := (0,3,0,0,0,0),

V2,2 1= (07 Oa 37 07 07 0)
6 Q(X1)? + Q(X2)? not given 0 not given 1
7 Q(X1)3 4+ Q(X2)? not given 1+0+4+0%2+03+0* not given 1
8 Q(X1)2 +Q(X2)%2 + Q(X3)? + Q(X4)? not given 0 not given 2-41
9 Q(X1)% +Q(X2)? not given 0 not given 1
10 Q(X1)2 + Q(X2)? not given 0 not given 1
11 | Q(X1)3+Q(X2)2 +Q(X3)% +Q(X4)? not given 1+o0+02+03+0*+0° not given 1
12 Q(X1)? + Q(X2)? vi,1 = (=1,-1,-2,0), v12 = (=1,-1,0,2) 0 (1,0,0,0) A (0,0, —1,0) 2
va,1 := (1,1,0,0), v2,2 := (0,2,0,0) +(0,0,1,0) A (0,0,0,1)

13 Q(X1)2 + Q(X2)? not given 0 not given 1
14 | Q(X1)3 +Q(X2)? + Q(X3)% + Q(X4)? not given 3+ 303 not given 1
15 | Q(X1)? 4+ Q(X2)? +Q(X3)3 not given (1401 +02)(2— 02 —02) not given 1
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Table 4: Verification of Conjecture 2.2 - part (i), (iii) and (iv)

4vdy  R(7) P (1) A is f=q'? | d
1.4859505839423766252743654 0.3501704703286244105042422 ll-0-0?) Yes 2
+ 0.3928048216425639021329405(c + o2) — 0.7429752919711883126371827(c + 02)
— 1.443448363709350198869637 0.366471740478024869658988 ll-0+0?) Yes 2
+ 0.3274691447662351173260330 — 0.0390025957117897523329540
— 1.848922699899164820861579¢2 — 1.80992010418737506852862502
0.990736966647953569158853(1 + o3) 0.326298344657731059802665 1(~1+20 - 302) Yes 2
— 0.104818803994323556683935(c + 0°2) — 0.221479540663407503118729(c + 03)
— 0.76925742598454606604012302
—4.1759835935184954553812374 —0.2689357165826222969605534 is Yes 2
— 0.53787143316524459392110680 — 2.08799179675924772769061870
0.3647664814623851156843183 0.1044209421210358098319009 l-1+0-0?) Yes 2
1 0.93837484716684185103243860 — 1.04279578928787766086433960
+ 1.51198321287129858638055900°2 — 0.469187423583420925516219305°2
0.3903032175535131898951365(1 + 02) 0.6769888476508730716284981 l-1-0+0?) Yes 2
+ 2.13458413040877252304726930 — 1.0672920652043862615236346(0 + o2)
—0.5430424606759486694736326(1 + o) 1.0860849213518973389472652 (=34 20 + 202 + 20% — 30%) No 1
+ 0.8649249218235797385747707(02 + o4) — 0.3218824611476310691011381 (0 + o)
— 0.643764922295262138202276203 — 0.2211599995283176003724945(02 + 03)
—1.3494436538740630114284692 0.4769621163349386255017257 & (44 + 290 — 3402 + 1303 + 300* + 30° Yes 2

— 1.71160287844828961285996500
— 0.379644436004892774840813002
— 0.834098374998658197819128743
— 0.18061039407217557991584685*
+ 0.70636236277246162728584695°
— 1.20437071697641991790583130°°
+ 1.02409298949381566710274310”
— 2.4037576815736824020478056058
+0.40245402479415393434799535°

— 1.39605828779762175069523320
— 0.617550552216733360627363002
— 0.496427826752389930206868603
— 0.22912740440797651365783120*
— 0.52698153154776498283622065°
+ 0.259953951232898054413473155
— 0.19667132320035926655325880 7
— 0.096634049136385096601258802
— 0.14277447195248091277780175°

—120% 4+ 707 — 2808 — 1109)
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Table 5: Verification of Conjecture 2.2 - part (i), (iii) and (iv)

—1 .
# 4d,  R(%) ®s (1) A is f=4q'? | d
9 1.2006136993027519158356429 0.3555763402274556807627663 L(-1-0+02—0% -0+ 0%+ 0% Yes 2
+ 0.5601281150225709497028443¢ — 0.80245737680666095575934195
+ 0.44688103657920527499657550°2 — 0.336687596732968312204556502
+ 0.33363395813583960029030670°3 — 0.398156322496090960076300953
— 0.306851626144341365842491754 — 0.223440518289602637498287754
+ 0.91265081665289791855136095° — 0.04872471408311431492027455°
— 0.018888743494487368558209806 —0.11019343984623696279201905°
10 | 0.7234352393016752990818922(1 + o) 0.3662434964105941418610148 L(-1+0-0?) Yes 2
+ 2.179357471424538881885814152 — 1.0896787357122694409429070(c + o2)
11 | 0.7895116790170794653416756 2.6211847478167423772732258 L(-1—0+502 -0 -0t -0 No 1
— 1.16526251569387879446930390 +0.35264173617752538424170980
— 1.808563968300388967045631852 +0.7895116790170794653416 75602
—0.789511679017079465341675603 — 1.1652625156938787944693039053
+2.62118474781674237727322580% — 1.808563968300388967045631854
+ 0.35264173617752538424170980° —0.78951167901707946534167565°
12 | —0.2877586687247090106420884 0.1438793343623545053210442 -1 Yes 2
+3.96808365223919842569745750 — 1.98404182611959921284872870
13 | 2.3349046592276594288814979 1.3358165556295184849328475 lai-0-0?% Yes 2
— 1.1674523296138297144407489(0 + o2) — 0.1683642260156887704920986(c + 0'2)
14 | 0.4165560795603681099566393 —0.4165560795603681099566393 L(-5+0%) No 1
+0.7153308793910213046570109¢ —0.71533087939102130465701090
— 1.26822087986207163675353220°2 + 1.26822087986207163675353220°2
— 0.416556079560368109956639353 + 0.41655607956036810995663930°3
— 0.715330879391021304657010954 + 0.71533087939102130465701090%
+ 1.26822087986207163675353220° — 1.26822087986207163675353220°
15 | —1.2218884525300797394860547(1 + 02) 2.9561452818637877653536663 (L+01+07 —1log 4 To102 Yes 2

+ 3.468513658667416051735223201
— 0.6973303591485227158417690(02 + 0202)

+ 2.2802292524382017551015625(c 202 + 03)
— 0.5581621396824224664966796(c0102 + o1 O’%)

— 1.7342568293337080258676116(01 + 07)
— 1.0705305164860507528782365(c2 + 03 )

+ 1.7678608756345734687200056 (0102 + 0203)
— 1.2096987359521510022233259(0 202 + 103 )

+ 70%02 + 0’% + 0105 + Ufo%)




Table 6: Verification of Conjecture 2.2 - part (ii) and (iv)

primes Cp‘pr(’l’]f) = (I)f,Tp’p(l) df o—1 index Of Zan

)

[y

3,7,11 0.2020212220012020220111222010012121212013 1 22
+0.0021122222121101202020102101100110000113(c + %)
0.2320340034221553061641637 + 0.6242144620411626601063317(c + o)

0.859AA8491 4459227211 + 0.593A1A1A49633704411 (0 + 0°)

19 0.37A26719 + 0.IFBDF1190 4 0.7C'1858190> 1 2?2

3, 11 0.0220002011001002010210010201220202212013 1 22
+0.0112211011102010211020200111010210201223(c + %)
+0.00012010112001210221201000211221211220130>

0.5281109A901147AAT1; 4 0.065022A740283901811 (0 + 0°) + 0.692A42405 A A24302281 0>

93

11 0.962735950168345211 + 0.00637222A46760375110 1 2

5, 13 0.442030113040412402314025 + 0.4144332442222014223300150 4 0.4010124214040141440003150> 1 22
0.5811AA0413 4 0.C408A499C130 + 0.201 B3AB1130°

3, 17 0.1022122012102222020020202221222120220103 1 22

+0.0110011101122221111010111102021221102225 (0 + 02)
0.F44A49F7 + 0.8218 BE517(0 + 0°)

5,7, 11 0.32332103403114304131020225 + 0.03114120133211312413214005(c + o*) 1 1
+0.13141220434321203430220335 (0> + %)

0.30260232253255603241605327 + 0.01656146610605045531045467 (0 + o*)
+ 0.22313016554665223344322067 (0> + %)

0.32978470295111 + 0.88901960169511 (o + o*) + 0.7670050 4859911 (0 + o)

11, 41 0.8806785A43211A82301; + 0.06600615342772379110 + 0.6051479349339616511 02 1 2°
+0.054986 429673 A92A3110° + 0.3496587A010380A79110*
+0.49400712781309175110° + 0.99099496585661127110°
+ 0.6637455738542124A110" 4 0.5619A049053576157116° + 0.60603562051742618110°

0.8141 + 0.5(37)410 + 0.BL410> + 0.1Q410° + 0.3Wy10* + 0.W Lyy 0°
+ 0.Y(36)410’6 + 0.VN410'7 + 0.514410’8 =+ 0.D(37)410’9
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Table 7: Verification of Conjecture 2.2 - part (ii) and (iv)

primes

Cpi Rp(n1) = ®5,1,,p(1)

df,afl

index of ZGny

3,11, 17

0.2220221101110022221122022211011010112113 4 0.00200120122222122121220111202120220102030
+0.002001220120020121010102102021122102221 30>

+0.00121111020112221010221010011010220122130°
+ 0.11201022002000222021220020222210001110130*

+0.220202201100201201000000011112201011010306°
+0.22202212021001010012111120210121011001030°

0.78817332A427011 4 0.581648097113110 + 0.36370A4254025110% + 0.234186663552110°
+0.684306753247110% + 0.426635843A421116° + 0.9460021624691,0°
0.09299817 4+ 0.411756170 + 0.BC80F 61702 + 0.DA572A170°
+0.25AGF Fi70* + 0.8GE8C4170° + 0.AEBFGT170°

26

10

3,5,7,11

0.1221201011001012012011020021112211001023
+0.0101020110202021121221000112102002112213(c + o2)
0.403003202113332322014031215 + 0.241421124100034313441121135(0 + o)

0.6135622345466460143243207 + 0.6443122423512434624165047 (0 + 2)
0.89816292686 4460111 + 0.20928 4998222085511 (0 + %)

22

11

11

0.427955389512700011 + 0.3502739301069659110 + 0.4778387406583 4341102
+ 0.273038669A4268856110° + 0.27A495423246775A5110% + 0.73327236 A4527076110°

12

11, 41

0.23A49227A0541 402511 + 0.25A583269A5537Al110
0.65P41 + 0.5KNy10

13

0.56053614016600325635637 4 0.16104304643661533342227 (0 + o)
0.2398796701 A1346 A11 + 0.288 42880995 A240611 (o + 02)

22

14

11

0.290A17A736867883811 + 0.8A4649AA3287793065110 + 0.7663619146 A559404;, 02
+0.91A09303742432272110° 4 0.30461007823317A45110* + 0.444749196405516 A6110°

15

13,19

0.3786161575813 + 0.B796227077713(01 + 07) + 0.6853599605C15(02 + 03)
+0.094939C027913(c102 + 0703) + 0.65B6 A46 B58113(0i02 + 010%)

0.BC66483F19 + 0.GOB815H619(01 + 03) + 0.7BBOF5H319(02 + 03)
+0.66709GBFE19(0102 + 0103) + 0.BF932F8A19(0i02 + 0103)

dij,or—1 =1
df,ffz—l =1

26




