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Numerical Verification of the Stark-Chinburg

Conjecture for Some Icosahedral Representations

Arnaud Jehanne, Xavier-François Roblot, Jonathan Sands

October 6, 2003

Abstract

In this paper, we give fourteen examples of icosahedral representations

for which we have numerically verified the Stark-Chinburg conjecture.

1 Introduction

Let K/k be a Galois extension of number fields, with Galois groupG = Gal(K/k),
and suppose ρ : G → GLn(C) is a non-trivial irreducible representation of G.
Stark’s conjectures [Tate 1984] aim to unravel the arithmetic information en-
coded in the leading coefficient of the Taylor series for the Artin L-function
L(s, ρ) of ρ at s = 0. When G is abelian and one modifies the Artin L-function
by removing the factors in the Euler product at primes in a finite set S which
contains all of the infinite primes, Stark formulated an especially precise conjec-
ture for the case of a first-order zero at 0 [Stark 1980]. It states that the exact
value of this coefficient may be obtained from an “L-function evaluator” ele-
ment in K which is an S-unit in the typical case. Rubin [Rubin 1996], Popescu
[Popescu 2003], Burns [Burns 2001], Sands [Sands 1987] and others have formu-
lated similarly precise conjectures for abelian L-functions with any order of zero
at s = 0.

In the general non-abelian case with L(s, ρ) possessing a zero at s = 0 of
order r = r(ρ), the conjecture states that the L-function coefficient equals an
algebraic factor multiplied by the determinant of a regulator matrix defined in
terms of a set of r special units and the representation ρ. But this algebraic
factor is not fully specified and in particular may be multiplied by any nonzero
rational factor without affecting the truth of the conjecture. Hence the conjec-
ture in this generality is considered to be a conjecture “over Q”, as opposed to
the more precise conjectures “over Z” mentioned above in the abelian case.

Chinburg [Chinburg 1983] has formulated a conjecture “over Z,” in the non-
abelian case when the order of the zero at 0 is r(ρ) = 1, the base field is
k = Q, and the dimension of the irreducible representation ρ is n = 2. We will
show that this conjecture is closely related to a Question of Stark appearing in
[Stark 1981], and hence we will use the term “Stark-Chinburg conjecture.” Here
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the regulator matrix is 1 by 1, and involves a single special unit, so we have the
possibility of actually constructing this special unit from the first derivatives
at 0 of certain Artin L-functions. This method of constructing S-units while
simultaneously gaining numerical confirmation of the conjecture at hand appears
in [Dummit et al. 1997] and [Roblot 2000] for the abelian case. A difference in
this paper is that the extension field K is no longer a class field which can be
explicitly constructed from abelian L-functions by means of the conjecture. We
will choose our non-abelian extension field K beforehand in order to define the
L-functions.

Irreducible two-dimensional representations are classified according to the
isomorphism type of their images in PGL2(C), the four possible types be-
ing dihedral, tetrahedral (A4), octahedral (S4), and icosahedral (A5). Stark
[Stark 1981] has provided illuminating examples in the dihedral cases; Chin-
burg [Chinburg 1983] has confirmed the conjecture numerically for five tetra-
hedral representations; and Fogel [Fogel 1998] has confirmed it numerically for
eight octahedral representations with K of degree 48. Our aim in this paper is
to provide the first numerical confirmation of the Stark-Chinburg conjecture for
some icosahedral representations. As we will see, the minimal type of field K
providing such an example is a complex field of degree 240 over Q, while the
Stark unit ε lies in a subfield K+ of degree 120 admitting a real embedding. This
subfield K+ is Galois over a field M of degree 30. We identify ε by obtaining
its minimal polynomial over M .

The outline of the article is the following: in section 2 we state the Stark-
Chinburg conjecture, but also a question of Stark related to the same situation.
In section 3 we look at Â5-extensions which provide the simplest cases for testing
the conjecture on icosahedral representations, where Â5 is a central extension of
A5 by a cyclic group of order 4 (see Section 3 for details). We briefly explain how
to construct those extensions and how to compute the value of the derivative of
the corresponding L-functions at s = 0. Finally, in the last section, we describe
the computations performed, give some remarks on the results obtained and
conclude with an example.

2 The Stark-Chinburg conjecture

2.1 Odd Representations

A standard formula [Tate 1984, p. 24] for the order r(ρ) of the zero of L(s, ρ)
at s = 0 calls for the choice of a single prime w of K above each infinite prime
v of k. One then defines τv to be the generator of the decomposition group of
the prime w over v, which is thus either the identity or a complex conjugation.
Assuming that ρ is a non-trivial irreducible representation, r(ρ) may then be
obtained by taking the dimension of the eigenspace of ρ(τv) corresponding to
the eigenvalue 1, and summing over v. Now suppose that our representation ρ
is as in the Stark-Chinburg conjecture. Since k = Q, there is a single infinite
prime v = ∞. Since τ = τv has order 1 or 2, all eigenvalues of ρ(τ) must be ±1.
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Since ρ is 2-dimensional and r(ρ) = 1, τ must be a complex conjugation of order
2 and ρ(τ) must have eigenvalues 1 and -1. Thus det ρ(τ) = −1, a condition
which is described by saying that ρ is “odd.” The associated character ψ defined
as the trace of ρ then clearly takes the value ψ(τ) = 0. Conversely, it is easy
to see that if ψ(τ) = 0, for the character ψ of degree 2, then the corresponding
representation ρ is odd.

2.2 Regulators

For simplicity, in this section, we continue to assume (with Stark and Chinburg)
that k = Q. We also fix a subfield K of C which is Galois over Q with group
G, and assume ρ is an irreducible non-trivial n-dimensional representation of
G = Gal(K/Q) with character ψ. Let τ denote the restriction of complex
conjugation to K, which may be trivial, and ‖ ‖ denote the normalized absolute
value on K corresponding to the embedding of K in C (this is the square of the
usual one if K is complex). Also let w be the infinite prime of K corresponding
to this absolute value, so the decomposition group of this prime is Gw = 〈τ〉.
Following Stark, we may assume by conjugating the representation that ρ(τ) is
diagonal and the diagonal elements consist of a certain number a of 1’s followed
by a certain number b = n−a of -1’s. In [Stark 1975, p. 62], Stark introduces a
regulator which we will denote (with Tate) as R(ψ, ε); this also calls for a choice
of element ε ∈ K. Then

R(ψ, ε) = det

(
∑

σ∈G
ρa(σ) log ‖εσ‖

)
,

where ρa(σ) denotes the a× a matrix in the top left corner of ρ(σ).
Like Tate and unlike Stark, our convention will be that G acts on K on the

left, so that εστ = σ(τ(ε)).
In this regulator, Stark uses a choice of a unit ε ∈ K ∩ R for which the only

relation among the conjugates εσ is
∏
σ∈G/Gw

εσ = ±1. Such a unit is called a

“Minkowski unit,” since its existence is guaranteed by [Minkowski 1900].
On the other hand, Tate’s regulator R(ψ, F ) ([Tate 1984]) is attached to

a choice of a Q[G]-isomorphism F . Let U = UK denote the unit group of
K, QU = Q ⊗Z U , QY be the Q-vector space with basis consisting of the
infinite primes of K, and QX be the subspace of elements whose coordinates
in this basis sum up to 0. There exists a Q[G]-isomorphism F : QX → QU
(by a theorem of Herbrand [Herbrand 1930, Herbrand 1931], in general), and
this is used to define R(ψ, F ). We will not repeat the construction of this
regulator found in [Tate 1984] but wish to note the important connection with
Stark’s regulator, described on page 41 there. The unique Q[G]-homomorphism
from QY to QU which sends the fixed infinite prime w of K to ε induces an
isomorphism Fε : QX → QU , and

R(ψ, Fε) = |Gw|aR(ψ, ε).
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Now we make the connection between a regulator of the form R(ψ, π), for
π in K and the conjecture considered in this paper. So assume that ρ is a
2-dimensional irreducible representation which is odd. As seen above, we may
take ρ(τ) =

(
1 0
0 −1

)
. So we now have a = 1, and ρ1(σ) is the single entry in the

top left corner of ρ(σ). Using the fact that the absolute value ‖ ‖ is fixed by τ ,
it follows that

R(ψ, π) =
∑

σ∈G
ρ1(σ) log ‖πσ‖ =

1

2

∑

σ∈G
Tr
((

2 0
0 0

)
ρ(σ)

)
log ‖πσ‖

=
1

2

∑

σ∈G
Tr
(
{
(

1 0
0 1

)
+
(

1 0
0 −1

)
}ρ(σ)

)
log ‖πσ‖

=
1

2

∑

σ∈G
Tr ({ρ(1) + ρ(τ)}ρ(σ)) log ‖πσ‖

=
1

2

∑

σ∈G
Tr (ρ(σ) + ρ(τσ)) log ‖πσ‖

=
1

2

∑

σ∈G
(Tr(ρ(σ)) + Tr(ρ(τσ))) log ‖πσ‖

=
1

2

∑

σ∈G
(ψ(σ) + ψ(τσ)) log ‖πσ‖

=
1

2

∑

σ∈G
(ψ(σ) log ‖πσ‖ + ψ(τσ) log ‖πτσ‖)

=
∑

σ∈G
ψ(σ) log ‖πσ‖

This computation reconciles the difference in appearance between equations
in [Stark 1975] and [Stark 1981] (see the comment in the middle of page 263 of
[Stark 1981]).

2.3 Stark’s Non-Abelian Question

The preceding computation relates specifically to the following question of Stark
from [Stark 1981].

Question 2.1 (Stark). Suppose that K is a complex Galois extension of Q with
group G, and W is the number of roots of unity in K. Fix a rational integer
f divisible by the conductor of every character ψ of G which corresponds to an
odd irreducible representation ρ of dimension 2, and let L(s, ψ, f) be the Artin
L-function of ρ with the Euler factors at primes dividing f removed. Is there
an algebraic integer π in K such that

1. πσ/π is a unit for each σ ∈ G, and some power of π is real,
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2. πσ/πp is a W th power in K whenever p is a prime not dividing Wf times
the discriminant of K and whose associated Frobenius automorphisms are
conjugate to σ in G, and

3. For every ψ corresponding to an odd irreducible representation of dimen-
sion 2, we have

L′(0, ψ, f) =
−1

2W

∑

σ∈G
ψ(σ) log ||πσ||? (2.1)

Remark 1. From our preceding discussion, one can see that condition (2.1) of
Question 2.1 does indeed refine the conjecture of [Stark 1975], specifying that

L′(0, ψ, f) =
−1

2W
R(ψ, π) =

−1

4W
R(ψ, Fπ).

It is a question “over Z.”

Remark 2. Since ψ(στ) = ψ(τσ) and τ fixes the absolute value ‖ ‖, it is clear
that an affirmative answer to the question would imply that

L′(0, ψ, f) =
−1

4W

∑

σ∈G
(ψ(σ) + ψ(στ)) log ‖πσ‖.

In several cases where K is a class field of a real quadratic field, Stark has
confirmed numerically that his Question has an affirmative answer [Stark 1976,
Stark 1980]. But the Question itself does not suggest an effective means of
constructing the distinguished element π because it does not provide enough
information about the conjugates of π. However, the Stark-Chinburg conjecture
does provide such information about a special element of K.

Stark’s contribution to this conjecture is as follows. Fix a character ψ as
in Stark’s Question. The field E = Q(ψ), obtained by adjoining to Q all the
values of the character ψ, is contained in a cyclotomic extension of Q. We let Γ
denote the abelian Galois group of E over Q. Following the formulation of his
Question in [Stark 1981], Stark gave an argument which implies the following.

Proposition 2.2. Suppose the Question has an affirmative answer with π real.
If d ∈ E has the property that

∑
γ∈Γ d

γψ(σ)γ ∈ Z for all σ ∈ G, then there
exists a positive real unit εf (d) ∈ K such that

∑

γ∈Γ

dγL′(0, ψγ , f) = − log(εf (d)) = −1

2
log ‖εf (d)‖

Indeed εf (d) can be defined by

εf (d)
W =

∏

σ∈G
π

P

γ∈Γ
dγψ(σ)γσ.
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Remark 3. When π is real, and therefore fixed by τ , it is clear that we can
also write

εf (d)
2W =

∏

σ∈G
π

P

γ∈Γ
dγ(ψ(σ)+ψ(στ))γσ.

We now derive a strengthening of Proposition 2.2 which incorporates the
conjugates of εf (d) and thus leads to the conjecture formulated by Chinburg.
First we record a preliminary step.

Lemma 2.3. In the setting of Stark’s non-abelian question, let σ0 and σ be
elements of G, and let ψ be an odd character of degree 2 corresponding to a
representation ρ of G. Then

(ψ(σ0) + ψ(σ0τ)) (ψ(σ) + ψ(στ)) = ψ(σ0σ) + ψ(σ0στ) + ψ(σ0τσ) + ψ(σ0τστ).

Proof. We may again assume that ρ(τ) =
(

1 0
0 −1

)
. Then

(ψ(σ0) + ψ(σ0τ)) (ψ(σ) + ψ(στ))

= Tr (ρ(σ0)(ρ(1) + ρ(τ)))Tr (ρ(σ)(ρ(1) + ρ(τ)))

= Tr
(
ρ(σ0)

(
2 0
0 0

))
Tr
(
ρ(σ)

(
2 0
0 0

))

= (2ρ1(σ0))(2ρ1(σ)) = Tr
(

2ρ1(σ0)2ρ1(σ) 0
∗ 0

)

= Tr
((

2ρ1(σ0) 0
∗ 0

)(
2ρ1(σ) 0

∗ 0

))
= Tr

(
ρ(σ0)

(
2 0
0 0

)
ρ(σ)

(
2 0
0 0

))

= Tr (ρ(σ0) (ρ(1) + ρ(τ)) ρ(σ) (ρ(1) + ρ(τ)))

= ψ(σ0σ) + ψ(σ0στ) + ψ(σ0τσ) + ψ(σ0τστ)

Proposition 2.4. Assume that Stark’s question has an affirmative answer with
π real. Fix d ∈ E such that

∑
γ∈Γ d

γψ(σ)γ ∈ Z for all σ ∈ G. Define εf (d) as
in Proposition 2.2. Then for each σ0 ∈ G, we have

∑

γ∈Γ

(d(ψ(σ0) + ψ(σ0τ)))
γ
L′(0, ψγ , f) = − log ‖εf (d)σ

−1

0 ‖
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Proof.

∑
γ∈Γ

(d(ψ(σ0) + ψ(σ0τ)))
γ
L′(0, ψγ , f)

=
−1

4W

∑

γ∈Γ

∑

σ∈G
dγ (ψ(σ0) + ψ(σ0τ))

γ
(ψ(σ) + ψ(στ))

γ
log ||πσ|| (by Remark 2)

=
−1

4W

∑

γ

∑

σ

dγ (ψ(σ0σ) + ψ(σ0στ))
γ

log ‖πσ‖

− 1

4W

∑

γ

∑

σ

dγ (ψ(σ0τσ) + ψ(σ0τστ))
γ

log ‖πσ‖ (by the lemma)

=
−1

4W

∑

γ

∑

σ

dγ (ψ(σ) + ψ(στ))
γ

log ‖πσ−1

0
σ‖ (on replacing σ by σ−1

0 σ)

− 1

4W

∑

γ

∑

σ

dγ (ψ(σ) + ψ(στ))
γ

log ‖π(σ0τ)
−1σ‖ (on replacing σ by (σ0τ)

−1σ)

=
−2W

4W
log ‖εf (d)σ

−1

0 ‖ − 2W

4W
log ‖εf (d)τσ

−1

0 ‖ by Remark 3

= − log ‖εf (d)σ
−1

0 ‖ since the chosen absolute value is fixed by τ

In the Stark-Chinburg conjecture, there is a further restriction on the choice
of d which is formulated in terms of the Dirichlet series for L(s, ψ). In return
for this restriction, one gains in that the conjecture concerns the primitive Artin
L-series without Euler factors removed.

2.4 Dirichlet Series

For this section, we need only assume that K/k is a finite Galois extension with
group G, and that ρ is a representation of G with character ψ. Artin’s expression
for his L-series involves the choice of a representative Frobenius element σp ∈ G
for each prime ideal p of k. That is, one picks a prime ideal P of K above p and
selects σp ∈ G which acts as the Frobenius in the corresponding residue field
extension. Since ψ is a class function, ψ(σnp ) is well-defined for p unramified in
K/k. For ramified p, define ψ(σnp ) to be the average over the coset of σnp by the
appropriate inertia group Ip = IP/p ⊆ G. Then for ℜ(s) > 1,

L(s, ρ) = L(s, ψ) = exp

(
∑

p

∞∑

n=1

ψ(σnp )

nN(p)ns

)

=
∞∑

m=0

1

m!

(
∑

p

∞∑

n=1

ψ(σnp )

nN(p)ns

)m
=

∞∑

n=1

an
ns
,
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which clearly shows that each an lies in Q(ψ), and that

ap = ψ(σp)

when p is a rational prime which is the norm of a first degree prime p of k not
ramifying in K.

On the other hand, one can express L(s, ρ) using the eigenvalues λp,i (listed
with multiplicity) for ρ(σp) acting on the subspace Vp fixed by the inertia group
Ip. These eigenvalues are necessarily roots of unity and hence algebraic integers.
Again for ℜ(s) > 1,

L(s, ρ) =
∏

p

det
(
I − N(p)−sρ(σp) |Vp

)−1

=
∏

p

∏

i

(
1 − λp,i N(p)−s

)−1

=
∏

p

∏

i




∞∑

j=0

λjp,i
N(p)js




=

∞∑

n=1

an
ns

This expression clearly shows that each an is an algebraic integer. Thus we have
supplied a proof of an important fact.

Proposition 2.5. For any finite Galois extension K/k with group G and any
representation ρ of G with character ψ, the Artin L-function L(s, ρ) = L(s, ψ)

has a Dirichlet series
∑ an

ns
whose coefficients an are algebraic integers lying in

Q(ψ), and ap = ψ(σp) when p is a rational prime which is the norm of a first
degree prime p of k not ramifying in K.

2.5 The Stark-Chinburg Conjecture

Assume from now on that ρ is an irreducible 2-dimensional odd representation
of the group G = Gal(K/Q), with associated character ψ. The statement of the
conjecture involves the Dirichlet series expansion

L(s, ρ) = L(s, ψ) =
∑

n

an
ns

for ℜ(s) > 1.
For d ∈ E = Q(ψ) and Γ = Gal(E/Q), define the function

fd(s) :=
∑

γ∈Γ

dγL(s, ψγ).

Thus f ′d(0) =
∑
γ∈Γ d

γL′(0, ψγ), which acts as an analog for the primitive L-
function of the quantity in Proposition 2.2 in which the Euler factors for the
primes dividing f have been removed.

8



For ℜ(s) > 1, we also have the expression

fd(s) =
∑

n≥1

Ann
−s

with An =
∑
γ∈Γ

(dan)
γ = TrE/Q(dan) ∈ Q.

Conjecture 2.6 (Stark-Chinburg). Assume that d ∈ E is such that all the
coefficients An are in fact rational integers. Then there exists a unit ε(d) in
K+ = K ∩ R, the so-called Stark unit, such that, for all σ ∈ G

log ‖ε(d)σ−1‖ = f ′d(ψ(σ)+ψ(στ))(0).

Furthermore, the real conjugates of ε(d) are positive.

Remark 4. Note that the unit ε(d), if it exists, is unique and it is given by the
formula

ε(d) = exp
{
f ′d(ψ(1)+ψ(τ))(0)

}
.

Remark 5. The condition on d in the conjecture can be restated as the require-
ment that d lie in the product of the co-different and the inverse of the ideal
generated by the coefficients an.

This conjecture is to be compared with Proposition 2.4. It is stronger in
as much as the L-functions are primitive. However, in general the conjecture
places a slightly greater restriction on the choice of d ∈ E. For the Čebatorev
density theorem shows that, given any σ ∈ G, there are infinitely many primes
p such that σp = σ, and Proposition 2.5 then gives ap = ψ(σ) for such a p. But

in many cases, including all examples arising as ours do from G ∼= Â5, the set
of possible d is the same in the Stark-Chinburg conjecture as it is in Stark’s
Question. Indeed this happens whenever the character values generate the ring
of integers OE of E as a Z-module. For Proposition 2.5 also shows that all an
are in the set OE , and we can easily deduce the following result.

Proposition 2.7. Suppose d ∈ E, and let D(E)−1 be the co-different of E,
defined by D(E)−1 = {d ∈ E | TrE/Q(da) ∈ Z ∀a ∈ OE}. Then

d ∈ D(E)−1 ⇒ An = TrE/Q(dan) ∈ Z ∀n⇒ TrE/Q(dψ(σ)) ∈ Z ∀σ ∈ G.

Also, if the values of ψ(σ) as σ ranges over G generate OE as a Z-module, then
the third condition implies the first, so all three are equivalent.

To summarize, the Stark-Chinburg conjecture is a precise conjecture “over
Z” designed to be a close analog for primitive L-functions of a consequence of an
affirmative answer to Stark’s non-abelian question for imprimitive L-functions.
It should be noted that we have not stated the most general form of the conjec-
ture formulated by Chinburg in [Chinburg 1983]. The conjecture there applies
to a finite linear combination of L-functions for odd irreducible 2-dimensional
characters such that the resulting Dirichlet series has integral coefficients. For
the specific group G used in the computations in this paper, all four characters
of the appropriate type are conjugate, and the two conjectures are equivalent in
this case.
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3 Icosahedral representations

3.1 Minimal Icosahedral Representations

In this section, we briefly determine the minimal degree of an extension K/Q
supporting an icosahedral representation of the type appearing in Chinburg’s
conjecture, namely one for which the associated Artin L-function L(s, ρ) has a
first order zero at s = 1.

So suppose that ρ is an odd icosahedral representation of G = Gal(K/Q).
This means that the image of ρ(G) in PGL2(C) is isomorphic to the alternating
group A5

∼= PSL2(F5), which has order 60 and can also be identified with the
group of symmetries of the icosahedron. By minimality, we may assume that ρ
is faithful, i.e. has trivial kernel, so G ∼= ρ(G). We have an exact sequence

1 → A→ ρ(G) → A5 → 1,

where the kernel A may be described as ρ(G) ∩ C∗, and is therefore a finite
cyclic group lying in the center of ρ(G). We seek the minimal possible order for
A.

The kernel A cannot have order 1, because A5 has no irreducible represen-
tation of degree 2.

Let Cn denote the cyclic group of order |Cn| = n and V4 denote a 2-Sylow
subgroup of A5, isomorphic to the Klein 4-group. If A has order 2, then ρ(G)
represents an element of H2(A5, C2), which we will show is isomorphic to C2.
The group H2(A5, C2) has exponent 2 since C2 does. Then by the restriction
map, H2(A5, C2) = H2(A5, C2)2 ⊂ H2(V4, C2). This last group classifies central
extensions of V4 by C2, of which there are 8: one trivial class represented by C3

2 ,
three classes represented by C2 × C4, three classes represented by D8, and one
class represented by Q8. Of these, the classes fixed by the action of A5 actually
constitute H2(A5, C2), by [Brown 1994, III.10.3]. There are two fixed classes:
those of C3

2 and Q8. This gives two possibilities for G ∼= ρ(G) when |A| = 2,
namely G ∼= A5 × C2 and G ∼= SL2(F5). Each irreducible character of A5 × C2

is obtained as the product of an irreducible character of A5 and an irreducible
character of C2, and thus cannot be of degree 2.

On the other hand, SL2(F5) admits two conjugate characters of degree 2,
but these have value -2 on each element of order 2 (see [Buhler 1978, p. 135] for
the character table). Hence r(ρ) = 0, in violation of the assumption r(ρ) = 1.
So |A| = 2 is impossible.

If |A| = 3 then ρ(G) represents an element of H2(A5, C3) = 0. This time, the
groupH2(A5, C3) has exponent 3 and is isomorphic to a subgroup ofH2(C3, C3).
The latter group classifies central extensions of C3 by C3 of which there are: one
trivial class represented by C3 × C3 and two classes represented by C9. Thus
H2(C3, C3) has order 3, while the only class fixed by the action of A5 is the
trivial one. So we must have G ∼= A5 × C3. Again the irreducible characters of
this group are products and so none are of degree 2.

Thus the minimal order for A is at least 4, and A must be cyclic. The case of
|A| = 4 is indeed realized by G ∼= ESL2(F5) = {M ∈ GL2(F5) : det(M) = ±1},
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for which an odd irreducible representation ρ exists. One can show that there
is only one equivalence class of extensions of A5 by C4; a representative of this
equivalence class is usually denoted by Â5. (Just check that Q8 ×C2 represents
the only non-trivial class in H2(V4, C4) which is fixed by the action of A5.) We
have chosen a convenient realization ESL2(F5) ∼= Â5.

3.2 Â5 extensions

From now on, we assume that K/Q is a Galois extension of group G isomorphic
to Â5. As mentioned in the last section, the group Â5, hence also G, can be
identified with the group ESL2(F5) of 2 × 2 matrix with coefficients in F5 and
determinant ±1. This group is generated by the two matrices:

(
0 1
1 0

)
and

(
2 1
3 2

)
.

We choose such an identification of G so that τ =
(

0 1
1 0

)
(recall that τ is the

complex conjugation in G). The center of G is cyclic of order 4 and generated
by z =

(
2 0
0 2

)
.

The group G has 18 conjugacy classes, listed in the following table. For each
conjugacy class C, we list its cardinality |C|, an representative element κ ∈ C,
the order of κ and the values ψ(κ) and χ(κ) where ψ is the character of ρ and
χ is the abelian character obtained by composing ρ with the determinant map.

# 1 2 3 4 5 6 7 8 9

|C| 1 30 12 20 12 20 30 20 12

κ
(

1 0
0 1

)
τ

(
0 1
1 1

) (
0 1
1 2

) (
0 1
1 4

) (
0 1
1 3

) (
0 1
4 0

) (
0 1
4 1

) (
0 1
4 2

)

order 1 2 20 12 20 12 4 6 5

ψ(κ) 2 0 −i 1+
√

5
2 −i i1+

√
5

2 i 0 1
√

5−1
2

χ(κ) 1 −1 −1 −1 −1 −1 1 1 1

# 10 11 12 13 14 15 16 17 18

|C| 20 12 12 12 12 12 1 1 1

κ
(

0 1
4 4

) (
0 1
4 3

) (
0 2
2 2

) (
0 2
2 3

) (
0 2
3 1

) (
0 2
3 4

)
z z2 z3

order 3 10 5 10 20 20 4 2 4

ψ(κ) −1 1−
√

5
2 − 1+

√
5

2
1+

√
5

2 i
√

5−1
2 i 1−

√
5

2 −2i −2 2i

χ(κ) 1 1 1 1 −1 −1 −1 1 −1

The field E generated over Q by the values of ψ is Q(i,
√

5), an integral basis

of E is given by
{
1, i, 1+

√
5

2 , i 1+
√

5
2

}
, and its Galois group Γ is generated by γ1

and γ2 with
γ1(i) = −i, γ1(

√
5) =

√
5

γ2(i) = i, γ2(
√

5) = −
√

5

A Z-basis of D(E)−1 is
{

1
2 ,

i
2 ,

5+
√

5
20 , i 5+

√
5

20

}
. If d1 and d2 are two elements

of D(E)−1 for which Conjecture 2.6 is true, so the units ε(d1) and ε(d2) exist,
then the Conjecture is also true of md1 (m ∈ Z) and d1 + d2 simply by taking

ε(md1) = ε(d1)
m and ε(d1 + d2) = ε(d1)ε(d2)

11



Hence, Conjecture 2.6 is true for all d ∈ D(E)−1 if and only if it is true for

d = 1
2 , i

2 , 5+
√

5
20 , and i 5+

√
5

20 .
Moreover, one can readily prove that iψ(σ) = ψ(z3σ) for all σ ∈ G. Thus

fid(ψ(σ)+ψ(στ))(s) = fd(ψ(z3σ)+ψ(z3στ))(s),

and the truth of Conjecture 2.6 for some d ∈ E implies the truth of the conjec-
ture for di simply by taking

ε(di) = ε(d)z.

We have proved the following

Lemma 3.1. Conjecture 2.6 is true if and only if it is true for

d =
1

2
and d =

5 +
√

5

20
.

3.3 Computations of L′(0, ρ)

In order to test Conjecture 2.6, we have to compute the value of L′(0, ργ) to
a high accuracy. For this, we follow the method used by Stark [Stark 1977].
Recall that

L(s, ρ) =
∑

n≥1

ann
−s

is the expansion as a Dirichlet series of the L-function for ℜ(s) > 1. Let C be
the conductor of ρ, then the function

ξ(s, ρ) =

(
C

4π2

)s/2
Γ(s)L(s, ρ)

satisfies the functional equation

ξ(s, ρ) = wξ(1 − s, ρτ ), (3.2)

where w, the so-called Artin Root Number, is a complex number of modulus 1.
Let

f(t, ρ) =
∑

n≥1

anexp

(
−2πn√

C
t

)
.

Then

ξ(s, ρ) =

∫ ∞

0

ts−1f(t, ρ)dt (3.3)

for ℜ(s) > 1, that is ξ is the Mellin transform of f . By the inverse Mellin
transform formula, we get

f(t, ρ) =
1

2iπ

∫

ℜ(s)=σ

ξ(s, ρ)t−sds,

12



where σ is a real number > 1. Now, we have

f(t−1, ρ) =
1

2iπ

∫

ℜ(s)=σ

ξ(s, ρ)tsds

=
1

2iπ

∫

ℜ(s)=1−σ
ξ(1 − s, ρ)t1−sds

=
w−1t

2iπ

∫

ℜ(s)=1−σ
ξ(s, ρτ )t−sds (by the functional equation).

We now assume that ξ(s, ρτ ) is holomorphic over C (actually, we only need that
there exists ǫ > 0 such that ξ(s, ρτ ) is holomorphic on the half-plane ℜ(s) > −ǫ,
but, by the functional equation (3.2), this is equivalent to the holomorphy of
ξ(s, ρτ ) over C). Then, we have for two numbers σ1 < σ2, see for example
[Cohen 2000], Lemma 10.3.5:

lim
|T |→∞

∫ σ2+iT

σ1+iT

ξ(s, ρτ )t−sds = 0,

and thus we obtain

1

2iπ

∫

ℜ(s)=1−σ
ξ(s, ρτ )t−sds =

1

2iπ

∫

ℜ(s)=σ

ξ(s, ρτ )t−sds = f(t, ρτ )

and so
f(t−1, ρ) = w−1tf(t, ρτ ). (3.4)

For any fixed u > 0, we break the integral in (3.3) into two pieces: the first one
from 0 to u, the second one from u to ∞. In the first integral, we replace t by
t−1 and use (3.4) to get:

ξ(s, ρ) = w−1

∫ ∞

u−1

t−sf(t, ρτ )dt+

∫ ∞

u

ts−1f(t, ρ)dt.

So finally

L′(0, ρ) = ξ(0, ρ)

= w−1

∫ ∞

u−1

f(t, ρτ )dt+

∫ ∞

u

f(t, ρ)
dt

t

=
w−1

√
C

2π

∑

n≥1

an
n

exp

(
− 2πn

u
√
C

)
+
∑

n≥1

an

∫ ∞

u

exp

(
−2πn√

C
t

)
dt

t
.

We have proved the following result:

Proposition 3.2. Assume the L-function L(s, ρ) is holomorphic over C. Then
there exists a complex number w of modulus 1, such that, for any u > 0

L′(0, ρ) =
w−1

√
C

2π

∑

n≥1

an
n

exp

(
− 2πn

u
√
C

)
+
∑

n≥1

anEi

(
2πun√
C

)
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where Ei(x) =
∫ +∞
x

e−tdt/t is the exponential integral function.

Remark 6. The proposition requires the hypothesis that L(s, ρ) is holomorphic
over C, that is, that ρ satisfies the Artin conjecture. This conjecture is not proved
in general, but it has been proved in all examples we work with in this paper us-
ing either results of Kiming and Wang [Kiming and Wang 1994], or the work of
Buzzard, Dickinson, Shepherd-Baron and Taylor which proves the Artin conjec-
ture for infinitely many icosahedral odd representations [Buzzard et al. 2001], or
results of Jehanne and Müller [Jehanne and Müller 2000, Jehanne and Müller 2001].

The formula given by Proposition 3.2 can be used to compute approximations
of L′(0, ρ), or of L′(0, ργ), if one knows how to compute the coefficients an and
the value of Artin Root Number w. The former can be computed using the
method of [Jehanne 2001] (see also the next section), the latter can be found
(following Stark) by computing the two sums in the formula for two different
values of u and solving the system. This also provides a neat check of the
computations since the complex number found must be of modulus 1.

3.4 Construction of Â5 extensions

In this section, we explain how one can construct Â5 extensions with an odd
irreducible degree 2 representation with a quadratic determinant, that is repre-
sentation whose determinant is a quadratic character. Any such extension K
contains a quintic field K of A5-type. Furthermore, since the representation
is odd, K is a complex field. A table of quintic complex fields of A5-type of
discriminant less than 40272 has been computed by J. Basmaji [Basmaji 2002]
using the methods of [Basmaji and Kiming 1994].

Such a A5-type complex quintic field K yields two projective representations
corresponding to the two embeddings of A5 in PGL2(C). Let ρproj be one
of these two representations; methods to decide whether or not ρproj has a
lifting ρ of given conductor and determinant are described in [Crespo 1992] or
[Jehanne 2001]. Assume from now on such a lifting exists and call it ρ. Then
the set of all liftings of ρproj is

E(ρ) = {ρ⊗ ν with ν a Dirichlet character of GQ}.

Some of these ρ⊗ν may have the same conductor as ρ. Also, det(ρ⊗ν) = det ρ
if and only if ν2 = 1. In particular, if det ρ is quadratic, then ρ⊗ det ρ has the
same conductor and the same determinant as ρ.

By looking at a table of irreducible characters of Â5 (which can be easily
constructed from [Buhler 1978] p. 135), we see that there are four characters
of degree 2, and that they are conjugate under the action of Gal(Q(

√
5, i)/Q).

The characters of ρ and ρ ⊗ det ρ are conjugate by the complex conjugation,
and the two other representations correspond to the other embedding of A5 in
PGL2(C).

To find all the representations with odd quadratic determinant and conduc-
tor up to 3676, we use the table of [Basmaji 2002] and the following result,
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Figure 1: Some subfields of K

obtained by local computations (for the computations of conductors, we refer
to [Kiming 1994]).

Proposition 3.3. Let N be an A5-extension, let ∆ be the discriminant of a
quintic field contained in K and let C be the conductor of a representation ρ
with quadratic determinant corresponding to N . Then C ≥

√
∆.

Table 1 lists all icosahedral representations with odd quadratic determinant
and conductor up to 36762. For each representation ρ, we read on this table: the
conductor C, a polynomial for the corresponding quintic field, and the square-
free integer δ such that det(ρ) fixes the field k = Q(

√
δ).

As mentioned above, we used the method described in [Jehanne 2001] to
compute the coefficients of the L-series of the representations . We briefly
explain this method (see also Figure 1). Let f(X) be one of the polynomials in
Table 1, and let K be the field defined by an arbitrary (fixed) complex root x1

of f . Thus K is a complex quintic field of A5-type. Let N be the Galois closure
of K/Q, so Gal(N/Q) ≃ A5, and let x2, . . . , x5 ∈ N be the other roots of f .
Define θ by

θ = (x1 − x2)
2(x2 − x3)

2(x3 − x4)
2(x4 − x5)

2(x5 − x1)
2

and let F = Q(θ). The field F is a degree 6 field with Galois closure N . The
degree 30 field M = KF will be play an important part in the computations (see
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C polynomial defining K δ

1948 x5 − 7x3 − 17x2 + 18x+ 73 −487

2083 x5 + 8x3 + 7x2 + 172x+ 53 −2083

2336 x5 + 2x3 − 4x2 − 2x+ 4 −73

2336 x5 + 2x3 − 4x2 − 2x+ 4 −146

2707 x5 − x4 + 9x3 − 6x2 − 32x+ 93 −2707

2863 x5 + 12x3 + 21x2 + 22x+ 7 −409

2863 x5 + 12x3 + 21x2 + 22x+ 7 −2863

3004 x5 − 8x3 + 10x2 + 160x+ 128 −751

3203 x5 + 8x3 + 5x2 − 4x+ 1 −3203

3547 x5 − 8x3 − 2x2 + 31x+ 74 −3547

3548 x5 + 10x3 + 10x2 + 44x+ 56 −887

3587 x5 + 3x3 + 24x2 − 20x+ 131 −311

3587 x5 + 3x3 + 24x2 − 20x+ 131 −3587

3676 x5 − 8x3 + 28x2 − 40x+ 48 −919

Table 1: The first icosahedral representations with odd quadratic determinant

next section). Then we define F ′′ = Q(
√
θδ). In [Jehanne 2001], it is proved

that there exists a quadratic extension S of F ′′ such that its Galois closure is
the field K we are looking for. Since we know the conductor, the determinant
and the image in PGL2(C) of ρ, we know the ramification of S/F ′′ and thus
can construct a finite set B of elements of F ′′ such that S = F ′′(

√
β) for some

β ∈ B. We then use an explicit criterion to decide which element is the right
one. Once the field S has been found, we can use the explicit decomposition of
prime ideals in S (and possibly also some other subfields of K) to compute the
coefficients an of the L-function of ρ.

4 Computations

4.1 Numerical determination of the Stark unit

Let d be a fixed element of D(E)−1. In this section we explain how to find
the conjectural Stark unit ε(d), assuming from now on that it exists, using
numerical approximations. (Actually, according to lemma 3.1, we have only

performed these computations for d = 1
2 and d = 5+

√
5

20 .)
As mentioned in the introduction, we find ε(d) by constructing its minimal

polynomial over the field M . This field has degree 30 and signature (2, 14).
Also, it is a subfield of K+. More precisely it is the subfield of K+ fixed by
z, that is to say by the center of G. Since ε(d) is real, its conjugates over M ,
i.e. zl(ε(d)) with 0 ≤ l ≤ 3, are real too and positive by the second part of the
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Conjecture. Thus they are given by the formula

zl(ε(d)) = exp
{
f ′d(ψ(zl)+ψ(zlτ))(0)

}

for 0 ≤ l ≤ 3.
Hence, we can compute approximations of L′(0, ρ) and get from them ap-

proximations of the conjugates of ε(d) over M , and then form the monic poly-
nomial P̃ whose roots are these approximations. This polynomial is thus an
approximation of the minimal polynomial P (X) of ε(d) over M . Now, since
ψ(z3σ) = iψ(σ), it follows that ψ(z2σ) = −ψ(σ), and thus z2(ε(d)) = ε(d)−1,
z3(ε(d)) = z(ε(d))−1, and one can write

P (X) = X4 + aX3 + bX2 + aX + 1

with a, b ∈ OM . We now need to be able to recover the coefficients a and b from
the corresponding coefficients ã and b̃ of P̃ .

The problem can be stated in a more general setting as follows: given a
real number x̃, and two positive real numbers C1 and C2, find, if it exists, an
algebraic integer x in OM such that

|x̃− x| < C1 and |x′| < C2 where x′ is any conjugate of x (6= x). (4.5)

Note that here and it what follows, when we talk about the conjugates of x,
we mean the conjugates of x different from x. It is not difficult to show that if
we choose C1 small enough, then we can make sure that there is at most one
algebraic integer in M satisfying these conditions.

The method we used is a generalization of a method due to H. Cohen (see
[Cohen 2000, section 6.2.4]). Let r1, r2 be the two real embeddings of M , with
r1 being the identity, and let c1, . . . , c14 be a complete fixed set of non-conjugate
complex embeddings of M . For y ∈M and 1 ≤ l ≤ 30, we define

y(l) =





rl(y) if l = 1 or 2

ℜ(cl−2(y)) + ℑ(cl−2(y)) if 3 ≤ l ≤ 16

ℜ(cl−16(y)) −ℑ(cl−16(y)) if 17 ≤ l ≤ 30

Let v(y) be the 30-dimensional vector whose l-component is y(l). Then the
map from M to R30 which sends y to v(y) sends the ring of integers OM to a
full lattice in R30 of determinant the absolute value of the discriminant of M .

We will need the following lemma whose proof is direct.

Lemma 4.1. Let x ∈M and assume that all the conjugates of x have absolute
value less than C2. Then

∣∣∣x(2)
∣∣∣ < C2 and

∣∣∣x(l)
∣∣∣ <

√
2C2 for 3 ≤ l ≤ 30.

In the reverse direction, if
∣∣∣x(l)

∣∣∣ < C2 for 2 ≤ l ≤ 30

then all the conjugates of x have absolute value less than C2.
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Let {ω1, . . . , ω30} be an integral basis of OM . For a fixed real number x̃,
consider the following quadratic form on Z31:

Q(v0, v1, . . . , v30) = C2
2v

2
0 +(C2/C1)

2




30∑

j=1

vjω
(1)
j − v0x̃




2

+
30∑

l=2




30∑

j=1

vjω
(l)
j




2

If x = x1ω1 + · · · + x30ω30 ∈ OM is a solution of (4.5) then

Q(1, x1, . . . , x30) < C2
2 + (C2/C1)

2(x− x̃)2 +
(
x(2)

)2
+

30∑
l=3

(
x(l)
)2

< C2
2 + C2

2 + C2
2 + 2

30∑
l=3

C2
2 = 59C2

2

Conversely, let (x0, . . . , x30) ∈ Z31 be such that

Q(x0, . . . , x30) < 59C2
2 .

Then C2
2x

2
0 < 59C2

2 so |x0| ≤ 7. If x0 is actually equal to ±1, then we can set

x∗ = x0




30∑

j=1

xjωj


 ∈ OM .

and x∗ satisfies |x∗ − x̃| <
√

59C1 and all its conjugates are of absolute value
less than

√
59C2. Therefore, solutions to

Q(x0, . . . , x30) < 59C2
2 (4.6)

with x0 = ±1 are not too far from being solutions to our original problem, and
there are only a small number of solutions to (4.6) when C1 is small enough.

In order to find solutions to (4.5), one can use the Fincke-Pohst algorithm
[Cohen 1993, 2.7.3] to find solutions to (4.6), then discard those for which x0 6=
±1 (or even better, modify the algorithm in such a way that it only considers
vectors with x0 = ±1). Then for each solution found (with x0 = ±1), compute
the corresponding algebraic integer and check whether or not it satisfies the
stronger conditions of (4.5).

In practice, this method works very well for small enough values of C1 and
gives only a few vectors satisfying (4.6), only one of those satisfying (4.5). For
information, the size of C1, that is the precision used, was between 10−100 and
10−200 for most examples, with a precision up to 400 decimal places in one
case (N = 3004). However, the computations used to compute the value of the
L-functions was higher, around 600 decimal places.

Once the (conjectural) unit ε(d) has been found, we need to check that is
satisfies the conjecture. Of course, one part of the check involves testing whether
or not two real numbers, given by approximations, are equal, which is an im-
possible computational task. So we will not be able to prove the conjecture in
these cases but only to give evidence pointing toward the truth of the conjec-
ture. These checks are described in section 4.4 together with an example. We
summarize these computations in the following result.
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Theorem 4.2. For the fourteen icosahedral representations with odd quadratic
determinant listed in Table 1, Conjecture 2.6 has been numerically verified up
to the precision of the computation.

4.2 Square-root of the Stark unit

In all the examples, we have found that the unit ε(d) was a square in K. In fact,
in almost all examples, it is actually a fourth power (see below). We have used
this fact to simplify the computation. Indeed, in all examples, we have started
by assuming that it was a fourth power, and instead of trying to recognize
the coefficients of the minimal polynomial of ε(d) over M , we searched for the
coefficients of the minimal polynomial of ε(d)1/4. In doing so, we always took
the positive fourth root as conjugates of ε(d)1/4. If we were not able to find
those, then we searched for that of the minimal polynomial of ε(d)1/2, assuming
again that all the conjugates were positive. As stated above, in all cases, we
were able to find these coefficients. Not only does this method prove directly
that the unit ε(d) is a fourth power (resp. a square), but it also greatly simplifies
the computations since we had to deal with numbers having one fourth (resp.
one half) as many digits! Of course, if we failed to recognize the coefficients of
the minimal polynomial of ε(d)1/4 that did not prove that it was not a fourth
power, since we arbitrarily decided to consider only the positive fourth root.
So, in those cases, we did check once the unit had been found that it was not a
fourth power.

The following table sums up the information mentioned above. For each
conductor N , an entry 2 (resp. 4) means that the unit ε(d) was a square (resp.

a fourth power) in K. We do not specify in the table the value of d ( 1
2 or 5+

√
5

20 ),
or the representation (if there are more than one to test of the same conductor)
since in all the examples we have found that this property does not depend on
these.

N power N power N power N power
1948 4 2083 4 2336 2 2707 4
2863 4 3004 2 3203 4 3547 4
3548 2 3587 4 3676 2

4.3 The abelian condition

The so-called abelian rank one Stark conjecture for an abelian extension K1/K2

of number fields (see [Tate 1984, Chap. IV]) predicts the existence of a unit
ǫ ∈ K1 satisfying conditions similar to that of Conjecture 2.6 and such that
ǫ1/e defines an abelian extension of K2, where e is the number of roots of unity
in K1. A similar condition for the Stark-Chinburg conjecture has not yet been
stated. However, following a suggestion made by Stark, we have checked in all
fourteen of our examples that the fourth root of the Stark unit always generates
an abelian extension of M (of course, this is trivially satisfied when the Stark
unit is already of fourth power). We ask the following question:

19



Question 4.3. In this setting, is it true that the extension K(ε(d)1/4)/M is
always an abelian extension?

4.4 An example

X
120

− 14X
119

+ 10X
118

+ 528X
117

− 721X
116

− 12186X
115

− 1022X
114

+ 272500X
113

+ 511431X
112

− 5891390X
111

− 13723194X
110

+ 105936396X
109

+ 206807275X
108

− 1534364982X
107

− 2148339186X
106

+ 17880418336X
105

+ 15711872585X
104

− 168995037912X
103

− 67266744140X
102

+ 1311505408046X
101

− 89291738681X
100

− 8494623508910X
99

+ 4235000319554X
98

+ 45100336757892X
97

− 44699345526371X
96

− 198789238356076X
95

+ 318871476120728X
94

+ 744008040343916X
93

− 1682328456079649X
92

− 2135167290906516X
91

+ 7510163330929880X
90

+ 4496703792844188X
89

− 28166525613664065X
88

− 3766815912764636X
87

+ 90442638583264834X
86

− 22239156146839804X
85

− 255223687887713211X
84

+ 144746005476226278X
83

+ 637495087229463472X
82

− 538617388539670046X
81

− 1405725781756458029X
80

+ 1586294443053165584X
79

+ 2827558653955188558X
78

− 3855005474440939128X
77

− 5224727512198411575X
76

+ 8024368738725683150X
75

+ 9089153383531781324X
74

− 14516564995099084468X
73

− 15279740471791884367X
72

+ 22886584508143805334X
71

+ 24920013640589593880X
70

− 31520286306610904124X
69

− 38951665554067587963X
68

+ 37417793964722184658X
67

+ 56660611016658159176X
66

− 37074726381332624176X
65

− 74983502912940337331X
64

+ 27894404791194859718X
63

+ 89065895937691036822X
62

− 10418769031801600904X
61

− 94322409774714428665X
60

− 10418769031801600904X
59

+ 89065895937691036822X
58

+ 27894404791194859718X
57

− 74983502912940337331X
56

− 37074726381332624176X
55

+ 56660611016658159176X
54

+ 37417793964722184658X
53

− 38951665554067587963X
52

− 31520286306610904124X
51

+ 24920013640589593880X
50

+ 22886584508143805334X
49

− 15279740471791884367X
48

− 14516564995099084468X
47

+ 9089153383531781324X
46

+ 8024368738725683150X
45

− 5224727512198411575X
44

− 3855005474440939128X
43

+ 2827558653955188558X
42

+ 1586294443053165584X
41

− 1405725781756458029X
40

− 538617388539670046X
39

+ 637495087229463472X
38

+ 144746005476226278X
37

− 255223687887713211X
36

− 22239156146839804X
35

+ 90442638583264834X
34

− 3766815912764636X
33

− 28166525613664065X
32

+ 4496703792844188X
31

+ 7510163330929880X
30

− 2135167290906516X
29

− 1682328456079649X
28

+ 744008040343916X
27

+ 318871476120728X
26

− 198789238356076X
25

− 44699345526371X
24

+ 45100336757892X
23

+ 4235000319554X
22

− 8494623508910X
21

− 89291738681X
20

+ 1311505408046X
19

− 67266744140X
18

− 168995037912X
17

+ 15711872585X
16

+ 17880418336X
15

− 2148339186X
14

− 1534364982X
13

+ 206807275X
12

+ 105936396X
11

− 13723194X
10

− 5891390X
9

+ 511431X
8

+ 272500X
7

− 1022X
6

− 12186X
5

− 721X
4

+ 528X
3

+ 10X
2

− 14X + 1

Figure 2: The irreducible polynomial over Q of ε( 5+
√

5
20 )1/4

We conclude with an example of a computation. We will look at the repre-
sentation of conductor N = 2863 and with determinant the quadratic character

of the field Q(
√
−409), and the value d = 5+

√
5

20 . (This example is the one for
which the irreducible polynomial over Q of the Stark unit has the smallest coef-

ficients.) In what follows we will write ε instead of ε( 5+
√

5
20 ) to denote the Stark

unit.
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First, we compute the field F using the explicit formula for θ and then find
that the field M is generated over Q by a (fixed) real root of the polynomial:

X30 − 11X29 + 60X28 − 184X27 + 282X26 − 93X25 + 1155X24 − 15102X23

+ 81876X22 − 295153X21 + 824690X20 − 1918902X19 + 3838834X18

− 6617268X17 + 9651756X16 − 11548871X15 + 10886632X14

− 7709825X13 + 3980211X12 − 1749801X11 + 1033046X10

− 526435X9 − 55897X8 + 112042X7 + 213353X6 − 221284X5

− 31311X4 + 78204X3 + 4802X2 − 12005X − 2401

We compute the values of f ′d(ψ(g)+ψ(gτ))(0) for all g ∈ G with a precision of

620 decimal places for g ∈ 〈z〉 and of 100 decimal places for g 6∈ 〈z〉. Using the
(positive) fourth root of these values, we find that, if these choices are correct,
then ε1/4 must be a root of the following polynomial which must have coefficients
in OM if the fourth root belongs to K+: †

X4 − 11.0733582927400638184932897075796398...X3

+ 26.4538517976073658614124922380428030...X2

− 11.0733582927400638184932897075796398...X + 1.

Also, we find that the other conjugates of the coefficient a of X3 (which is also
that of X) are bounded in absolute value by 14, and those of the coefficient b
of X2 are bounded by 44. These bounds are also found by using Conjecture
2.6. Using the method explained above, we recognize the two coefficients a
and b using C1 = 10−120. We will not list those since each one would require
several pages just to write it down! However, once these coefficients have been
found, we construct the corresponding polynomial and compute its roots to a
precision of 600 decimal digits. We then check than these values agree with the
one computed via the conjecture. This is already a first good check since only
a precision of 120 decimal digits was used to recover the coefficients. (Actually,
the first good check is that there are indeed elements a and b in OM satisfying
the conditions we imposed.)

We then compute the irreducible polynomial of ε1/4 over Q; it is a degree 120
polynomial with quite big coefficients even though we are only looking at the
fourth root of the Stark unit (see Figure 2). We compute its roots (ei)1≤i≤120 to
a precision of 100 decimal digits. We then look for a one-to-one correspondence
between the absolute values of the ei’s and the values of exp{f ′d(ψ(g)+ψ(gτ))(0)},
for g in a set of representatives of G/〈τ〉, such that corresponding values agree
up to the precision. Such a correspondence must exist if the conjecture is true
and, indeed, we find that it does. This is also quite a good check since we used
the values of the other conjugates of ε which are not conjugates over M only

† In this example, we will, of course, give all the numerical results with a much smaller

precision than the one used in the computations.
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through the upper bound that they provide on the conjugates of the coefficients
a and b. Actually, if the conjecture is true, this correspondence should give us
explicitly the Galois action of G on the conjugates of the Stark unit. However, it
is not practical to recover this (conjectural) correspondence by trying to match
the values of the absolute values of the conjugates with the values predicted
by the conjecture since there are too many conjugates of the Stark unit with
the same absolute value and thus too many possible correspondences (in this
example, the number of possible correspondences is around 1026).

Finally, we check that the Stark unit generates the field K+ over Q in the
following way. Recall that the method of [Jehanne 2001] gives us an explicit
construction of S. Now, looking at Figure 1, it is clear that K+ = SK = SM .
We find a primitive element α of S over F , so K+ = M(α). Next, we compute the
compositum field over M of M(ε) and M(α) using the method of [Cohen 2000,
2.1.3] and find that it has degree 4. Thus M(ε) = M(α) = K+.
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