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Abstract—Applying a benchmarking approach to con-

flict resolution problems is a hard task, as the analytical

form of the constraints is not simple. This is especially the

case when using realistic dynamics and models, considering

accelerating aircraft that may follow flight paths that are

not direct. Currently, there is a lack of common problems

and data that would allow researchers to compare the

performances of several conflict resolution algorithms.

The present paper introduces a benchmarking approach

that can provide researchers with common problems, in

order to compare the performances of several conflict reso-

lution algorithms. A comparison between three resolution

methods is drawn over several problems and highlights

assets and weaknesses for each of them.

I. INTRODUCTION

Solving aircraft conflicts is a highly combinatorial

problem that has never been solved with classical meth-

ods under realistic hypotheses yet. Two types of ap-

proaches exist: Autonomous (or distributed) approaches

in which each aircraft is equipped with on-board control

and has a limited visibility of the surrounding aircraft,

and centralized approaches in which the air traffic con-

trollers have a global visibility of the whole traffic.

Autonomous approaches were designed in the 1990s

as parts of the Free-Flight concept, allowing relaxation

of routing restrictions and aiming at selecting aircraft

trajectories in real time ([1], [2], [3]). The approach

introduced in [1] is based on force fields for handling

multiple mobiles. The coherence of movements is pro-

vided by a pairwise definition of a sliding force. No

guarantee of consistency is given for more than 2 aircraft.

FACES [2] is a coordinated on-board conflict solver for

Free-Flight airspace, in which coordination is ensured by

a token allocation strategy. Conflicts are solved by an

A∗ algorithm after aircraft have been sorted by priority

level. This approach has been widely tested in [4] for few

aircraft and ensures local optimality, but has no guarantee

of success. An algorithm for detecting and analyzing

potential en route conflicts is designed in [3] to produce

a set of probable future conflicts, and assist the en route

sector controller in efficiently solving these conflicts.

Conflicts are detected via comparisons of trajectories at

closely spaced time instants.

The only centralized approaches so far that can ef-

ficiently solve conflicts involving more than 20 aircraft

and find a global optimum, are mixed integer program-

ming ([5], [6]) and evolutionary algorithms ([7], [8], [9]).

In [5] the hypotheses about the aircraft speed are strong

and hardly realistic within an operational research frame-

work: constant velocities for lateral avoidance resolution,

or instantaneous changes of velocity for speed resolution.

In [7] a genetic algorithm uses an evolving population

of candidate solutions that encodes sideways maneuvers

for aircraft that are initially in conflict with each other.

Their modeling relies on discretized variables: start and

end times of maneuver are chosen with a fixed time-

step, and deviation angles are chosen among discrete

values. A similar modeling is used in [9] with an ant

colony optimization algorithm. Evolutionary algorithms

show very convincing results, under relatively realistic

hypotheses allowing to take into account uncertainty

about the aircraft’s velocities, contrary to mixed integer

programming in [5] (constant velocities, synchronised

maneuvers). However, the facilities nowadays available

in control centers and aircraft are not designed to handle

temporally-defined maneuvers.

In this paper, we introduce a set of benchmark prob-

lems for conflict solving, and then compare three differ-

ent optimization algorithms on this common benchmark.

Conflict solving is seen as a global optimization problem

under constraints. The objective is to follow as much

as possible the initial trajectories while not violating

the separation constraints. The proposed benchmarking

approach is a "black-box" one, in that evaluating the sep-

aration constraints requires to simulate the trajectories.

However, the description of the benchmark problems

used in this paper can be made available to other

researchers in the form of simple XML files1.

As in [5], a simple model with lateral maneuvers only

was used. It could easily be extended to vertical and

1MAIAA website is under construction
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speed maneuvers. We applied optimization methods that,

unlike [7], operate on continuous variables: The start,

deviation angle and length of lateral maneuvers can take

any floating-point value within given bounds. We devel-

oped a small simulator implementing these features, that

takes the XML description of the benchmark problems

as input. As an illustration of the proposed benchmarking

approach, three different optimization methods were

compared on our benchmark: a genetic algorithm with

a floating-point encoding, a particle swarm optimization

method, and a differential evolution algorithm. The re-

sults obtained provide novel insights on why some of

these methods perform better than others when applied

to conflict resolution problems.

The rest of the paper is organized as follows. The

standard formalization of optimization problems is given

in Sec. II-A. In Sec. II-B, our conflict resolution problem

is formalized as a constrained optimization problem. The

benchmark approach and the problems considered are

then introduced in Sec. III. The optimization algorithms

compared in this study are detailed in Sec. IV. In Sec.

V, results are examined and interpretations are proposed

to explain the algorithms’ performances.

II. CONFLICT SOLVING AS AN OPTIMIZATION

PROBLEM

A. Usual optimization problems

Standard optimization problems are usually formal-

ized as follows (considering here a minimization prob-

lem):

min
x∈D

f(x) subject to

gk(x) ≤ 0, k = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(1)

where f(x) : (D ⊂ R
n) → R is the objective

function to be minimized over the variable x, gk(x) ≤ 0
are inequality constraints, and hi(x) = 0 are equality

constraints.

Several benchmarks are available in the public do-

main, allowing the researchers to compare the perfor-

mances of optimization algorithms2. Such benchmarks

are easy to implement when the analytical form of the

objective function and constraints are known.

2See for example the CEC Competition on Large Scale Global

Optimization, where a test suite of optimization problems is avail-

able on the web site http://staff.ustc.edu.cn/~ketang/cec2012/lsgo_

competition.htm

B. The conflict resolution problem

Solving conflicts among aircraft trajectories is also

an optimization problem, where one aims at minimizing

a global cost based on the deviations from the initial

trajectories, while avoiding loss of separation.

In this paper, we shall consider lateral maneuvers

only. A lateral deviation from the initial route is modeled

as a triplet (di, αi, li), where di is the distance along

the route at which the maneuver of flight i begins,

αi is the deviation angle, and li is the length of the

deviation segment. At the end of this deviation segment,

the aircraft returns to its initial trajectory with a new

deviation of angle (−2α). If this “resume nav” segment

does not intercept the initial route, then the aircraft flies

directly toward its destination. The modeling provides a

sequence of geographical points (Fig. 1).

initial trajectory

maneuver

α

l

di i

i

Figure 1: Turning point modeling

To reduce the deviation induced by a maneuver, both

its angle and its length are to be minimized. On the

contrary, the distance at which the maneuver starts is to

be maximized, in order to avoid premature maneuvers

that could be reduced or canceled in future resolutions,

with less uncertainties on the positions of aircraft.

Thus, in this paper, the cost of a lateral deviation xi =
(di, αi, li) is defined as follows, denoting v the upper

bound of a variable v:

cost(xi) =

(

di − di

di

)2

+

(

αi

αi

)2

+

(

li

li

)2

(2)

Considering n aircraft and a vector of lateral devia-

tions x = (x1, . . . , xn), we have chosen to minimize the

following objective function:

f(x) =

n
∑

i=1

cost(xi) (3)

Finally, the conflict resolution problem can be formal-

ized as follows:

min
x∈D

f(x) subject to

dist(p(xi, t), p(xj , t)) > Sh ∀i 6= j, ∀t
(4)

where dist is the Euclidean distance, p(xi, t) is the

position of aircraft i at time t, given xi = (di, αi, li)

http://staff.ustc.edu.cn/~ketang/cec2012/lsgo_competition.htm
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the lateral deviation from the initial route, and Sh is the

standard horizontal separation (Fig. 2). The domain D of

the variable x is defined by the lower bounds (di, αi, li),
and upper bounds (di, αi, li) for each lateral deviation

xi = (di, αi, li).
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Figure 2: Horizontal separations between 5 aircraft

III. BENCHMARKING CONFLICT RESOLUTION

ALGORITHMS

A. A black-box approach

To address the lack of comparison material, we

propose a black-box approach: a library encapsulat-

ing a light air traffic simulator provides a function

conflicts returning the violations of the separation con-

straints, given an input vector x of lateral deviations:

conflicts(x) returns a matrix C, where each element

Ci,j represents the duration of the conflicts occurring

between aircraft i and j. A conflict is here defined as

a continuous time segment during which the separation

constraint defined in 4 is violated. As several conflicts

may occur between two aircraft, Ci,j is a list of time

durations. The matrix C can thus be used to assess

both the number and duration of conflicts among aircraft

trajectories.

Conflicts can be detected by considering linear route

segments and by solving an equation of the second

degree when assuming constant speeds, or an equation

of the fourth degree when assuming variable speeds

and constant accelerations. In our case, however, the

trajectories are predicted with a timestep δt seconds, and

conflicts are simply detected pairwise by considering the

distances between aircraft at each time step.

B. Features of the light simulator

The light simulator, encapsulated in the library written

in OCaml, introduces new features when compared to

other previous simulators like CATS/OPAS ([4]): aircraft

operations (accelerate, follow track, etc.) are modeled as

edges of a directed acyclic graph, where the nodes are

triggering events (speed captured, or waypoint captured,

for example). Although the simulation loop has a default

time step δt that is constant, a smaller variable timestep

is applied when an event is triggered between the current

step at t and the next expected step at t+ δt.

This feature makes it possible to simulate lateral

deviations (di, αi, li) where the values of di, αi, li
are each taken in the continuous space R, instead of

using discrete values as in previous works ([7]). Thus,

continuous optimization methods can be directly applied

to the conflict resolution problem.

The aircraft flight plans and initial states are read from

an XML file, as well as the simulation parameters and the

lower and upper bounds of the variables describing the

trajectory deviations. A small program giving an example

on how to build and save various problems into an XML

file is also provided.

C. Experimental setup

Two problems have been considered to simulate a

situation with n aircraft: Circle_n (Fig. 3) and Rand_n

(Fig. 4). Dimensions are in NM.

a) Circle_n: The aircraft are arranged around a cir-

cle and their trajectories converge simultaneously toward

the center. Two optimal solutions exist: in the first one

all aircraft turn right, in the second one all aircraft turn

left (roundabout configurations).

The fact that the problem is highly constrained can

be shown by randomly generating one million situations

with n aircraft, and by enumerating the situations without

conflict. For n = 5, 497 situations are without conflict.

For n ≥ 8, no generated situation is without conflict.

In spite of being highly combinatorial, Circle_n re-

mains a symmetric problem. To induce more complex

behaviors in the trajectories, we introduce below another

initial configuration with random flight directions.

b) Rand_n: The aircraft are arranged around a cir-

cle and each trajectory is a straight line whose direction

is randomly chosen with an angle ∈ [−π
6 ,

π
6 ] to the

diameter of the circle. The end point belongs to the circle

as well.

IV. CONFLICT RESOLUTION ALGORITHMS

Metaheuristics are optimization algorithms that try to

iteratively improve a candidate solution according to an

adaptation criterion. Its value is determined by Eq. 3.

Three population-based metaheuristics were compared in

this paper: genetic algorithms, particle swarm optimiza-

tion and differential evolution algorithms. Individuals
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Figure 3: Flight directions of Circle_10
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Figure 4: Flight directions of Rand_10

encoding solutions are moved around in the search-space

by using variation and selection operations.

Each individual x in the population designates a

situation with n aircraft, and is encoded by a vector

(x1, . . . , xi, . . . , xn)
T representing the sideways maneu-

vers of the n aircraft, with xi = (di, αi, li).

A. Genetic algorithms

Genetic algorithms (GA) mimic the process of natural

evolution in that they model operations such as inheri-

tance, mutation, selection, and crossover [10]. Individu-

als gradually evolve at each generation and the popula-

tion is partially replaced after crossover (with probability

pc) and mutation (with probability pm) operations (Alg.

1).

In the following, pc is set to 0.6 and pm to 0.2. N

is the population size, and is set to 500 for Rand_20

and Rand_30, and to 1000 for Circle_25, Rand_40 and

Rand_50.

Algorithm 1 Genetic algorithm

Randomly initialize each individual

Evaluate each individual

while termination criterion is not met do

Apply scaling and sharing to the cost values

Replicate best-fit individuals

Apply pcN crossovers and pmN mutations

Evaluate the cost of newly generated individuals

end while

Return the best individual(s) of the population

Our implemented genetic algorithm benefits from two

classical improvements: scaling and clusterized sharing.

The selection process then operates on the image of

the cost value under the scaling and sharing functions.

Scaling aims at modifying the cost values to artificially

reduce or amplify gaps between individuals’ cost val-

ues, thus enhancing the exploration of the search-space.

Sharing prevents the gathering of individuals around a

prevailing optimum. Scaling is described in [11] and

clusterized sharing is described in [12].

Our GA also handles partial separability [11] through

the use of some partial cost values, that outline some

directions in which the exploration should be intensified.

B. Particle swarm optimization

Particle swarm optimization (PSO) is inspired by

the observation of natural habits of bird flocking and

fish schooling [13]. Candidate solutions (particles) move

around in the search-space, and update their position

and velocity according to simple mathematical formulae.

Each particle’s movement is influenced by its local best

known position and is also guided toward the best known

position in the search-space (Alg. 2). When improved

positions are being discovered, the movements of the

swarm are guided toward satisfactory solutions.

The parameters ω, φp, and φg control the behavior and

efficacy of the algorithm. N is the population size.

After running a few tests with the standard PSO,

it became rapidly obvious that the basic PSO is quite

inefficient when applied to our problem. The main

difficulty lies in the fact that the conflict resolution

problem is highly constrained, in many dimensions. The

PSO updates each particle using a velocity vector that

may point to any direction in the search-space. As a

consequence, there is a great probability that a particle

that was initially conflict-free (i.e. that did not violate

the separation constraints) will be moved by the position

update into a region of the search-space where the



Algorithm 2 Particle swarm optimization algorithm

Initialize swarm and best known positions

while termination criterion is not met do

for each particle i = 1, . . . , N in the population do

for each dimension j = 1, . . . , n do

Pick random numbers rp, rg ∈ [0, 1]
Update the particle’s velocity: vi,j ⇐ ωvi,j +
φprp(pi,j − xi,j) + φgrg(gj − xi,j)

end for

Update the particle’s position

Update the particle’s best known position

Update the swarm’s best known position

end for

end while

Return swarm’s best known position

constraints are violated, possibly in several, or even all

dimensions.

In order to address this issue, the original PSO al-

gorithm has been modified as follows. When a particle

violates the constraints, the position update is made

by selecting a random number of dimensions, with a

probability corresponding to the normalized constraint

violation of each aircraft. The PSO update is then made

only in these dimensions. This way, the xi variables con-

tributing most to the constraint violation have a greater

probability to be modified than those contributing less.

Another modification consists in cyclically re-initializing

the swarm particles, with the hope to avoid getting

trapped in a local optimum.

In our experiments, the swarm size N is set to 50
particles, φp and φg are set to 1.49618 (according to

[14]), and the inertial weight ω is a decreasing function

of the number of iterations since the last swarm re-

initialization: ω = 0.5 + 1
2×(1+log(i−irestart))

. The first

swarm re-initialization is made after 50 iterations. This

number is then increased by 20 every time the swarm is

re-initialized.

C. Differential evolution

Differential evolution (DE) is inspired by genetic

algorithms (mutation and crossover operations) and ge-

ometric research strategies (such as the Nelder-Mead

method) [16]. A single operation performing mutation

and crossover is used to combine the positions of existing

individuals from the population. If the new position

of an individual is an improvement, it is updated in

the population, otherwise the new position is simply

discarded (Alg. 3).

xa, xb and xc are chosen at random, all distinct

Algorithm 3 Differential evolution algorithm

Randomly initialize each individual

Evaluate each individual

while termination criterion is not met do

for each individual i = 1, . . . , N in the population do

Pick individuals xa, xb and xc from the population

Compute new vector yi = (yi,1, . . . , yi,n)
T as follows:

for each dimension j ∈ {1, . . . , n} do

Pick random number rj ∈ [0, 1]
if j = R or rj < CR then

yi,j ⇐ xa,j + F × (xb,j − xc,j)
else

yi,j ⇐ xi,j

end if

end for

Replace x with y if y improves the cost value

end for

end while

Return the best individual(s) of the population

from each other and from xi. R is a random index

∈ {1, . . . , n} ensuring that at least one component of

yi differs from this of xi. N is the population size, F ∈
[0, 2] is called the differential weight and CR ∈ [0, 1] is

the crossover probability. In the following, N is set to

40, F to 0.7 and CR to 0.1.

V. RESULTS

Tests on both problems were carried out with a hor-

izontal separation Sh = 5 NM and a deviation angle

α ∈ [−π
6 ,

π
6 ]. The algorithms were stopped after 120,000

evaluations of the cost function (CFEs).

Figures 7 to 11 show the evolution of the best individ-

ual’s cost with respect to the number of CFEs for various

instances of the problems. The top curves represent the

overall duration of the remaining conflicts between the

n aircraft. The bottom curves show the value of the cost

function as soon as all conflicts have been solved.

The DE resolution of Circle_25 is displayed on Fig. 5,

and is close to the optimal roundabout configuration in

which all aircraft turn right. Fig. 7 shows that GA, PSO

and DE perform roughly equally, although the number of

CFEs necessary to solve conflicts varies between 10,000

(DE) and 70,000 (PSO).

Table I presents average results for 20 successive runs

of each algorithm on several instances of the problems. It

gives the average conflict duration of the runs for which

conflicts have not been solved, and the average cost value

of the runs for which conflicts have been solved. The

first two instances Circle_25 and Rand_20 are quickly

solved by all 3 algorithms that handle the combinatorial
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Figure 5: DE resolution of Circle_25

aspect on these problems well. However, some runs do

not solve conflicts on large instances. While the number

of unsolved runs by GA remains low as the number of

aircraft increases, PSO becomes quickly inefficient to

solve conflicts on larger instances.

As shown on figures 8 and 9, PSO algorithm is

capable of solving the conflicts with very few iterations

on small instances, whereas it struggles thereafter and

remains stuck in local optima. The proposed mechanism

that selectively moves particles along highly constrained

directions seems to work relatively well while minimiz-

ing the constraint violations. However, for particles that

do not violate the constraints, the algorithm switches

back to the standard PSO update, with a velocity vector

pointing to potentially any direction. Conflicts may then

be generated anew. This explains the poor performances

observed when trying to improve conflict-free solutions.

Figure 7: Circle_25: Evolution of best individual
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Figure 8: Rand_20: Evolution of best individual
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Figure 9: Rand_30: Evolution of best individual
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Figure 6: Resolution of Rand_20

Table I: Mean conflict duration and cost value over 20 runs, for 120,000 CFEs

Conflict duration of unsolved runs Cost of solved runs

Method Unsolved runs Min Max Mean Std Min Max Mean Std

Circle_25 GA 0 - - - - 46.7291 56.7154 49.5578 2.2153

PSO 0 - - - - 49.1103 55.1911 51.6155 1.3208

DE 0 - - - - 40.1904 54.7370 44.7435 3.9793

Rand_20 GA 0 - - - - 11.1921 13.8793 12.4216 0.9086

PSO 0 - - - - 26.2831 30.2721 28.0791 1.2368

DE 0 - - - - 9.9302 11.8789 10.5836 0.5232

Rand_30 GA 5 15 30 21 8.2158 28.5927 36.6782 32.8227 2.1727

PSO 6 15 15 15 0 52.8917 58.6254 55.6343 1.8290

DE 0 - - - - 25.0167 33.5501 29.6390 2.3471

Rand_40 GA 3 15 15 15 0 33.7887 46.0925 41.3232 3.1890

PSO 12 15 105 37.5 28.2441 64.6237 76.2097 70.1448 3.6213

DE 0 - - - - 45.5938 67.4946 55.6706 6.2888

Rand_50 GA 3 30 75 45 25.9808 56.4666 72.5151 63.9583 3.4726

PSO 20 30 180 129.75 41.9422 - - - -

DE 0 - - - - 73.3092 115.5933 88.7457 13.0205

Figure 10: Rand_40: Evolution of best individual
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Figure 11: Rand_50: Evolution of best individual
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VI. CONCLUSION AND PERSPECTIVES

Comparing the three methods (GA, PSO, DE) on

a benchmark of traffic situations gives us an insight

on the specific difficulties of the conflict resolution

problem, formalized as a global optimization problem

with trajectory separation constraints. This problem is

combinatorial, highly constrained in many (or even all)

dimensions of the search-space.

As a consequence, methods exploring the search-space

by moving around in any direction are more likely to vio-

late constraints simultaneously in many dimensions. This

is clearly the case of the Particle Swarm Optimization

algorithm (PSO). Methods operating selective moves in

each dimension, depending on the constraint violation

and cost evaluation of each flight, are clearly more

efficient. This is the case of the Differential Evolution

(DE) method and the Genetic Algorithm (GA) with

an adapted crossover operator, that both proved more

performant than the PSO algorithm. In future work, we

might try PSO variants such as CPSO ([15]) that are

specifically designed to explore sub-spaces of the search-

space, and should perform better than the standard PSO

on this problem. Other strategies may also be tried, such

as sequential methods (1-against-n resolution method).

In addition, the results show that operating in the

continuous space is a valid alternative to the afore-

mentioned approaches. The chosen modeling allows to

express proposed maneuvers directly into a sequence of

geographical points that can be used by FMS.

In future works, we shall extend our benchmark to

models involving vertical and speed maneuvers, in addi-

tion to the lateral maneuvers that were considered in the

present paper. Uncertainties on the future positions and

speeds of the aircraft should also be considered.
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