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Nombre de solutions dans une binade de l'équation A 2 + B 2 = C 2 + C

Let us denote by Q(N, λ) the number of solutions of the diophantine equation

2 . We prove that, for λ fixed and N → ∞, there exists a constant α(λ

with the same number, n, of binary digits ; these solutions are interesting in the problem of computing the function (a, b) → √ a 2 + b 2 . By elementary arguments, Q(N, λ) can be expressed in terms of four sums of the type S(u, v; f ) = u≤d≤v d odd 

1    
where u and v are real numbers and f : [u, v] -→ R is a function. These sums are estimated by a classical, but deep, method of number theory, using Fourier analysis and Kloosterman sums. This method is effective, and, in the case λ = 2, a precise upper bound for |Q(N, λ) -α(λ)N | is given.

1 Introduction.

Présentation du problème.

Le problème informatique original est le suivant (cf. [?], chap. 9) : on désire construire des systèmes (programmes ou circuits intégrés) capables de calculer la fonction (a, b) → √ a 2 + b 2 avec "arrondi correct", pour a et b compris entre 1 et 2, lorsque le résultat est lui aussi entre 1 et 2. Par "arrondi correct" on entend que le résultat fourni doit toujours être le nombre exactement représentable en virgule flottante avec n bits de mantisse (on dira "nombre machine" pour faire court) le plus proche du résultat exact. Pour ceci, il faut savoir avec quelle précision on doit approcher √ a 2 + b 2 lors de calculs intermédiaires pour être certain qu'arrondir au plus près l'approximation est équivalent à arrondir au plus près le résultat exact. Ceci revient à déterminer deux nombres machines a et b compris entre 1 et 2 tels que a 2 +b 2 soit le plus proche du carré du milieu de deux nombres machines consécutifs. En définissant A = 2 n-1 a et B = 2 n-1 b, notre problème est ramené à trouver des entiers A, B et C compris entre 2 n-1 et 2 n -1 tels que 

A 2 + B 2 = (C + 1/2) 2 + ,
A 2 + B 2 = C 2 + C.
Désignons par Q(2 k , 2) (cette notation sera justifiée dans l'énoncé du théorème 1 ci-dessous) le nombre de solutions de (??) telles que

(1.2) 2 k ≤ A ≤ B ≤ C ≤ 2 k+1 -1.
On trouvera dans la table 1 la valeur de Q(2 k , 2) pour 4 ≤ k ≤ 41 (on a Q(1, 2) = 1 et, pour 1 ≤ k ≤ 3, Q(2 k , 2) = 0). Cette table montre que Q(2 k , 2)/2 k semble tendre vers une limite. L'objet de cet article est de démontrer :

Theorème 1. Soit λ > √ 2 un nombre réel fixé. Pour N entier, on désigne par Q(N, λ) le nombre de solutions de l'équation diophantienne (??) vérifiant

(1.3) N ≤ A ≤ B ≤ C ≤ λN - 1 2 .
Si l'on pose Lorsque λ = 2, nous avons voulu donner une majoration effective du reste R(N, 2). Cette majoration n'est pas très bonne, et le membre de droite de (??) n'est inférieur au terme principal α(λ)N de (??) que pour N > 1.32•10 42 . Au prix de calculs encore plus techniques, il serait possible de l'améliorer un peu. Par exemple, dans la majoration (??) des sommes de Kloosterman, on peut remplacer (cf. [?], chap. 4) τ (m) = d | m 1 par 2 ω(m) où ω(m) est le nombre de facteurs premiers de m, ce qui permettrait de diminuer le membre de droite de (??). Mais, pour ne pas trop alourdir la présentation, nous avons effectué assez grossièrement la plupart des majorations. Cependant, il semble difficile, par cette méthode, d'obtenir pour R(N, 2) une majoration 100 fois meilleure que (??).

(1.4) α(λ) = λ 4 - λ π arcsin 1 λ + log(1 + √ 2) π - log(λ + √ λ 2 -1) π on a (1.5) Q(N, λ) = α(λ)N + R(N, λ) avec, lorsque N → ∞, (1.6 
1.2 Les diviseurs de 4A 2 + 1.

Ecrivons C 2 + C = (C + 1 
2 ) 2 -1 4 ; par le changement de variable (1.9)

X = 2A, Y = 2B, Z = 2C + 1.
l'équation (??) devient (1.10)

X 2 + Y 2 = Z 2 -1.
En considérant (??) modulo 4, on voit que toute solution X, Y, Z de (??) est telle que Z est impair et X et Y sont pairs. Donc, toute solution de (??) engendre, par (??), une solution de (??) et les deux équations diophantiennes (??) et (??) sont équivalentes. En écrivant (??) sous la forme

X 2 + 1 = Z 2 -Y 2 = (Z -Y )(Z + Y ), on voit que Z -Y = d est un diviseur de X 2 + 1. Réciproquement, à un diviseur d de X 2 + 1, la résolution du système Z -Y = d Z + Y = (X 2 + 1)/d fournit (1.11)    Y = 1 2 X 2 +1 d -d Z = 1 2 X 2 +1 d + d soit    B = 1 4 4A 2 +1 d -d C = 1 4 4A 2 +1 d + d -2 .
Notons que, dans (??), B et C sont entiers ; en effet les facteurs premiers de 4A 2 + 1 sont tous congrus à 1 (mod 4) (car -1 est un carré modulo un tel facteur premier) et d, qui divise 4A 2 + 1, est aussi congru à 1 (mod 4). Il y a donc, par (??), une bijection entre les diviseurs d de 4A 2 + 1 et les solutions de (??), pour A fixé. Dans cette bijection, la condition B ≤ C de (??) se traduit par

d ≥ 1 et la condition A ≤ B par 4A 2 -4Ad + 1 -d 2 ≥ 0, soit A ≤ B ≤ C ⇐⇒ A ≥ f 2 (d) def == 1 2 d + √ 2d 2 -1 et d ≥ 1 ⇐⇒ 1 ≤ d ≤ f -1 2 (A) = √ 8A 2 + 1 -2A. (1.12)
Parallèlement, la condition C ≤ λN -1/2 de (??) se traduit par 4A 2 +d 2 -4λN d + 1 ≤ 0 ; autrement dit, le point (A, d) doit être à l'intérieur de la demi ellipse 4A

2 + (d -2λN ) 2 = 4λ 2 N 2 -1, A > 0. Ceci implique 0 < d < 4λN et A < λN . D'autre part, par (??), la condition B > 0 entraîne d ≤ 2A < 2λN , et l'on a C ≤ λN -1/2 ⇐⇒ A ≤ f 1 (d) def == 1 2 d(4λN -d) -1 ⇐⇒ d ≥ f -1 1 (A) = 2λN - √ 4λ 2 N 2 -4A 2 -1. (1.13) Les courbes représentatives des fonctions f -1 1 (A) et f -1 2 (A) se coupent au point (A 0 , v 0 ) (1.14) A 0 = 1 4 √ 8λ 2 N 2 -2, v 0 = f -1 1 (A 0 ) = f -1 2 (A 0 ) = 2λN - 1 2 √ 8λ 2 N 2 -2.
Ainsi, la condition (??) équivaut à choisir le point (A, d)

tel que N ≤ A ≤ A 0 et f -1 1 (A) ≤ d ≤ f -1 2 (A). Si λ ≤ √ 2, par (??), A 0 < N et Q(N, λ) = 0. f -1 1 (A) f -1 2 (A) A d 1 2 √ 2 N A 0 v 0 u 1 u 0 Figure 1 -les valeurs possibles pour (A, d) On suppose donc λ > √ 2 et l'on a (1.15) Q(N, λ) = N ≤A≤A 0 d | 4A 2 +1 f -1 1 (A)≤d≤f -1 2 (A)
1.

Permutons l'ordre des sommations. Les valeurs extrèmes prises par d sont (1.16)

u 0 = f -1 1 (N ) = 2λN -4(λ 2 -1)N 2 -1 et v 0 défini par (??), car les fonctions f -1 1 (A) et f -1 2 (A) sont croissantes sur l'intervalle [N, A 0 ]. D'autre part, pour d fixé, A doit vérifierA ≥ max(N, f 2 (d)) et, en posant (1.17) u 1 = f -1 2 (N ) = √ 8N 2 + 1 -2N, l'égalité (??) devient (1.18) Q(N, λ) = u 0 ≤d≤v 0 N ≤A≤f 1 (d) 4A 2 +1≡0 (mod d) 1 - u 1 ≤d≤v 0 N ≤A<f 2 (d) 4A 2 +1≡0 (mod d) 1 = Q(N, λ) + ε(N, λ) avec (1.19) Q(N, λ) = u 0 ≤d≤v 0 N ≤A≤f 1 (d) 4A 2 +1≡0 (mod d) 1 - u 1 ≤d≤v 0 N ≤A≤f 2 (d) 4A 2 +1≡0 (mod d) 1 et (1.20) ε(N, λ) = u 1 ≤d≤v 0 A=f 2 (d) 4A 2 +1≡0 (mod d) 1. Définissons (1.21) S(u, v; f ) = u≤d≤v d impair     1≤A≤f (d) 4A 2 ≡-1 (mod d) 1     . L'égalité (??) s'écrit (1.22) Q(N, λ) = S(u 0 , v 0 ; f 1 ) -S(u 0 , v 0 ; N -1) -S(u 1 , v 0 ; f 2 ) + S(u 1 , v 0 ; N -1)
où N -1 désigne la fonction constante égale à N -1. Par (??), l'évaluation de Q(N, λ) se ramène à l'évaluation de sommes S(u, v; f ).

Les sommes S(u, v; f ).

Nous démontrerons au paragraphe 3 le théorème Theorème 2. Soit u, v deux nombres réels satisfaisant 7 ≤ u ≤ v et f une fonction continûment dérivable de [u, v] dans R. On pose

(1.23) f = f [u,v] = max u≤t≤v |f (t)|, (1.24) F (t) = f (t) t et (1.25) M = M(u, v; f ) = tF (t) + 2 5 = max u≤t≤v |tF (t)| + 2 5 •
Alors la somme S(u, v; f ) définie en (??) peut s'écrire 

(1.26) S(u, v; f ) = S 0 (u, v; f ) -S 1 (u, v; f ) avec (1.27) S 0 (u, v; f ) = u≤d≤v d impair ρ(d)f (d

Les solutions A = B.

Si l'on impose A = B dans (??), on a, par (??), X = Y , et l'équation équivalente (??) s'écrit

Z 2 -2X 2 = 1;
c'est une équation de Pell-Fermat, dont les solutions sont X n , Z n avec

Z n + √ 2X n = (3 + 2 √ 2) n . On a (1.29) X n = (3 + 2 √ 2) n -(3 -2 √ 2) n 2 √ 2 ≤ (3 + 2 √ 2) n 2 √ 2 et, pour n ≥ 1, X n = (3 + 2 √ 2) n 2 √ 2 1 - 3 -2 √ 2 3 + 2 √ 2 n ≥ (3 + 2 √ 2) n 2 √ 2 1 - 3 -2 √ 2 3 + 2 √ 2 ≥ (3 + 2 √ 2) n 3 • (1.30)
Par la définition (??) de ε(N, λ), la condition A = f 2 (d) est, par (??), équivalente à A = B. Comme la fonction f 2 définie en (??) est croissante, la fonction ε(N, λ) compte le nombre de solutions de l'équation (??) avec

A = B telle que A soit compris entre f 2 (u 1 ) = N et f 2 (v 0 ) = A 0 < λN √
2 par (??) et (??). On a donc, par (??) et (??)

(1.31) 0 ≤ ε(N, λ) = 2N ≤Xn≤2A 0 1 ≤ 2N ≤Xn<λ √ 2N 1 ≤ log 3λ 4 log(3 + 2 √ 2) + 1 et, en particulier, pour λ = 2, (1.32) 0 ≤ ε(N, λ) ≤ 1.
1.5 Les solutions paramétriques.

On peut donner une représentation paramétrique des solutions de l'équation (??) (cf. [?], th. 38 et 39 et [?], p. 210). En effet, si α, β, γ, δ sont des entiers vérifiant (1.33) αδ -βγ = 1 il est facile de voir que

(1.34) X = αβ+γδ, Y = 1 2 α 2 + γ 2 -β 2 -δ 2 , Z = 1 2 α 2 + γ 2 + β 2 + δ 2
est une solution de (??). Réciproquement, pour voir que toute solution de (??) est de cette forme, écrivons la décomposition en facteurs premiers X 2 + 1 = J j=1 p α j j , où les nombres premiers p j sont congrus à 1 modulo 4. Dans l'anneau G des entiers de Gauss (c'est-à-dire l'ensemble des nombres complexes a + bi où a et b sont dans Z), chaque p j se factorise sous la forme p j = π j π j . Le nombre X + i se factorise dans G sous la forme (1.35)

X + i = i k J j=1 π α j j , 0 ≤ k ≤ 3.
En effet, les deux nombres π j et π j ne peuvent apparaître simultanément dans (??), sinon p j = π j π j diviserait (dans Z) X et 1, ce qui est impossible. Soit d un diviseur de X 2 + 1. La décomposition en facteurs premiers de d s'écrit d = J j=1 p

β j j avec 0 ≤ β j ≤ α j . Posons (1.36) ∆ = i k J j=1 π β j j = β + iδ, ∆ = J j=1 π α j -β j j = α -iγ.
On a, par (??),

(1.37)

X + i = ∆∆ = (β + iδ)(α -iγ) = αβ + γδ + i(αδ -βγ)
qui nous donne (??) et la valeur de X dans (??). On obtient la valeur de Y et Z dans (??) en prenant la norme dans (??) :

d = |∆| 2 = β 2 + δ 2 , X 2 + 1 d = |∆ | 2 = α 2 + γ 2
et en reportant dans (??). Soit θ ∈ Z. On pose

α = 10θ + 8, β = 4θ + 3, γ = 5, δ = 2.
On vérifie (??) et en substituant dans (??), on obtient

X = 40θ 2 + 62θ + 34, Y = 42θ 2 + 68θ + 38, Z = 58θ 2 + 92θ + 51 d'où, par (??), (1.38) A = 20θ 2 + 31θ + 17, B = 21θ 2 + 34θ + 19, C = 29θ 2 + 46θ + 25.
Pour θ > 0, la solution (??) vérifie 20θ

2 ≤ A et C + 1/2 ≤ 29(θ + 1) 2 . Elle sera comptée dans Q(N, λ) pour N 20 ≤ θ ≤ λN 29 -1. On obtient ainsi la minoration (1.39) Q(N, λ) ≥ λ 29 - 1 20 √ N -2.
Lorsque λ = 2, (??) entraîne, pour

N ≥ 2630 > 2 0.039 2 , (1.40) Q(N, 2) ≥ 0.039 √ N -2 > 0.
L'inégalité (??) et la table 1 montrent que l'équation (??) a, pour tout k ≥ 4, des solutions vérifiant (??).

1.6 Structure de l'article.

Dans le §2, nous redémontrons des résultats classiques utiles dans la suite, notamment sur la fonction arithmétique ρ (définie par (??)) et les sommes de Kloosterman. Nous donnons également deux algorithmes de construction de la table 1 donnée en annexe. Dans le §3, nous démontrons le théorème 2, et dans le §4, le théorème 1.

Nous remercions chaleureusement A. Schinzel pour nous avoir indiqué le livre de C. Hooley [?] ainsi que la solution paramétrique (??). Nous avons plaisir à remercier E. Fouvry, R. Heath-Brown, J. Rivat pour leurs remarques positives. Nous remercions également les systèmes de calcul formel MAPLE [?] et PARI/GP [?] que nous avons largement utilisé, ainsi que le Max Planck Institut de Bonn où une partie des idées de cet article a été développée pendant que le deuxième auteur était invité en mai 2002.

2 Résultats généraux.

Sommes de deux carrés.

Soit d un entier positif impair. On désigne par S d l'ensemble des représentations primitives de d par la forme quadratique

r 2 + 4s 2 , avec r > 0 et s ∈ Z (2.1) S d = {(r, s), r ∈ N * , s ∈ Z, r 2 + 4s 2 = d, (r, 2s) = 1} et par E d l'ensemble des classes d'équivalence modulo d satisfaisant la congru- ence 4ν 2 ≡ -1 (mod d) :
(2.

2)

E d = {ν ∈ (Z/dZ) * , 4ν 2 ≡ -1 (mod d)}.
Nous allons redémontrer le résultat classique (cf.

[?], articles 86 et 90 et [?], p. 33) :

Proposition 1. L'application Θ définie par Θ(r, s) = r -1 s (mod d), où r -1 désigne l'inverse de r dans (Z/dZ) * est une bijection de S d dans E d . On peut écrire ν = Θ(r, s) sous la forme

(2.3) ν d ≡ 4s r + s r(r 2 + 4s 2 ) (mod 1)
où l'on a noté 4s un inverse de 4s modulo r ou bien sous la forme

(2.4) ν d ≡ r 4s - r 4s(r 2 + 4s 2 ) (mod 1)
où, cette fois, nous notons r un inverse de r modulo 4s. (ii) Θ est surjective. Soit ν ∈ E d . On obtient r et s tels que Θ(r, s) = ν par l'algorithme de Cornacchia (cf. [?], [?], [?]) : on développe 2ν d en fraction continue et l'on choisit la réduite pn qn telle que

q n ≤ √ d < q n+1 . Les deux nombres R = q n et S = 2νq n -dp n vérifient R 2 + S 2 = d, (R, S) = 1 et SR -1 ≡ 2ν (mod d). Comme d = R 2 + S 2 est impair, l'un des nombres R et S est pair, l'autre est impair. Si S est pair, on pose s = S/2, r = R. On a (r, s) ∈ S d et Θ(r, s) = sr -1 ≡ ν (mod d). Si R est pair, on pose s = -R/2, r = S ; on a (r, s) ∈ S d et Θ(r, s) = r -1 s = -S -1 R/2 ≡ - 1 2 (2ν) -1 ≡ - 1 2 (-2ν) ≡ ν (mod d). (iii) Θ est injective. Soit deux éléments (r, s) et (r , s ) de S d vérifiant Θ(r, s) = Θ(r , s ), c'est-à-dire (2.5) r s -rs ≡ 0 (mod d).
On a

(2.6)

d 2 = (r 2 + 4s 2 )(r 2 + 4s 2 ) = (rr + 4ss ) 2 + 4(r s -rs ) 2 .
Mais (??) et (??) entraînent que r s -rs = 0 c'est-à-dire

(2.7) s r = s r = w (car r et r , impairs, ne sont pas nuls) et l'on a d = r 2 + 4s 2 = r 2 + 4s 2 = r 2 (1 + 4w 2 ) = r 2 (1 + 4w 2 )
ce qui implique r = r puis, par (??), s = s .

Il reste à prouver (??) et (??

) Soit (r, s) ∈ S d ; comme (r, 2s) = 1, il existe z 1 , z 2 ∈ Z, tels que (2.8) rz 1 -4sz 2 = 1. Posons (2.9) ν = rz 2 + sz 1 .
En prenant les modules dans la relation

(r + 2si)(z 1 + 2z 2 i) = (rz 1 -4sz 2 ) + 2(rz 2 + sz 1 )i on obtient 4ν 2 + 1 ≡ 0 (mod d).
Enfin, de (??) et (??), il suit

(2.10) rν = r 2 z 2 + s(1 + 4sz 2 ) = s + z 2 d ≡ s (mod d)
donc ν = Θ(r, s). Il vient ensuite, par (??) et (??)

ν d = rz 2 + sz 1 r 2 + 4s 2 = r 2 z 2 + rsz 1 r(r 2 + 4s 2 ) = s + (r 2 + 4s 2 )z 2 r(r 2 + 4s 2 ) = z 2 r + s r(r 2 + 4s 2 ) ≡ 4s r + s r(r 2 + 4s 2 ) (mod 1)
ce qui démontre (??). De même, on peut écrire

ν d = 4rsz 2 + 4s 2 z 1 4s(r 2 + 4s 2 ) = -r + (r 2 + 4s 2 )z 1 4s(r 2 + 4s 2 ) = z 1 4s - r 4s(r 2 + 4s 2 ) ≡ r 4s - r 4s(r 2 + 4s 2 ) (mod 1)
ce qui prouve (??).

Nous désignerons par ρ(n) le nombre de solutions de la congruence (2.11)

ν 2 ≡ -1 (mod n).
On a pour p premier et α ≥ 1

(2.12)

ρ(p α ) =          1 si p = 2 et α = 1 0 si p = 2 et α ≥ 2 0 si p ≡ 3 (mod 4) 2 si p ≡ 1 (mod 4)
et par le théorème des restes des chinois, la fonction arithmétique ρ est multiplicative. Par la proposition 1, pour d impair, on a

(2.13) ρ(d) = Card(E d ) = Card(S d ).

Construction de la table.

Une première méthode consiste à utiliser la formule (??). Par (??), on a

(2.14) N ≤ A ≤ A 0 = λ 2 N 2 2 - 1 8 .
Pour chaque valeur de A vérifiant l'inégalité (??), on factorise 4A Cet algorithme est linéaire en N . Il a été implémenté en PARI/C. Le temps d'exécution est de moins d'une seconde pour 2 2 0, d'une dizaine de minutes pour 2 3 0 et de plus de deux semaines pour 2 4 1.

Lemmes analytiques

. Lemme 1. Soit τ (n) = d | n 1. Pour tout x ≥ 1, on a 1≤n≤x τ (n) ≤ x(log x + 1). Démonstration. On a 1≤n≤x τ (n) = 1≤n≤x d | n 1 = d≤x x d ≤ x d≤x 1 d .
Puis on utilise l'inégalité (2.16)

d≤x 1 d ≤ 1 + x 1 dt t = 1 + log x. Lemme 2. Soit h un nombre entier non nul et τ (n) = d | n 1. Pour tout x ≥ 1, on a 1≤n≤x τ (n){(h, n)} 1/2 ≤ x(log x + 1)ψ(h) où ψ(h) est défini par (2.17) ψ(h) = d | h τ (d) √ d • Démonstration. En utilisant l'inégalité τ (dd ) ≤ τ (d)τ (d ), valable pour tout couple d'entiers d et d et le lemme 1, il vient 1≤n≤x τ (n){(h, n)} 1/2 ≤ d | h √ d n≤x d | n τ (n) ≤ d | h √ dτ (d) d ≤x/d τ (d ) ≤ d | h τ (d) √ d x log x d + 1 ≤ x(log x + 1)ψ(h).
Lemme 3. Soit ψ(h) défini par (??). Pour tout x ≥ 1, on a 1≤h≤x ψ(h) ≤ 7x.

Démonstration. On a 

1≤h≤x ψ(h) = 1≤h≤x d | h τ (d) √ d = d≤x τ (d) √ d x d ≤ x ∞ d=1 τ (d) d 3/2 = xζ(3/2) 2 et ζ(3/2) 2 =
r(n) = πx + R 1 (x) avec | R 1 (x)| ≤ 9 √ x.
Démonstration. L'argument classique (cf.

[?], théorème 339) de comptage des points à coordonnées entières dans le disque centré à l'origine et de rayon

√ x donne π( √ x - √ 2) 2 ≤ 1 + 1≤n≤x r(n) ≤ π( √ x + √ 2) 2 .
Il s'ensuit que Lemme 5. Soit ρ la fonction multiplicative définie par (??) et (??). Alors, pour tout x ≥ 1, on a Par le lemme 4, on a

| R 1 (x)| ≤ 2 √ 2π √ x + (2π - 
(i) Υ(x) = 1≤n≤x ρ(n) = 3 2π x + R 2 (x) avec | R 2 (x)| ≤ 9 8 log x + 4 √ x, (ii) Υ * (x) = 1≤n≤x n impair ρ(n) = 1 π x + R 3 (x) avec | R 3 (x)| ≤ (4 log x + 14) √ x, et pour x ≥ 7, on a (iii) Υ * (x) ≤ 3x 
Υ(x) = n≤x 1 4 d 2 | n µ(d)r(n/d 2 ) = 1 4 d≤ √ x µ(d) d ≤x/d 2 r(d ) = 1 4 d≤ √ x µ(d) π x d 2 + R 1 x d 2 = 3x 2π + R 2 (x) avec R 2 (x) = - πx 4 d> √ x µ(d) d 2 + 1 4 d≤ √ x R 1 x d 2 .
Par le lemme 4 et (??), on obtient

| R 2 (x)| ≤ πx 4 1 x + +∞ √ x dt t 2 + 1 4 d≤ √ x 9 √ x d ≤ π √ x 2 + 9 4 √ x 1 + 1 2 log x ≤ 9 8 log x + 4 √ x.
(ii) Compte tenu de la valeur de ρ(2 α ) dans (??), on a

1≤n≤x n pair ρ(n) = 1≤n≤x n≡2 (mod 4) ρ(n) = 1≤n≤x/2 n impair ρ(n) = 1≤n≤x/2 ρ(n) - 1≤n≤x/2 n pair ρ(n).
En réitérant l'argument, on obtient

Υ * (x) = k j=0 (-1) j Υ x 2 j
où k est l'entier défini par 2 k ≤ x < 2 k+1 . En appliquant (i), il vient

Υ * (x) = k j=0 (-1) j 3x 2 j+1 π + R 2 x 2 j = x π + R 3 (x) avec R 3 (x) = - 3 2π +∞ j=k+1 (-1) j x 2 j + k j=0 (-1) j R 2 x 2 j . On a | R 3 (x)| ≤ 3 2π +∞ j=k+1 x 2 j + 9 8 log x + 4 k j=0 x 2 j ≤ (2 + √ 2) 9 8 log x + 4 √ x ≤ (4 log x + 14) √ x.
(iii) La fonction 4 log t+14 √ t est décroissante pour t ≥ 1 et elle est inférieure à 1/10 pour t ≥ 500000 ; (iii) résulte donc de (ii) pour x ≥ 500000. Le calcul numérique de Υ * (x) pour x entier inférieur à 500000 complète la preuve de (iii). Lemme 6. Soient deux nombres réels u et v satisfaisant 1 ≤ u ≤ v. Soit F une fonction continûment dérivable de [u, v] dans R, et ρ défini par (??). On pose

F = F [u,v] = max u≤t≤v |F (t)|. Alors on a u≤d≤v d impair ρ(d)F (d) = 1 π v u F (t)dt + R 0 (u, v; F ) avec R 0 (u, v; F ) ≤ (4 log v + 14) √ v 2 F + 2 3 v F .
Démonstration. Par le lemme 5 (ii), on a, en utilisant l'intégrale de Stiltjes

u≤d≤v d impair ρ(d)F (d) = v u - F (t)d[Υ * (t)] = 1 π v u F (t)dt + R 0 (u, v; F ) avec, par intégration par parties, R 0 (u, v; F ) = v u - F (t)d[ R 3 (t)] = F (v) R 3 (v) -F (u) R 3 (u) - v u F (t) R 3 (t)dt et R 0 (u, v; F ) ≤ 2 F (4 log v + 14) √ v + F (4 log v + 14) v u √ t dt et comme v u √ t dt ≤ v 0 √ t dt = 2 3 v 3/2 cela
achève la preuve du lemme 6. 

Sommes de Kloosterman.

|g(t)| ≤ τ (m) √ m{(b, m)} 1/2 γ(m).
Par la méthode de la sommation d'Abel, on écrit :

ξ≤ ≤ξ ( ,m)=1 exp 2iπb m Φ( ) = g(ξ)Φ(ξ) + ξ =ξ+1 (g( ) -g( -1))Φ( ) = ξ -1 =ξ g( )(Φ( ) -Φ( + 1)) + g(ξ )Φ(ξ ). (2.27)
On applique le théorème des accroissements finis à Φ( + 1) -Φ( ), et le lemme suit de (??) et (??).

3 Démonstration du théorème 2. 

1≤A≤f (d) 4A 2 ≡-1 (mod d) 1 = ν ∈ E d 1≤A≤f (d) A≡ν (mod d) 1 = ν∈E d f (d) -ν d + 1 .
On remplace dans (??) la partie entière par son expression en fonction du polynôme de Bernoulli :

B 1 (t) = t -t -1/2 ; il vient (3.2) 1≤A≤f (d) 4A 2 ≡-1 (mod d) 1 = ν∈E d -B 1 f (d) -ν d + f (d) d - ν d + 1 2 .
En associant les deux éléments ν et d -ν de E d (qui sont distincts, car d est impair), les deux derniers termes de (??) disparaissent, et, par (??), on obtient

(3.3) 1≤A≤f (d) 4A 2 ≡-1 (mod d) 1 = f (d)ρ(d) d - ν∈E d B 1 f (d) -ν d .
On peut ainsi écrire (??) où S 0 (u, v; f ) a été défini en (??) et

(3.4) S 1 (u, v; f ) = u≤d≤v d impair ν∈E d B 1 f (d) -ν d .
Il nous faut maintenant majorer |S 1 (u, v; f )|.

3.2 La formule de J. Vaaler.

Pour majorer S 1 (u, v; f ) nous commençons par approcher la fonction B 1 (t) par un polynôme trigonométrique. Nous noterons e(t) = e 2iπt , et nous utiliserons le lemme ci-dessous de J. Vaaler.

Lemme 9. Soit ω ∈ N, h ∈ Z, 1 ≤ |h| ≤ ω et (3.5) 0 < b ω (h) def == π |h| ω + 1 1 - |h| ω + 1 cot π |h| ω + 1 + |h| ω + 1 < 1.
Alors, en posant

(3.6) B * ω (t) = - 1 2iπ 1≤|h|≤ω b ω (h) h e(ht)
on peut écrire

(3.7) B 1 (t) = B * ω (t) + R * ω (t)
avec, pour tout t ∈ R, En utilisant (??), pour une valeur de ω que l'on précisera plus tard, (??) devient (3.9)

(3.8) |R * ω (t)| ≤ 1 2ω + 2 0≤|h|≤ω 1 - |h| ω + 1 e(ht) = sin 2 π(ω + 1)t 2(ω + 1)
S 1 (u, v; f ) = S 2 (u, v; f ) + S 3 (u, v; f ) avec, par (??), S 2 (u, v; f ) = u≤d≤v d impair ν∈E d B * ω f (d) -ν d = - 1 2iπ 1≤|h|≤ω b ω (h) h u≤d≤v d impair e hf (d) d ν∈E d e - hν d (3.10) et (3.11) S 3 (u, v; f ) = u≤d≤v d impair ν∈E d R * ω f (d) -ν d .
Par (??), on a (3.12) 

|S 3 (u, v; f )| ≤ S 4 (u, v; f ) en posant (3.13) S 4 (u, v; f ) = 1 2ω + 2 0≤|h|≤ω 1 - |h| ω + 1 u≤d≤v d impair e hf ( 
S 2 (u, v; f ) = - 1 2iπ 1≤|h|≤ω b ω (h) h P (h, u, v, f ) et (3.16) S 4 (u, v; f ) = 1 2ω + 2     u≤d≤v d impair ρ(d) + 1≤|h|≤ω 1 - |h| ω + 1 P (h, u, v, f )     .
Il nous faut maintenant majorer |P (h, u, v, f )|.

Evaluation de P(h, u, v, f ).

Pour évaluer P (h, u, v, f ), nous utiliserons la bijection Θ entre S d et E d étudiée dans la proposition 1. Par cette bijection, on déduit de (??) (3.17)

P (h, u, v, f ) = u≤r 2 +4s 2 ≤v r impair, r>0, (r,s)=1 e hf (r 2 + 4s 2 ) r 2 + 4s 2 - νh r 2 + 4s 2
où ν = Θ(r, s) est donné par l'une des formules (??) ou (??). Nous coupons la somme (??) en quatre parties suivant que |s| < r ou |s| > r et s > 0 ou s < 0 (Remarquons que |s| = r ou s = 0 entraînerait r = (r, s) = 1 ce qui est incompatible avec r 2 + 4s 2 ≥ u, pour u > 5). Ainsi dans la somme P 1 , on impose 1 ≤ s < r ce qui entraîne

u ≤ r 2 + 4s 2 < 5r 2 et r 2 < r 2 + 4s 2 ≤ v et encore (3.18) u/5 < r < √ v ;
pour r fixé dans l'intervalle (??), les inégalités u ≤ r 2 + 4s 2 ≤ v et 1 ≤ s < r entraînent l'existence (cf. Fig. 2) de deux nombres entiers

ξ 1 = ξ 1 (r) et ξ 1 = ξ 1 (r) vérifiant 1 ≤ ξ 1 ≤ r -1 et 1 ≤ ξ 1 ≤ r -1 et tels que u ≤ r 2 + 4s 2 ≤ v et 1 ≤ s < r ⇐⇒ ξ 1 ≤ s ≤ ξ 1 .
Les valeurs de ξ 1 et ξ 1 sont données par :

ξ 1 = 1 si r ≥ √ u et ξ 1 = u -r 2 4 si r < √ u ξ 1 = r -1 si r ≤ v 5 et ξ 1 = v -r 2 4 si r > v 5 .
On a ainsi à partir de (??) et (??)

(3.19) P 1 = P 1 (h, u, v, f ) = √ u/5<r< √ v r impair ξ 1 ≤s≤ξ 1 (r,s)=1 e -h4s r Φ 1 (s) avec, par (??), Φ 1 (s) = exp 2iπhF (r 2 + 4s 2 ) - 2iπhs r(r 2 + 4s 2 )
.

On calcule la dérivée logarithmique de Φ 1 : 

Φ 1 Φ 1 (s) = 2iπh r 8rsF (r 2 + 4s 2 ) - r 2 -4s 2 (r 2 + 4s 2 ) 2 et l'on a, en observant que |r 2 -4s 2 | ≤ r 2 + 4s 2 et 4|rs| ≤ r 2 + 4s 2 |Φ 1 (s)| = Φ 1 Φ 1 (s) ≤ 2π|h| r 2(r 2 + 4s 2 )|F (r 2 + 4s 2 )| + 1 u . r s r = s r = -s r 2 + 4s 2 = v r 2 + 4s 2 = u v 5 u 5 √ u √ v P 1 P 2 P 3 P 4
ξ 1 ≤s≤ξ 1 (r,s)=1 e -h4s r Φ 1 (s) ≤ τ (r) √ r{(h, r)} 1/2 γ(r)M (h, r)
avec, par (??)

M (h, r) = 2π|h| 2 tF (t) + 1 u + 1.
En notant que u ≥ 7 et en utilisant (??), il vient

M (h, r) ≤ 4π|h| tF (t) + 1 2u + 1 4π ≤ 4π|h|M.
En reportant dans (??) on obtient

(3.20) |P 1 | ≤ 4π|h|M √ u/5<r< √ v r impair τ (r) √ r{(h, r)} 1/2 γ(r).
Dans la somme P 2 , on met les termes de (??) avec -r < s ≤ -1. On a

P 2 = P 2 (h, u, v, f ) = √ u/5<r< √ v r impair -ξ 1 ≤s≤-ξ 1 (r,s)=1 e -h4s r Φ 1 (s) = √ u/5<r< √ v r impair ξ 1 ≤s≤ξ 1 (r,s)=1 e h4s r Φ 1 (-s). (3.21)
Par application du lemme 8, on trouve pour |P 2 | la même majoration que pour |P 1 |, et l'on a, par (??) :

(3.22) |P 1 | + |P 2 | ≤ 8π|h|M √ u/5<r< √ v r impair τ (r) √ r{(h, r)} 1/2 γ(r).
La somme P 3 contient les termes de la somme (??), avec ν donné par (??), satisfaisant 1 ≤ r < s. Il existe deux nombres entiers ξ 3 et ξ 3 tels que

(3.23) 1 ≤ ξ 3 ≤ s et 1 ≤ ξ 3 ≤ s tels que (3.24) P 3 = P 3 (h, u, v, f ) = √ u/5<s< √ v 2 ξ 3 ≤ r ≤ ξ 3 (r,4s)=1 e -hr 4s Φ 3 (r) avec Φ 3 (r) = exp 2iπhF (r 2 + 4s 2 ) + iπhr 2s(r 2 + 4s 2 )
.

On a comme précédemment,

|Φ 3 (r)| = Φ 3 Φ 3 (r) ≤ π|h| s (r 2 + 4s 2 )|F (r 2 + 4s 2 )| + 1 2u .
On applique le lemme 8 avec m = 4s et b = -h ; par (??), on a |ξ 3 -ξ 3 | ≤ s et il s'ensuit

ξ 3 ≤r≤ξ 3 (r,4s)=1 e -hr 4s Φ 3 (r) ≤ π|h|Mτ (4s) √ 4s{(h, 4s)} 1/2 γ(4s).
Par (??), on déduit que

|P 3 | ≤ π|h|M 4 √ u/5 < m < 2 √ v 4 | m τ (m) √ m{(h, m)} 1/2 γ(m).
La même majoration est valable pour la somme P 4 , où l'on compte les termes de (??) avec s < 0 et 1 ≤ r ≤ -s, et l'on déduit de (??)

|P | = |P 1 + P 2 + P 3 + P 4 | ≤ 8π|h|M m<2 √ v τ (m) √ m{(h, m)} 1/2 γ(m).
Par (??) et le lemme 2, il suit

|P | ≤ 8π|h|Mγ(2 √ v) √ 2v 1/4 m≤2 √ v τ (m){(h, m)} 1/2 ≤ 8|h|M √ 2 log v + π + 2 log 8 π (log v + 2 + 2 log 2)v 3/4 ψ(|h|) ≤ 8|h|M √ 2(log v + 4) 2 v 3/4 ψ(|h|) (3.25)
où ψ(|h|) est défini en (??).

Choix de ω.

Par (??) et (??), on a

|S 2 (u, v; f )| ≤ 1 2π 1≤|h|≤ω 1 |h| |P |
et par (??) et le lemme 5 (iii), on a

|S 4 (u, v; f )| ≤ 3v 14(ω + 1) + 1 2ω + 2 1≤|h|≤ω |P | ≤ 3v 14(ω + 1) + 1 2 1≤|h|≤ω 1 |h| |P |
de sorte que, par (??) et (??) on a

|S 1 (u, v; f )| ≤ |S 2 (u, v; f )| + |S 4 (u, v; f )| ≤ 3v 14(ω + 1) + 1 2 1 π + 1 1≤|h|≤ω 1 |h| |P |.
Par (??) et le lemme 3, en tenant compte des valeurs négatives de h, il suit

(3.26) |S 1 (u, v; f )| ≤ 3v 14(ω + 1) + 1 π + 1 8 √ 2M(log v + 4) 2 v 3/4 (7ω).
On pose

(3.27) ω 0 = 1 14 3π 4 √ 2M(π + 1) v 1/8 log v + 4 et l'on choisit ω (3.28) ω = ω 0 .
Par (??), il vient Compte tenu de (??) nous écrivons (??)

|S 1 (u, v; f )| ≤ 3v 14ω 0 + 56 √ 2 1 π + 1 (log v + 4) 2 v 3/4 ω 0 M = 4 3 √ 2(1 + 1/π)(log v + 4)v
(4.2) Q(N, λ) = Q 0 (N, λ) -Q 1 (N, λ) avec, pour i = 0 ou 1 (4.3) Q i (N, λ) = S i (u 0 , v 0 ; f 1 ) -S i (u 0 , v 0 ; N -1) -S i (u 1 , v 0 ; f 2 ) + S i (u 1 , v 0 ; N -1).
Nous évaluerons successivement Q 0 (N, λ) et Q 1 (N, λ) ; mais il nous faut d'abord définir quelques nouvelles variables.

Les quantités approchées.

Nous utiliserons les trois quantités linéaires en N

(4.4) v 0 = λ(2 - √ 2)N, u 0 = 2(λ - √ λ 2 -1)N, u 1 = 2( √ 2 -1)N,
comme des approximations des nombres v 0 , u 0 et u 1 définis en (??), (??) et (??). En utilisant les relations

(4.5) √ a ≤ √ a + t ≤ √ a + t 2 √ a , a > 0, t ≥ 0 et (4.6) √ a - t √ a = √ a 1 - t a ≤ √ a 1 - t a = √ a -t ≤ √ a, a > 0, 0 ≤ t ≤ a on obtient les inégalités (rappelons que λ > √ 2 et N ≥ 1) (4.7) v 0 ≤ v 0 = 2λN - 1 2 √ 8λ 2 N 2 -2 ≤ v 0 + 1 2 √ 2λN < v 0 + 1 4N < v 0 + 1 ≤ 2λN, (4.8) 
u 0 < u 0 = 2λN -4(λ 2 -1)N 2 -1 ≤ u 0 + 1 2 √ λ 2 -1N < u 0 + 1 2N < u 0 + 1 et (4.9) u 1 < u 1 = √ 8N 2 + 1 -2N ≤ u 1 + 1 4 √ 2N < u 1 + 1.
Nous approcherons les fonctions (4.10)

f 1 (t) = 1 2 t(4λN -t) -1 et f 2 (t) = 1 2 t + √ 2t 2 -1
définies en (??) et (??) par (4.11)

f 1 (t) = 1 2 t(4λN -t) et f 2 (t) = 1 + √ 2 2 t.
Par (??), on a, pour 1

≤ t ≤ 4λN -1, N ≥ 1 et λ > √ 2 (4.12) f 1 (t) - 1 4 ≤ f 1 (t) - 1 2 √ 4λN -1 ≤ f 1 (t) - 1 2 t(4λN -t) ≤ f 1 (t) ≤ f 1 (t)
et, toujours par (??), on a, pour t ≥ 1 (4.13)

f 2 (t) - 1 2 ≤ 1 2 t + √ 2t - 1 √ 2t ≤ f 2 (t) ≤ f 2 (t).
4.2 Les termes secondaires de reste.

Pour estimer Q 0 (N, λ) défini par (??), on utilise (??) et le lemme 6 

J(u, v; f ) = 1 π v u F (t)dt = 1 π v u f (t) t dt.
Nous écrirons

(4.16) Q 0 (N, λ) = Q 2 (N, λ) + Q 3 (N, λ) avec (4.17) Q 2 (N, λ) = J(u 0 , v 0 ; f 1 ) -J(u 0 , v 0 ; N -1) -J(u 1 , v 0 ; f 2 ) + J(u 1 , v 0 ; N -1) et Q 3 (N, λ) = R 0 (u 0 , v 0 ; F 1 ) -R 0 u 0 , v 0 ; N -1 t -R 0 (u 1 , v 0 ; F 2 ) + R 0 u 1 , v 0 ; N -1 t . (4.18)
Dans ce paragraphe nous majorerons les quatre termes de reste R 0 (u, v; F ) et la valeur absolue de leur somme Q 3 (N, λ) tandis que, dans le paragraphe suivant, nous traiterons les termes principaux J(u, v; f ) et Q 2 (N, λ).

Le premier terme R 0 (u 0 , v 0 ; F 1 ). Posons par (??) (4. [START_REF] Smith | The collected mathematical papers of Henry John Stephen Smith[END_REF])

F 1 (t) = f 1 (t) t = t(4λN -t) -1 2t •
Avec l'aide de MAPLE, nous dérivons : 

(4.20) F 1 (t) = -2λN t + 1 2t 2 t(4λN -t) -1 = -2λN t + 1 4t 2 f 1 (t) , (4.21) F 1 (t) = 4t 2 λN (3λN -t -3/t) + 3t 2 + 2 2t 3 (t(4λN -t) -1) 3/2 • Pour λ > √ 2, N ≥ 1 et t ≥ 1,
F 1 = F 1 [u 0 ,v 0 ] = f 1 (u 0 ) u 0 = N u 0 ≤ N u 0 = λ + √ λ 2 -1 2 < 1.87
tandis que, par (??), (??), (??), (??) et (??), on a

F 1 = F 1 [u 0 ,v 0 ] = -F 1 (u 0 ) = 2λN u 0 -1 4u 2 0 f 1 (u 0 ) = 2λN u 0 -1 4u 2 0 N < 2λN u 0 4u 2 0 N = λ 2u 0 < λ 2 u 0 = λ(λ + √ λ 2 -1) 4N < 1.87 N • (4.24)
Par le lemme 6, on obtient, pour λ = 2

(4.25) | R 0 (u 0 , v 0 ; F 1 )| ≤ (4 log v 0 + 14) √ v 0 3.74 + 1.25 v 0 N .
Le deuxième terme R 0 u 0 , v 0 ; N-1 t . On a en utilisant (??) et (??)

(4.26) N -1 t [u 0 ,v 0 ] = N -1 u 0 < N u 0 ≤ N u 0 = λ + √ λ 2 -1 2 < 1.87 et - N -1 t 2 [u 0 ,v 0 ] = N -1 u 2 0 ≤ N u 2 0 ≤ N u 2 0 = (λ + √ λ 2 -1) 2 4N < 3.49 N • Par le lemme 6, il suit pour λ = 2 (4.27) R 0 u 0 , v 0 ; N -1 t ≤ (4 log v 0 + 14) √ v 0 3.74 + 2.33 v 0 N .
Le troisième terme R 0 (u 1 , v 0 ; F 2 ). Par (??), on a pour t ≥ 1 (4.28)

F 2 (t) = f 2 (t) t = 1 2 t + √ 2t 2 -1 t ≤ 1 + √ 2 2 et donc (4.29) F 2 = F 2 [u 1 ,v 0 ] ≤ 1 + √ 2 2 ≤ 1.21. Pour t ≥ 1, on a 2t 2 -1 ≥ 1 et F 2 (t) = 1 2t 2 √ 2t 2 -1 ≤ 1 2t 2 •
Donc, par (??) et (??) (4.30)

F 2 = F 2 [u 1 ,v 0 ] ≤ 1 2u 2 1 ≤ 1 2 u 2 1 = 1 8( √ 2 -1) 2 N 2 ≤ 0.73 N 2 • Par le lemme 6, il suit pour λ = 2 (4.31) | R 0 (u 1 , v 0 ; F 2 )| ≤ (4 log v 0 + 14) √ v 0 2.42 + 0.49 v 0 N 2 .
Le quatrième terme R 0 (u 1 , v 0 ; N-1 t ). On a par (??) et (??)

(4.32) N -1 t [u 1 ,v 0 ] = N -1 u 1 < N u 1 < N u 1 = 1 2( √ 2 -1) = 1 + √ 2 2 < 1.21 et - N -1 t 2 [u 1 ,v 0 ] = N -1 u 2 1 ≤ N u 2 1 ≤ N u 2 1 = 1 4( √ 2 -1) 2 N < 1.46 N • Par le lemme 6, on a pour λ = 2 (4.33) R 0 u 1 , v 0 ; N -1 t ≤ (4 log v 0 + 14) √ v 0 2.42 + 0.98 v 0 N .
Nous appliquerons quatre fois l'égalité (??) complétée par l'inégalité (??). Observons d'abord que, par (??), (??), (??) et (??), les quadruplets [START_REF] Crandall | Prime Numbers A Computational Perspective[END_REF] . Observons ensuite que les couples de fonctions {f 1 , f 1 }, {f 2 , f 2 } et {N -1, N } vérifient (??) sur l'intervalle [ u 0 , v 0 ] en utilisant (??), (??), (??) et (??).

{ u 0 , u 0 , v 0 , v 0 } et { u 1 , u 1 , v 0 , v 0 } satisfont (??) : l'inégalité u 0 + 1 ≤ u 1 + 1 < v 0 est vérifiée, à partir de (??), pour N > 2+ √ 2 2(λ- √ 
Alors, par (??) et (??), s'écrit (4.40) 

Q 2 (N, λ) = 1 π v 0 u 0 f 1 (t) t dt - v 0 u 0 N t dt - v 0 u 1 f 2 (t) t dt + v 0 u 1 N t dt + Q 4 avec,
v 0 u 0 f 1 (t) t dt = 1 2 λ(2- √ 2)N 2(λ- √ λ 2 -1)N 4λN t -1 dt = 4λN λ+ √ λ 2 -1 1+ √ 2 y 2 dy (1 + y 2 ) 2 = λN π 4 -arcsin 1 λ -N (1 + √ 2)
en notant que arctan(λ + √ λ 2 -1) = 

(N, λ) = α(λ)N + Q 4 (N, λ)
où α(λ) a été défini en (??). On peut remarquer, par (??) que

α(λ)N = 1 π D dxdt t où D est le domaine des points (x, t) satisfaisant N ≤ x ≤ λN √ 2 et situés entre l'ellipse t 2 -4λN t+4x 2 = 0 et la droite t = 2( √ 2-1)x. En intégrant d'abord en t, on obtient α(λ)N = λN √ 2 N dx 2( √ 2-1)x 2(λN - √ λ 2 N 2 -x 2 ) dt πt = 1 π λN √ 2 N log 2( √ 2 -1)x 2 λN - √ λ 2 N 2 -x 2 dx.
4.4 Le terme principal de reste.

Pour estimer Q 1 (N, λ) défini par (??), nous appliquerons quatre fois le théorème 2. Pour cela, nous supposerons que N ≥ 7λ de façon que, par (??), (??) et (??), on aît u 0 ≥ u 0 ≥ 7 et u 1 ≥ u 1 ≥ 7. Rappelons que M(u, v; f ) est défini en (??).

Le premier terme M(u 0 , v 0 ; f 1 ). On pose F 1 (t) = f 1 (t)/t. A partir de (??), on calcule Le troisième terme M(u 1 , v 0 ; f 2 ). On pose F 2 (t) = f 2 (t)/t. On a par (??) et (??) 

d
tF 2 (t) [u 1 ,v 0 ] ≤ v 0 8( √ 2 -1) 2 N 2 ≤ 2λN 8( √ 2 -1) 2 N 2 = λ 4( √ 2 - 

Récapitulation.

Par (??), (??), (??) et (??), il vient

Q(N, λ) = α(λ)N + R(N, λ) avec (4.49) R(N, λ) = -Q 1 (N, λ) + Q 3 (N, λ) + Q 4 (N, λ) + ε(N, λ)
et (??) résulte de (??), (??), (??) et (??). La méthode utilisée pour obtenir (??), (??) et (??) montre que, pour tout λ fixé, λ > √ 2, on a Q 1 (N, λ) = O λ (N 7/8 (log N )), Q 3 (N, λ) = O λ (N 1/2 (log N )), Q 4 (N, λ) = O λ (1), et, par (??), on a ε(N, λ) = O λ (1) ; ainsi, par (??), (??) est démontré, ce qui achève la preuve du théorème 1. 

  où | | est le plus petit possible. Il est clair que | | vaut au moins 1/4. Notre problème est donc de déterminer si pour toute valeur de n il existe des nombres entiers A, B et C compris entre 2 n-1 et 2 n -1 satisfaisant l'équation diophantienne (1.1)

( 1

 1 ) R(N, λ) = O λ N 7/8 log N .Pour λ = 2, on a N, 2)| ≤ N 7/8 (51 log N + 211) + N 1/2 (77 log N + 283) + 29.

  Θ est bien définie. Si r n'était pas premier avec d, soit p un facteur premier commun à r et d. Comme d est impair, p = 2, et p divise 4s 2 = d-r 2 , donc p divise s, et r et s ne seraient pas premiers entre eux. Ainsi r -1 est bien défini et r 2 + 4s 2 = d entraîne 4s 2 r -2 ≡ -1 (mod d) donc r -1 s ∈ E d par (??).

1 ) ≤ 9

 19 √ x pour x ≥ 2500. Le calcul direct de r(1) + r(2) + . . . + r(n) montre que, pour 1 ≤ x ≤ 2500, on a R 1 (x) ≤ 2.29 √ x. W. Sierpinski a amélioré la majoration de | R 1 (x)|, cf. [?]. Le record est actuellement détenu par [?].

7 • 4 d 2 | 4 d 2

 74242 Démonstration. (i) On sait que la fonction1 4 r(n) définie dans le lemme 4 est multiplicative et vaut1 4 r(2 α ) = 1 si α ≥ 1, 1 4 r(p α ) = 0 si p ≡ 3 (mod 4) et α impair,1 4 r(p α ) = 1 si p ≡ 3 (mod 4) et α pair,1 4 r(p α ) = α + 1 si p ≡ 1 (mod 4) (cf. [?], théorème 278).Désignons par µ la fonction de Möbius. Un raisonnement classique montre que la fonction 1 n µ(d)r(n/d 2 ) est également multiplicative et que sa valeur sur les puissances de nombres premiers coïncide avec celle de ρ. On a donc ρ(n) = 1 | n µ(d)r(n/d 2 ).

1 ≤ 1 m sin πa m • 2 •

 1m2 Soit a ∈ Z, b ∈ Z et m un entier positif. Si est premier avec m, on notera un entier vérifiant ≡ 1 (mod m). La somme de Kloosterman K(a, b ; m) Grâce aux travaux de A. Weil, on sait majorer cette somme, et l'on a l'inégalité (cf. [?], [?], p. 35 ou [?], p. 61) (2.19) |K(a, b ; m)| ≤ τ (m) √ m{(a, b, m)} 1/2 , a, b, m ∈ Z, m ≥ 1, où τ (m) = d|m 1 désigne le nombre de diviseurs de m et (a, b, m) le pgcd des trois nombres a, b et m. On peut déduire de (??) une majoration de la somme de Kloosterman incomplète : Lemme 7 (cf. [?], Lemma 6, p. 36 et [?], p. 433). Soit m ≥ 1 un entier, et b ∈ Z. Soit ξ et ξ deux nombres entiers vérifiant 1 ≤ ξ ≤ m et 1 ≤ ξ ≤ m. 153 . . . + 0.6366 . . . log m. Démonstration. Si ξ < ξ, la somme dans (??) est nulle et le lemme est démontré ; on peut donc supposer ξ ≤ ξ . En observant que le crochet ci-dessous vaut 1 si n ≡ (mod m) (ce qui équivaut à n = ) et 0 sinon, il vient ξ≤ ≤ξ ( La quantité dans l'accolade vaut, pour a = m, |ξ -ξ + 1|/m ≤ 1, et pour 1 ≤ a < m, elle vaut exp 2iπaξ m -exp 2iπa(ξ +1) m m exp 2iπa m -La somme en a de (??) est donc majorée par (Mais une fonction f convexe sur l'intervalle [a -1/2, a + 1/2] satisfait f (a) ≤ a+1/2 a-1/2 f (t)dt. En remarquant que la fonction t → 1 sin πt m est convexe sur l'intervalle [1/2, m -1/2], on a

3. 1

 1 Le polynôme de Bernoulli. Soit d = 1 un nombre impair ; avec la définition de E d donnée par (??), en choisissant ν entre 1 et d -1, on a (3.1)

Figure 2 -

 2 Figure 2 -Découpage en quatre zones

4 Démonstration du théorème 1 .

 1 Dans ce paragraphe, pour les calculs numériques, nous supposerons (4.1) λ = 2 et N ≥ 1000.

(4. 14 )

 14 S 0 (u, v; f ) = u≤d≤v d impair ρ(d)f (d) d = J(u, v; f ) + R 0 (u, v; F )où l'on a posé F (t) = f (t)/t et(4.15) 

tF 1 2 • 5 = 1 . 4 < ( 1 . 19 ) 2 .

 125141192 (t) [u 0 ,v 0 ] = -u 0 F 1 (u 0 ) < λ Il s'ensuit par (??) que, pour λ = 2 (4.43) M(u 0 , v 0 ; f 1 ) ≤ 1 + 2Le deuxième terme M(u 0 , v 0 ; N -1). Posons f (t) = N -1, F (t) = (N -1)/t ; on a tF (t) = -N -1 t , et par (??) et (??) (4.44)M(u 0 , v 0 ; N -1) = N -1 t [u 0 ,v 0 ] 27 < (1.51) 2 .

  + 1 est remplacé par n 2 + D, avec n 2 + D irréductible. Ce résultat pourrait être adapté pour compter les racines de l'équation diophantienne X 2 + D = Z 2 -Y 2 dans un intervalle donné.

				)	
				d	
	où ρ est défini par (??)et S 1 (u, v; f ) satisfait l'inégalité
	(1.28)	|S 1 (u, v; f )| ≤	19 2	(log v + 4)v 7/8 √	M.
	La démonstration du théorème 2 suit le chapitre 2 du livre de C. Hooley
	[?], où, pour prouver que le plus grand facteur premier de	(n 2 + 1) est,
						n≤x
	pour x assez grand, supérieur à x 11/10 , l'auteur évalue une somme voisine de
	S(u, v; x). L'exposant 11/10 est amélioré dans [?]. Un résultat plus général
	est démontré dans [?], où n 2			

  Lemme 8 (cf. [?], p. 38). Nous conservons les notations du lemme 7. Soit une fonction complexe Φ(t) continûment dérivable définie sur l'intervalle réel [0, m]. On suppose que, pour tout t ∈ [0, m], on a |Φ(t)| ≤ M 0 et |Φ (t)| ≤ M 1 .

				1 sin πt m	dt =	m π	log tan	πt 2m	m-1/2 1/2
	(2.24)	=	π	log cot	π 4m	≤	2m π	log	4m π
	et (??) résulte de (??), (??) et (??).					
	Alors, on a								
	ξ≤ ≤ξ ( ,m)=1 m{(b, m)} (2.25) exp 2iπb m Φ( ) ≤ τ (m) √ g(t) = ξ≤ ≤t 2iπb exp m
				( ,m)=1			
	et, par le lemme 7, on a							
	(2.26)								

1/2 γ(m)[|ξ -ξ|M 1 + M 0 ]. Démonstration. Comme dans le lemme 7, nous pouvons supposer ξ ≤ ξ . Il est commode de poser, pour 0 ≤ t ≤ m

  on a 2λN t > 1 et, par (??), on voit que F 1 (t) < 0. La quantité 3λN -t -3/t est minimale en t =

	3λN -2 √	3 > 0 ; par (??), F 1 (t) > 0 pour tout t > 0 et donc	√	3 et vaut
	(4.22)	F 1 (t) =	f 1 (t) t	est décroissante et convexe pour 1 ≤ t ≤ v 0 .
	Par (??) et (??), si l'on choisit N ≥ λ, on a u 0 ≥ u 0 =	λ+	2N √ λ 2 -1 ≥ 2N 2λ ≥ 1 ;
	par (??), F 1 est décroissante sur [u 0 , v 0 ] et par (??) on obtient
	(4.23)			

  dt (tF 1 (t)) = 2λN t 2 (2λN -t -3/t) + 2t 2 + 1 2t 2 (t(4λN -t) -1)3/2 • La quantité 2λN -t -3/t est positive pour λ > √ 2, N ≥ 2 et pour tout t > 0. En remarquant que F 1 (t) est négative et en utilisant (??), il vient

  Le quatrième termeM(u 1 , v 0 ; N -1). Posons f (t) = N -1, F (t) = (N -1)/t ; on a tF (t) = -N -1En conclusion, on peut majorer |Q 1 (N, 2)| défini par (??) à l'aide de (??) et, |Q 1 (N, 2)| ≤ 43.8(log(1.18N ) + 4)(1.18N ) 7/8 ≤ (211 + 51 log N )N 7/8 .

	en ajoutant (??), (??), (??) et (??), on obtient
	(4.47)										
	|Q 1 (N, 2)| ≤ 9.5(log v 0 +4)v 0 (1.19+1.51+0.64+1.27) = 43.8(log v 0 +4)v 7/8 0 . 7/8
	En utilisant (??), (??) entraîne								
	(4.48)										
												1) 2 N	≤	1.46 N
	et, pour N ≥ 1000,									
	(4.45)	M(u 1 , v 0 ; f 2 ) ≤	1.46 N	+	2 5	≤ 0.41 ≤ (0.64) 2 .
			t , et par (??) et (??)
	(4.46) M(u 1 , v 0 ; N -1) =	N -1 t	[u 1 ,v 0 ]	+	2 5	≤	1 + 2 √	2	+	2 5	< 1.61 < (1.27) 2 .

TABLE 1

 1 

	k	N = 2 k	Q(N, 2)	Q(N, 2)/N Q(N, 2) -α(2)N
	4	16	1	0.06250000	0.55
	5	32	2	0.06250000	1.10
	6	64	2	0.03125000	0.21
	7	128	3	0.02343750	-0.59
	8	256	7	0.02734075	-0.17
	9	512	21	0.04101062	6.66
	10	1024	29	0.02832031	0.31
	11	2048	60	0.02929688	2.62
	12	4096	122	0.02978516	7.25
	13	8192	245	0.02990723	15.49
	14	16384	460	0.02807617	0.99
	15	32768	944	0.02880859	25.98
	16	65536	1806	0.02755737	-30.05
	17	131072	3639	0.02776337	-33.10
	18	262144	7347	0.02802658	2.81
	19	524288	14756	0.02814484	67.61
	20	1048576	29576	0.02820587	199.23
	21	2097152	58698	0.02798939	-55.55
	22	4194304	117372	0.02798367	-135.09
	23	8388608	235082	0.02802396	67.81
	24	16777216	470241	0.02802855	212.62
	25	33554432	939804	0.02800834	-252.76
	26	67108864	1880297	0.02801861	183.48
	27	134217728	3761402	0.02802463	1174.97
	28	268435456	7521153	0.02801844	698.94
	29	536870912	15040659	0.02801541	-249.12
	30	1073741824	30080525	0.02801467	-1291.25
	31	2147483648	60153965	0.02801137	-9667.50
	32	4294967296	120332158 0.02801701	4893.01
	33	8589934592	240660303 0.02801655	5773.02
	34 17179869184	481315101 0.02801622	6041.03
	35 34359738368	962578706 0.02801473	-39413.94
	36 68719476736	1925208869 0.02801547	-27370.87
	37 137438953472 3850396279 0.02801532	-76200.75
	38 274877906944 7701008772 0.02801610	63812.49
	39 549755813888 15401833428 0.02801577	-56491.01
	40 1099511627776 30803795356 0.02801589	15517.96
	41 2199023255552 61607438724 0.02801582	-120952.07

On a donc, par (??), en ajoutant les inégalités (??), (??), (??) et (??),

Maintenant par (??) et (??), on a, pour N ≥ 1000 et λ = 2, (4.34)

Les termes principaux.

Considérons un quadruplet de nombres réels { u, u, v, v} satisfaisant

Alors on a (4.38)

et par (??) et (??)