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Abstract. The combination of theory and simulation is necessary in the investigation of
properties of complex systems where each method alone cannot do the task properly. Theory
needs simulation to test ideas and to check approximations. Simulation needs theory for
modeling and for understanding results coming out from computers. In this review, we give
recent examples to illustrate this necessary combination in a few domains of interest such as
frustrated spin systems, surface magnetism, spin transport and melting. Frustrated spin systems
have been intensively studied for more than 30 years. Surface effects in magnetic materials have
been widely investigated also in the last three decades. These fields are closely related to each
other and their spectacular development is due to numerous applications. We confine ourselves
to theoretical developments and numerical simulations on these subjects with emphasis on
spectacular effects occurring at frontiers of different phases.

1. Introduction

The physics at frontiers of different phases of the same system is a very exciting subject. In
general, when there exist between the particles of a system several interactions, each of which
favors a different symmetry, the system chooses the symmetry where its internal energy is
minimum if the temperature T' = 0 or where its free energy is minimum if 7" # 0. Let us take a
simple example: we consider a chain of Ising spins interacting with each other via an interaction
J1 between nearest neighbors (NN) and an interaction Jy between next NN (NNN). If J; is
ferromagnetic (J; > 0) and J = 0 then the ground state (GS) is ferromagnetic. Now, if Jy is
antiferromagnetic (Jo < 0), we cannot arrange the spins in an order that fully satisfies at the
same time J; and Jo: if |Jo| < (>>)J; then the system chooses to satisfy J; (J) by taking
the ferromagnetic (antiferromagnetic) order. There exists a critical value 7. of Jy/J; where the
system changes from the ferromagnetic symmetry to the antiferromagnetic one. The critical
value 7. is the frontier between the two phases. In general, when there are more than two
interactions, the determination of the frontiers between different phases is more complicated.
As we see, the competition between “incompatible” interactions creates frontiers. This is not
limited to physics. Near a frontier, physical behaviors are different on the two sides: due to their



Figure 1. Centered square lattice. Interactions between NN and NNN, J; and Js, are denoted
by white and black bonds, respectively. The two sublattices are numbered 1 and 2.

different symmetries, they have different laws that govern fluctuations etc. When we introduce
into one phase an external perturbation such as the temperature or an applied field, the system
can choose the symmetry of the other phase. Such a phenomenon occurs very often in many
systems: it is called “reentrance”.

In this review, we give various examples of physical phenomena which occur around the phase
frontiers. These examples are taken from our recent and current works.

The first subject concerns frustrated spin systems where competing interactions cause many
spectacular effects (see reviews given in Ref. [1]). This is shown in section 2. We will describe
there the reentrance, the disorder lines and the partial disorder which have been found in exactly
solved models [2, 3, 4, 5]. We will show that simulations give complementary results that exact
methods cannot reach. The second subject concerns theories and simulations of magnetic thin
films. This is shown in section 3. One of the most important surface effects is the existence
of localized spin-wave modes near a surface and interface. It has been shown a long time ago
[6] that low-lying surface modes affect strongly macroscopic properties of magnetic systems
giving rise for instance to a low surface magnetization or surface magnetically dead layer and
to surface phase transitions at low temperatures. We discuss in particular surface effects in
frustrated materials and in films with dipolar interaction [7, 8]. Recent results of spin resistivity
are shown and discussed in relation with surface disordering [9, 10]. Finally, results on melting
and surface lattice relaxation [11] are also shown. Concluding remarks are given in section 4.

2. Frustrated spin systems near phase frontiers

A system is said frustrated when all interaction bonds cannot be simultaneously satisfied in the
GS. Well-known examples include the triangular lattice with NN antiferromagnetic interaction
and the example given in the Introduction. For definiteness, let us take the case of the “centered
square lattice” with Ising spins shown in Fig. 1, introduced by Vaks et al. [12] with NN and NNN
interactions, J; and Js, respectively. The exact expression for the free energy, some correlation
functions, and the magnetization of one sublattice were given in the original work of Vaks et al.

The GS properties of this model are as follows : for a = Jo/ | J1 |[> —1, spins of sublattice
2 orders ferromagnetically and the spins of sublattice 1 are parallel (antiparallel) to the spins
of sublattice 2 if J; > 0 ( < 0); for a < —1, spins of sublattice 2 orders antiferromagnetically,
leaving the centered spins free to flip. The phase diagram of this model is given by Vaks et al.
[12]. Except at the “frontier” a = —1, there is always a finite critical temperature. When Jj is
antiferromagnetic (> 0) and J5/J; is in a small region near 1, namely near the frontier of the two
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Figure 2. Phase diagram of centered square lattice near the “phase frontier” a = —1.
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Figure 3. Temperature dependence of sublattice Edwards-Anderson order parameters, ¢; and
g2 (crosses and black circles, respectively) in the case a = Jy/ | J1 |= —2, by Monte Carlo
simulation. Susceptibility calculated by fluctuations of magnetization of sublattice 2 is also
shown. The lattice used contains N = 2 x 60 x 60 spins with periodic boundary conditions.
13)

phases, the system is successively in the paramagnetic state, an ordered state, the reentrant
paramagnetic state, and another ordered state, with decreasing temperature (see Fig. 2).

Though an exact critical line was obtained [12], the ordering in the antiferromagnetic
(frustrated) region has not been exactly calculated. We have studied this aspect by means
of Monte Carlo (MC) simulations [13] which show the coexistence between order and disorder.
This behavior has been observed in three-dimensional (3D) Ising spin models [14, 15] and in an
exactly soluble model (the Kagomé lattice) [2] as well as in frustrated 3D quantum spin systems
[16, 17]. The results for the Edwards-Anderson sublattice order parameters ¢; and the staggered
susceptibility of sublattice 2 , as functions of T', are shown in Fig. 3 in the case a = —2.

As is seen, sublattice 2 is ordered up to the transition at T, while sublattice 1 stays disordered
at all T. This result shows a new example where order and disorder coexists in an equilibrium
state. It noted that in the paramagnetic region, a Stephenson disorder line [18] has been found
in Ref. [13]

cosh(4.J1/kpTp) = exp(—4J2/kpTp) (1)

The two-point correlation function at Tp between spins of sublattice 2 separated by a distance r
is zero for odd distance r and decay like r—'/2[tanh(Jy/kpTp)]" for even r [18]. However,there is
no dimensional reduction on the Stephenson line given above. Usually, one defines the disorder
point as the temperature where there is an effective reduction of dimensionality so that physical



Figure 4. Kagomé lattice. Interactions between NN and between NNN, J; and Jo, are shown
by single and double bonds, respectively.
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Figure 5. Phase diagram of the Kagomé lattice with NNN interaction in the region J; > 0
of the space (o = Jo/J1,T). T is measured in the unit of J;/kp. Solid lines are critical lines,
dashed line is the disorder line. P, F and X stand for paramagnetic, ferromagnetic and partially
disordered phases, respectively. The inset shows schematically enlarged region of the endpoint.

quantities become simplified spectacularly [19]. In general, these two types of disorder line are
equivalent, as for example , in the case of the Kagomé lattice Ising model (see below). This is
not the case here. The disorder line corresponding to dimensional reduction, was given for the
general 8-vertex model by Ref. [20]. When this result is applied to the centered square lattice,
one finds that the disorder variety is given by

exp(4.J2/kpT) = (1 — isinh(4.J, /kgT)) ™" (2)
where i> = —1. This disorder line lies on the unphysical (complex) region of the parameter
space of this system. Only the Stephenson disorder line Eq. (1) is the relevant one for the
reentrance phenomenon. Disorder solutions have found interesting applications, as for example
in the problem of cellular automata (for a review see Ref. [21]). Moreover, they also serve to
built a new kind of series expansion for lattice spin systems [19].

Another example is the Kagomé lattice shown in Fig. 4. The phase diagram near the phase
border is shown in Fig. 5 with the Stephenson disorder line. Other very rich phase diagrams are
found in Refs. [2, 3, 4, 5] for honeycomb lattice, generalized Kagomé lattice and dilute centered
square lattice. In some cases, up to five successive phase transitions and several disorder lines
are found for a single set of interaction parameters.



Figure 6. Non collinear surface spin configuration. Angles between spins on layer 1 are all
equal (noted by «), while angles between vertical spins are £.

3. Magnetic thin films near the phase frontiers

The presence of a surface perturbs the bulk properties of a crystal. The perturbation becomes
important when the ratio “number of surface atoms to number of bulk atoms” becomes
significative. Among numerous surface effects, we will outline here some results on surface
magnetization and surface phase transition near phase frontiers. The first example which
illustrates very well the necessary combination between theory and simulation is the case of
a FCC thin film with a (001) frustrated surface [7]. The Hamiltonian is given by

H==> Ji;Si-S;— Y L;Si5; (3)

(i,4) <i,j>

where S; is the Heisenberg spin at the lattice site 7, }_; jy indicates the sum over the nearest
neighbor spin pairs S; and S;. The last term, which will be taken to be very small, is needed to
ensure that there is a phase transition at a finite temperature for the film with a finite thickness
when all exchange interactions J;; are short-ranged. Otherwise, it is known that a strictly
two-dimensional system with an isotropic non-Ising spin model (XY or Heisenberg model) does
not have a long-range ordering at finite temperatures [22]. Between the surface spins we take
Ji,j = Js, and between all other spins J; j = J = 1 > 0 (ferromagnetic). The GS configuration
depends on n = Jg/J. When 7 is smaller than a critical value, the GS becomes non linear.
We show cosa and cos 8 in Fig. 7 as functions of J; where o and 3 are the angles between
spins defined in the caption. The critical value J$ where the collinear configuration becomes
non collinear is found between -0.18 and -0.19. This value can be calculated analytically (see
7).

Using the theory of Green’s function [6], we have calculated the layer magnetizations shown
in Fig. 8 (see details in [7]). The phase diagram near the phase boundary J¢ is shown in Fig.
9. We notice that the surface transition occurs only below J¢.

MC simulations give very similar results. Note however that at T'= 0 quantum fluctuations
causes a very strong “zero-point spin contraction” for surface spins: as a consequence, surface
spins do not have the full length 1/2 as seen in Fig. 8, unlike the classical spins used in MC
simulations.

The next example is a 2D layer with a dipolar interaction between the 3-state Potts model
[8]. The competition is between the dipolar term of magnitude D, which favors the in-plane spin
configuration, and the perpendicular anisotropy A which favors the perpendicular configuration.
There is a critical value of D/A above (below) which the configuration is planar (perpendicular).
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Figure 7. cos a (diamonds) and cos 3 (crosses) as functions of Js. Critical value of J¢ is shown
by the arrow.

Figure 8. First two layer-magnetizations obtained by the Green’s function technique vs. T for
Js = —0.5 with I = —I; = 0.1. The surface-layer magnetization (lower curve) is much smaller
than the second-layer one.
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Figure 9. Phase diagram in the space (Jg,T') for the quantum Heisenberg model in a 4-layer
film with I = |I;| = 0.1. Phase I: all spins are ordered, phase II: for J; < J¢ surface spins are
disordered but bulk spins are ordered, for Js; > J¢ all spins are ordered, phase III: paramagnetic
phase.
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Figure 10. Monte Carlo results: magnetizations of layer 1 (circles) and layer 2 (diamonds)
versus temperature 7" in unit of J/kp for J;, = —0.5 with [ = —I; = 0.1.
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Figure 11. Phase diagram in the space (Js,T) for the classical Heisenberg model in a 4-layer
film with I = |I5| = 0.1. Phases I to III have the same meanings as those in Fig. 9 .

Near this frontier, we found by MC simulations an interesting phenomenon which is called the
re-orientation phase transition shown in Fig. 12: for example, if we follow the vertical line on
the left figure, we see that at low 7" the system is in the planar configuration (phase II), it crosses
the phase separation line with increasing T' to go to the perpendicular phase (phase I) before
going out to the paramagnetic phase (phase P) at a higher 7. Such a re-orientation at a finite
T is spectacular: we have shown that the transition between phases I and II is of first order [8].
This is not similar to the reentrant region shown in Figs. 2 and 5 where all transition lines are of
second order and a very narrow paramagnetic phase separates the two ordered phases (AF and
F, or F and X). It is interesting to note that to allow a transition between two “incompatible”
symmetries (the one is not a subgroup of the other), there are two ways: i) a single first-order
transition with a latent heat (as the case shown in Fig. 12), ii) two second-order transitions
separated by a narrow region of a reentrant paramagnetic phase with often a disorder line
separating two zones of different pre-ordering fluctuations (as the case shown in Fig. 5). Note
that the re-orientation transition has also been observed for the Heisenberg spin model [23].
Let us give now an example where the surface disordering affects strongly the spin resistivity in
a magnetic thin film. The spin resistivity has been studied both theoretically and experimentally
for more than 50 years. The reader is referred to Refs. [9, 10, 24] for references. Theoretically,
the coupling between an itinerant spin with lattice spins affects strongly the spin resistivity p.
The spin-spin correlation has been shown to be the main mechanism which governs p. When
there is a magnetic phase transition, the spin resistivity undergoes an anomaly. In magnetic
thin films, when there is a surface phase transition at a temperature Ty different from that of
the bulk one (7,), we expect two peaks of p one at T and the other at T.. We show here
an example of a thin film, of FCC structure with Ising spins, composed of three sub-films: the



1.2

1.16 |
112 |
1.08 |
1.04 |

(I I @ n

0.96

092 : : A : 0.92 : : : :
007 008 0.09 0.1 0.11 012 013 0.06 007 0.08 0.09 0.1 0.11 0.12

Figure 12. (Color online) Phase diagram in 2D: Transition temperature T¢ versus D, with
A =0.5,J =1 for two dipolar cutoff distances: r. = v/6 (left) and r, = 4 (right). Phase (I) is
the perpendicular spin configuration, phase (II) the in-plane spin configuration and phase (P)
the paramagnetic phase.

" (@) ‘0

0.9
“%g% ©
08 | "}
4
S
© *

M/MO
=}
v

Figure 13. Magnetization versus T in the case where the system is made of three films (see
text). Black triangles: magnetization of the surface films, stars: magnetization of the middle
film, void circles: total magnetization.

middle film of 4 atomic layers between two surface films of 5 layers. The lattice sites are occupied
by Ising spins interacting with each other via NN ferromagnetic interaction. Let us suppose the
interaction between spins in the outside films be J; and that in the middle film be J. The
inter-film interaction is J. In order two enhance surface effects we suppose J; << J. We show
in Figs. 13 and 14 the layer magnetization and the spin resistivity for J; = 0.2J. We observe
that the surface films undergo a phase transition at Ty ~ 4 far below the transition temperature
of the middle film T, ~ 8.8. As stated above, a phase transition induces an anomaly in the spin
resistivity: the two phase transitions observed in Fig. 13 give rise to two peaks of p shown in
Fig. 14. The surface peak of p has been also seen in a frustrated film [10].

The last example is the surface relaxation and the surface melting of a semi-infinite Ag
crystal with a (111) surface [11]. The border here, contrary to the previous examples, is a
physical border (not a phase border). The competition exists also for this case because surface
and bulk atoms have different environments and the multi-body interactions compete with the
two-body terms in the potential from the Embedded-Atom-Method (EAM) [25] we have used.
In order to see the surface melting, we compute the structure factor Sy as follows:

N =
St =7 < Sk > (4)

j=1
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Figure 14. Resistivity p in arbitrary unit versus T' of the system described in the previous
figure’s caption.
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Figure 15. (Color online) Structure factor Sy (green triangles) and Og order parameter (red
circles) of the first layer versus temperature for the EAM potential.

=, . . .
where d; is the position vector of an atom in the layer, N; the number of atoms in a layer
and the reciprocal lattice vector which has the following coordinate (in reduced units):
2T (1; —V/3; 0). The angular brackets < ... > indicate thermal average taken over MC run

time. The above “order parameter”, which allows us to monitor the long-range surface order,
is plotted for the surface layer in Fig. 15. As we can see, the long-range order is lost at ~ 700
K. Note that the bulk Ag melts at >~ 1235 K. In order to investigate in more details the surface
melting, we have also computed the Og order parameter which describes the short-range hexatic
orientational order of the surface :

‘ij; ijei6®jk
ij Wj

Os (5)
with
G

ij =€ 262 (6)
where the sum runs over the NN pairs and Oy, is the angle which the j —k bond, when projected
on the xy plane, forms with the x axis. The § parameter is taken as one-half the average inter-
layer spacing. The weighting function, Wy, allows us to differentiate the “non coplanar” and
the “coplanar” neighbors. With a coplanar neighbor, the weighting function takes a maximum
value. We have to calculate the spatial average of Og taken over all atoms of the surface layer
and then calculate its thermal average over MC run time. We plot the averaged Og parameter
versus temperature in Fig. 15. The short-range order is also lost at 700 K. We have calculated
the distance A between the topmost layer and the second layer. There is a contraction of this
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Figure 16. (Color online) Surface relaxation for two surface sizes 100 and 256 atoms for the
EAM potential.

distance with respect to the distance between two layers in the bulk as seen in Fig. 16. Only at
about 900 K, far after the surface melting, that surface atoms are “desorbed” from the crystal.

4. Concluding remarks

We have shown in this paper a number of phenomena occurring at frontiers between phases
of different symmetries. The phase diagram near the phase frontiers is often very rich with
reentrance, disorder lines and multiple phase transitions. One has seen that in most of the cases
treated so far we need a combination of theory and simulation to better understand complicated
physical effects resulting from competing forces around the frontiers. A frontier is determined
as a compromise between these forces. As a consequence, frontiers do not have a high stability:
we have seen that when a small external perturbation, such as the temperature, is introduced,
the phase border moves in favor of one of the neighboring phases according to some criteria such
as the entropy. Therefore, many interesting effects manifest themselves around frontiers. The
physics near phase frontiers is far from being well understood in various situations.
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