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A Fast Algorithm for
Polynomial Factorization over Q,

par DAVID FORD*, SEBASTIAN PAULIT et XAVIER-FRANCOIS ROBLOT*

ABSTRACT. We present an algorithm that returns a proper factor of a poly-
nomial ®(z) over the p-adic integers Z, (if ®(x) is reducible over Q) or
returns a power basis of the ring of integers of Qp[x]/®(x)Qp[z] (if ®(x) is ir-
reducible over Q). Our algorithm is based on the Round Four maximal order
algorithm. Experimental results show that the new algorithm is considerably
faster than the Round Four algorithm.

1. Introduction.

We consider the problem of factoring polynomials with p-adic coefficients.

Restricting our attention to monic, square-free polynomials in Z,[x], we
present a method to compute the complete factorization of such polyno-
mials into irreducible factors in Z,[z]. Our algorithm has its origins in
the Round Four algorithm of Zassenhaus, but with substantial modifica-
tions. The new algorithm is much faster than the “classical” Round Four
algorithm, and also more straightforward.

In Section 2 we establish some notation. In Section 3 we establish a
criterion for a polynomial to be reducible over Q,.

If ®(x) is a monic, square-free polynomial in Zy[x], then
®(z) is reducible over Q,, if and only if there exists a poly-
nomial 6(x) in Qplx] such that the polynomial resultant
Res, (®(x),t — 6(z)) of ®(x) and ¢t — 6(z) belongs to Zyt]
and has more than one distinct irreducible factor modulo p.
We further show how to construct a proper factorization of ®(z) if such a
polynomial #(x) is known.
In Section 4 we define polynomials of “Eisenstein form” and give a cri-
terion for ®(x) to be irreducible over Q,.

The polynomial ®(x) is irreducible over Q,, if and only if
there exists a polynomial a(z) in Qp[x] such that the resul-
tant Res, (®(x), t — a(z)) belongs to Zy[t] and is of Eisen-
stein form.

We say that such a polynomial «(z) certifies (the irreducibility of) ®(z).

*supported in part by NSERC (Canada) and FCAR/CICMA (Québec).
fsupported in part by ISM and FCAR/CICMA (Québec).



152 David Ford, Sebastian Pauli, Xavier-Frangois Roblot

In Section 5 we describe procedures which, given ®(z), yield a proper
factorization of ®(x) if ®(x) is reducible, or return a certifying polynomial
a(z) for ®(x), if ®(x) is irreducible.

In Section 6 we show how the results of these procedures can be used to
determine ideal factorizations and Z,-bases for p-maximal orders.

In four Appendices we give details regarding p-adic GCD computation,
the Hensel lifting threshhold, factorization of resultant polynomials modulo
p, and experimental results.

2. Notation.

In what follows, ® is a monic separable polynomial with coefficients in
Zy, which we aim to factorize completely over Q,. We take &1, ..., &, to
be the roots of ® in some fixed algebraic closure of @, and we denote by
vp the p-adic valuation of Q,, extended to Qp (&1, .. ., &,) and normalized so
that v,(p) = 1. For ¢(t) in Z,[t] we denote by B(t) its image ¢(t) + pZy|t]
in Zp|t]/pZp|t] = Fy[t].

Let Resy (f(2), g(z)) denote the resultant of the polynomials f(z) and
g(z) with respect to the variable . It is well known that Res, (f (), g(x))

0 if and only if f(z) and g(z) have a common root. Suppose f(z)
(x—a1) -+ (z—ay). Then Res, (f(z), A\—g(x)) = 0 if and only if A = g(a;
for some 7, and it follows that

Res, (f(@),t — g(2)) = (t —g(ar)) - (t — g(am)).
Definition 2.1. For 0(x) € Qp[z] we define

Xo(t) = (t—0(€1)) - (t—0(6.) and Ay =[] (0(&) - 0(¢5)°.

i<j

~—

We also define
Op = { 0(z) € Qpla] | xo(t) € Zyt] }-

For f(z) in Op with Ay # 0, the reduced discriminant of 4 is p%, given
by
P Zy = (Xo(DZp[t] + X (1) Zp[t]) N Zy.

Remark 2.2. It is clear that x(t) = Resy (®(z), t — 6(z)) € Qplt].
Remark 2.3. If 0 (z) = 62(z) mod ®(z)Zy[z] then xp, (t) = xp, ().

Remark 2.4. 6(z) belongs to Op if and only if 6(&1), ..., 0(&,) are all
integral over Z,.

Remark 2.5. yy is not necessarily the characteristic polynomial of a single
field element; in general it is the product of several such characteristic
polynomials.
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Remark 2.6. The reduced discriminant p% can be obtained directly from
the p-adic Hermite normal form of the Sylvester matrix of xy and xj.

Remark 2.7. Let 0(x) € Op with Ay # 0 and let £ be an arbitrary
root of ®(z). If Ok is the ring of integers of the field K = Q,(&) then
p% Ok CZy[0(€)| SOk

3. Reducibility over Q,.

Let 0(z) € Op with xg(t) =" + c1t" 1 + - + ¢,, and define
* _ : Up<ck)
o0 =i, 7
Taking 0; = 6(&;) for i = 1, ..., n and expressing cy, ..., ¢, as symmetric
functions in the 6;’s, it is easily seen (as in [9, Section 3-1]) that
vp(0) = min(vy(61), ..., vp(0n)).

Because vp(cn)/n = (vp(01) + -+ 4 vp(0n))/n, it follows that v}(0) =
vp(cp)/n if and only if vy(61) = -+ = vp(On).

But suppose v, () = A/B < vy(cn)/n. Taking p(z) = 6(x)B/pA and
wi =@(&) for i =1, ..., n, we have

min(vp(gpl), e vp(cpn)) =0< maX(vp(cpl), ce vp(gon))

and consequently X, (¢) will have at least two distinct irreducible factors
modulo p.

Proposition 3.1. If there exists O(x) in Op such that xg(t) has at least
two distinct non-trivial irreducible factors modulo p then ®(x) is reducible
in Zplx].

Proof. Assume 6(z) belongs to Op with x4 (t) having at least two distinct
non-trivial irreducible factors modulo p.

Hensel lifting gives relatively prime monic polynomials 1 (¢) and ¢a(t)
in Zy[t] with 0 < deg1 < degxp, 0 < deg 2 < deg xg, such that

xo(t) = @1(t)p2(1).
Reordering the roots of ® if necessary, we may write
p1(t) = (t—0(&1)) - (t—=0(&)), wa(t) = (t = 0(&+1)) - (t = 0(60))
with 1 <r <n —1, and it follows that
D (z) = ged (D(2), ¢1(6(2)) ) - ged (@(2), 92 (6()) )
is a proper factorization of ®(z). O

Remark 3.2. See Appendix A for details of the computation of the p-adic
GCD.
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Example 3.3. Let
p="5, ®(z)=a'+252% +500+25 6Oz)=iz?
and observe that /—1 € Z5. Then
xo(t) = t* + 1062 + 27t% — 10t + 1 = (¢t + 2)*(t — 2)* mod 5

and X,(¢) has two distinct irreducible factors in F5[t]. The Hensel construc-

tion leads to
Zr(-2¢/-1t-1
=2+ (5+2/—1)t—1
( = %( + (25 — 10v/—1)2% — 25)
( = o= (z* + (25 + 10y/=1)2? — 25)
gcd(q)(:n), ©1(0(z) ) =2% - 5y/—1x —5y/~-1

gcd(q)(a:), V2 (9(3:))) =22 +5y/~1x +5/-1
and we have a proper factorization of ®(z).
Definition 3.4. Let 0(z) € Op with xg(t) = t" + c1t" L+ + ¢y
(i) We say 6 passes the Hensel test if X, (t) = 7p(t)¢ for some e > 1 and

some irreducible monic polynomial Ty(t) in F,[t].
(ii) We say 6 passes the Newton test if

Up(Cn) < vp(e) fork=1,...,n—1.
n k
Remark 3.5. If 6 passes the Hensel test and Ty(t) # t then 6 passes the
Newton test.

Remark 3.6. If 0 passes the Newton test then

vp(0(61) = -+ = vp(0(6n)) = v;(0).

Proposition 3.7. If any member of Op fails either the Hensel test or the
Newton test then ®(x) is reducible in Zy[x].

Proof. This follows from Proposition 3.1. U

4. Irreducibility over Q.

Definition 4.1. A monic polynomial x(t) in Z,[t] is of Eisenstein form if
there exists a monic polynomial v(t) in Zp[t], irreducible modulo p, such

that
x(t) =v(t)" +p(at)v(t) + (1))

with ¢(t) in Z,[t], r(t) in Z,[t] \ pZy[t], degr < degv, and k > 0.
)

Remark 4.2. If x(t) is irreducible modulo p then x(¢) is of Eisenstein
form. (Take v(t) = x(t) — p, for example.)
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Remark 4.3. An Eisenstein polynomial is a polynomial of Eisenstein form
with v(t) = t.

Proposition 4.4. If x(t) is of Eisenstein form then x(t) is irreducible in
Zylt]-

Proof. If there is a factorization x(t) = (v(t)F* + pp1 (1)) (v(t)2 + ppa(t)),
with k&1 > 0, k3 > 0, and with yx and v satisfying the conditions of the
definition, then the requirement r(t) ¢ pZ,[t] cannot be met. O

Proposition 4.5. Let K be a finite extension of Q, with Ok its ring of
integers and P its prime ideal. Let v(z) be a monic polynomial in Zp[x]
with v(x) irreducible modulo p and let o be an element of O such that
v(a) € PB. Then the minimal polynomial of o over Qp is of Eisenstein
form if and only if v(c) is a prime element of Ok and Ok /B = F,[a].

Proof. If the minimal polynomial of « is of Eisenstein form then it is con-
gruent modulo p to a power of v, and it follows directly that V(a) is prime
and Ok /B = Fyla).

To prove the converse, let 7 = v(a), vy(m) = 1/E, degr = F, and define

Ry={co+caz+- - +cpqzt! |
GEL [-(p—1)/2] < < |p/2) for 0<i<F—1}.

Then the set R, is a complete set of representatives of Ok /B and 7TE/ p is
a unit in O. Therefore 7F/p has the m-adic expansion

7TE/p = /\1,0 + )\1,17T + -+ )\17E_17TE71
+ p(/\z,o + Ao A+ )\27E_17rE71)
+ p*(Ag0 4+ Azam + -+ + Ag g mE )
4o

with each A;; belonging to R, and v,(A1p) = 0. For 1 < j < oo and
0 <k < E—1 there exists §;(x) in R, such that \;; = 5j,k(a). The
polynomial

E-1 o0
Ba) = v(@)® —p Y (ij—laj,m) v(z)F

k=0 “j=1

is of Eisenstein form (since A1 is a unit) and 8(«) = 0. It follows that
B(z) is the minimal polynomial of a over Q,,. O

Definition 4.6. Let ¥(z) be a monic polynomial belonging to Zy[z] and
let a(z) € Qplz]. We say a(z) certifies ¥ if Res,y(¥(z),t — afz)) is of
FEisenstein form.
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Proposition 4.7. If a(z) certifies ® and a(z) € Qpz] such that a(z) =
a(x) mod p*Zy[x] then a(x) also certifies ®.

Proof. Let h(t) = (xa(t) — xa(t))/p?. The coefficients of h(t) are integral
and lie in Q, hence h(t) € Zp[t]. It follows that x5(t) is of Eiseinstein
form, if x,(t) is. O

Definition 4.8. For 6(z) belonging to Op and passing the Hensel and
Newton tests we define 14(t) to be an arbitrary monic polynomial in Z,[t],
with T (t) irreducible in F,[t], such that X, (t) = 7p(t)¢ for some e > 1, and
we set
Fy = deg(7s).
If vy(0) also passes the Hensel and Newton tests we additionally define
NG/EG = ’U; (Vg(e)),
m(t) = ve(t)"/p®
with ged(Nyg, Egp) =1, rNy —sEp =1, and 0 < r < Fp — 1.

Remark 4.9. v;(m(0)) = 1/ Ey.
Remark 4.10. If Ey = 1 then mp(0) = p.

Remark 4.11. If # and v4(6) both pass the Hensel and Newton tests then
Ey | n and Fy | n.

Remark 4.12. If a(z) belongs to Op and passes the Hensel and Newton
tests and d, = 0 then X, () = U4 (t), which is irreducible in F,[t], and it
follows that a(z) certifies ®(x).

Proposition 4.13. Let ® be irreducible over Q,, with & an arbitrary root
of ®, and let Ok be the ring of integers of the field K = Qu(§). For a(x)
in Op the following are equivalent.
(i) a(x) certifies ®.
(il) () = vo(@) and EqFy = n.
(i) Ok = Zpla(§)].

Proof. By Proposition 3.1 we have Y, (t) = 7,(t)* for some k > 1, and hence
we may write xa(t) = va(t)* + p(q(t)va(t) + r(t)) with q(t) € Zylt], r(t) €
Zplt], and degr < degu,. Moreover, we have Ox = {0(&) | 0(z) € Op }
and v%(60) = v,(0(€)) for all (z) € Op.

(i) = (ii). If X, (t) is irreducible in F,[t] then E, = 1 and F, = n. Oth-
erwise v (r(a)) = 0, so that kNy/Eq = v} (vala)®) =1+ vk (q(a)va(e) +
r(a)) =1, hence Eq/N, =k € Z, hence N, = 1, hence m,(a) = vo(a) and
n=kF, = E.,F,.

(ii) = (iii). Let p(t) € Zy[t] be a monic polynomial of minimal degree
such that p(a(€)) € pOk. Then pu(t) = va(t)® mod pZy[t] for some e > 1
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(otherwise degged (i, X,,) < degfi, and the degree of p could be reduced),
so e/Ea = 05 (va(@)?) > 1 and degp = eFy > E F, = n. Hence K =

( ), and it is clear that any integral basis for K must be contained
in Zp[o (5)]
(111) = (i). If X,(t) is not irreducible in F,[t] then & > 1, and we

(i
have r(t) §é pZy[t] because otherwise v, (a(€))*~!/p would be a root of
X2 4+ q(a(€) X + va(a(é)*2r(a(€))/p and so would belong to Ok but
not to Zpla(§)]. O

Proposition 4.14. ® is irreducible over Q, if and only if some o(x) in
Qplzx] certifies ®.

Proof. By Proposition 4.4, ® is irreducible over Q,, if o(z) certifies ®. For
the converse, let & be a root of ® and let K = Q,(£). By [6, Proposition
5.6] there exists a(z) € Qp[z] such that 1, a(€), ..., a(§)"! is an integral
basis for K. By Proposition 4.13, «(z) certifies ®. O

5. Factorization Algorithms

In this section we describe Algorithms 5.1 and 5.3, which together pro-
duce a polynomial a(x) € Q,[x] certifying ®(x) or else find a proper fac-
torization of ®(x).

Algorithm 5.1, below, takes monic polynomials x(z) and v(z) with

o X(x) € Zp[z] squarefree,

e v(x) € Zy[x] irreducible modulo p,

e Xx(z) = v(x)® mod pZ,|x] for some e > 0,
o X(&) = (z—a1) - (@ — ap),

e vp(v(n)) = - = v,(v(an)) = 1/E,

o degrv = F,

e FF < n,

and returns either

e a proper factorization of y(x), or
e a polynomial ¢(z) such that E,F, > EF, with E, > E and F, >
F.
The algorithm attempts to construct the m-adic expansion given in the proof
of Proposition 4.5. The algorithm proceeds by computing the digits A;
as roots of polynomials over the finite field F,[@]. Because deg 8 = EF <
deg x, there will at some point be more than one choice for §; ;(x), and this
condition suffices to factorize x(z). Also, for each j, k the algorithm checks
if the threshhold for Hensel lifting has been reached (see Appendix B), in
which case 3 ;(x) approximates §(z) sufficiently well to give a factorization
of x(x).
If Ox/PB 2 Fy[a] then the 7-adic expansion does not exist, and the
construction w1ll eventually come to a digit A;; not belonging to R,. This
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gives an element v € O such that Fy[a,7] 2 Fy[a], which leads to the
construction of a polynomial p(x) € Op with F, > F' and E, > E.

If v(«) is not a prime element of O then the m-adic expansion does not
exist, and the construction will reach a point where v,(8;(a)) is not a
multiple of 1/E. This leads to the construction of a polynomial p(z) € Op
with E, > E and F, = F.

Algorithm 5.1.

Note: References to field elements apply to all embeddings simultaneously;

11.

12.

13.

“Ba) € Zp[f(a)]” means “B(ay) € Zpf(ay)] for i =1, ..., n”, ete.

. Find k(z) € Q,[z] with (z)v(z) =1 mod x(z). [ k(a) =1/v(a). ]

Set B(x) = v(x)F. [ Initially N3/Eg = vp(B(a)) = 1. ]

. Set j = [vp(B())], k= (vp(B(a)) — J)E. [k€Z,as Eg | E. ]

Set v(z) = p~7w(z)*B(x) mod x(z). ,

[ up(7(a)) = 0, because y(a) = B(a)/pr(a)k ]
If ~ fails the Hensel test then go to step 13.
If F, t F then go to step 12.

. Find 6(z) = co + c1z + - - + cp_12¥ ™1 such that ,(5(@)) = 0 and

vp(y(ay) — d(erj)) > 0 for some j.

[ 7y(x) splits completely over Fp[a], because Fy | F'. |
If v — 9§ fails either the Hensel test or the Newton test then go to
step 13.

. Replace B(z) + B(z) — p'v(z)ké(x).

[ N3/ Es <= Ns/Eg+ Ny_s/Ey—s. |
If Eg { E then go to step 11.
If B(z) is sufficiently precise then go to step 13.
[ Hensel lifting applies. |
Go to step 2.

Find a, b, ¢ > 0 such that (aNg — cEg)E + bEg = gcd(FE, Ep).
Set o(z) = z + v(x)’B(x)*/p° mod x(x).

| E, =lem(E, Eg) > E, F, = F. ]
Return ¢(x).

Find p(x) € Zy[z,v(x)] with F,[@] = Fy[a,7]. [ F, = lem(F, Fy). ]
If o fails the Hensel test then go to step 13.

If v,(¢) fails the Newton test then go to step 13.

If E, < E, replace p(x) « p(z) + v(zx). [E, > E, F, > F.|
Return ¢(x).

Return a proper factorization of y(z). [ x(z) is reducible. |
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Remark 5.2. In [7] it is shown that Algorithm 5.1 above terminates before
vp(Bjk(a)) becomes greater than 2v,(discy)/ deg(®).

With ®(z) as input, Algorithm 5.3 returns either
e a polynomial a(z) in Op certifying ®(x) or
e a proper factorization of x(z).
Initially a(z) = x; then a(x) is iteratively replaced by ¢(x) until either
e Algorithm 5.1 gives a proper factorization of x(z) or
o B, F, =n.
The condition E,F, = n implies that x,(z) is of Eisenstein form, so that
a(z) certifies ®.

Algorithm 5.3.
1. Set a(x) = x.

2. While A, = 0, replace a(z) + a(x) + pz.
[ This makes x, separable. ]
If a(z) or vo(a(z)) fails either the Hensel test or the Newton test,
go to step 11.
If N, > 1 then replace a(zr) < a(x) + m(a(z)).
[ This gives vp(vo(a)) = 1/E,, with v, and E, unchanged. ]
If E,F, = n then go to step 12.
[ If E,F, = n then x, is of Eisenstein form. |

3. Apply Algorithm 5.1 to the pair [xq (), va(z)].
If Algorithm 5.1 returns a proper factorization of x,(x) then go to

step 11.

Replace a(x) < ¢(x).

Go to step 2.
11. Return a proper factorization of ®(z). [ ®(z) is reducible. ]
12. Return a(z). [ ®(z) is irreducible; a(x) confirms ®(z). ]

Example 5.4. Let
p=>5, x(x)=a"+ 12723 + 432 + 420 — 259, v(z) =2* +x + 1.
Then
x(z) = v(2)? + p(g(z)v(z) + r(x))
with g(z) = 25z — 17, r(x) = —35, so x(z) is not of Eisenstein form. Now
xo(t) =ttt — (24 5-199)3 + (5 - 53)t2 + (5% - 7-59)t + (5% - 7?)

t
and so v, (v(ar)) = 1. Our initial approximation to the minimal polynomial
of a is
Boo(x) =v(z)=a2>+ 2+ 1.
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Because vy (80,0(c)) = 1, the element

(@) = Boo(@)/p= (o +a+1)/5
must be a unit. We have
Xo(t) = t* — 3184¢3 + 1325¢% + 413t 4 49 = (2 + 3t + 3)* mod pZ,[t],
v,(t)=t*+3t+3=(t+a+2)(t—a+1).

This gives two choices for (x), namely §(z) = —x —2 or §(x) = x — 1, and
in fact y(z) — d(x) fails the Hensel test for each choice. Note that if we
choose §(z) = —x — 2 and set

Y1(z) = Boo(x) — pd(x) = 2% 4+ 62 + 11,  tho(x) = 2 + 121z — 694,
19(x) being the euclidean quotient of x(z) on division by 11 (z), then
X(x) = Y1 (@)¢2(2) mod p°Zy[z],
p = (62 + 3)¢1(z) + (192 + 12)t2(x) mod p*Zp|a],
which are sufficient conditions to apply Hensel lifting.
Example 5.5. Let
p=2, ®(x)=a%+162°+8z* - 20.
Initially a(z) = , so that
Ta(t) =va(t)=t, FE,=1, E,=3.
For j=1,k=0:
Bro(z) = va(2) = 2,
vp(Bro(@) =1, (@) = Pro()/p = 272,
Xy(t) = (t+1)% mod 2Z,[t], vy (t)=t+1, d1o(z) =1,
vp(v(@) — d10()) = 1.
For j =2, k = 0:
Bao(x) = Bro(x) — pdro(z) = ° -2,
vp(B20()) =2, (@) = Baolw)/p* = (2° - 2)/4,
Xy(t) = (2 +t+1)3 mod 2Z,[t], vy (t) =t* +t+ 1.

Now FE, t Fy, with o[, 7] = Fo[y] 2 Fa[a]. Replacing a(z) « (2® —2)/4
gives 14 (t) = vy(t) =t +t + 1 and

Xa(t) = x4(t) =%+ 93115 + 2352t + 2499¢3 + 1388¢% + 399¢ + 45
= va(t) + 2((46483 + 709t* + 73t — 91)v,(t) + 216t + 113)

which is of Eisenstein form, so that a(x) certifies ®.
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6. Ideal Factorization and Integral Bases

Proposition 6.1. Let & be a root of ® and let K = Q,(&), with Ok its
ring of integers and P the unique non-zero prime ideal of Ox. Assume
a(z) € Qplz] and ofx) certifies . Then:

(i) Ok = Zp[a(E)].
(ii) If xo(t) is irreducible in F,[t] then P = pOk .
(iii) If X, (t) = Ta(t)® with e > 1 and Ty(t) monic and irreducible in
F,[t], then

P = va(a(€)Ox and pOx = P

Proposition 6.2. Let f(x) be an irreducible monic polynomial in Z[z],
let € be a root of f, let K = Q(§), and let O be the ring of integers of
K. If f(z) = p1(x) - om(x) is the complete factorization of f(x) into
distinct monic irreducible polynomials in Zylx] and if a;(x) certifies p;(x)
fori=1,..., m, then

PO =pi' - py
is the complete factorization of pO into prime ideals in O, where
pi =pO + mO
€ = €K/Q(Pi) = deg @;/deg vq,
fi = frjo(pi) = deg vy,

fori=1,...,m, with xo, and v,,; being computed with respect to ¢; and
m; being any element of K satisfying

Ti = Vo, (i(€)) mod pZy|€].

Proposition 6.3. Let f, etc., be as in Proposition 6.2. Fori=1,...,m
let & be a root of ; and let e;(x) € Qplx], satisfying

1 if pi(&5) =0,
)= {0 z'; ZEZ; #0
fori=1,...,n. Then
O = E1(OZ[ar(§)] + - -+ + Em(§)Z[am(E)]
is a p-mazimal order in O; that is to say, p1[O : O,]. Here we are taking

ai(z) € Q[z], ai(x) = a;(x) mod p*Z,[x],
gi(z) € Q[z], &(x) = &;(x) mod p?t1Z,[z]

with d a natural number such that pla;(x) € Zylx] fori=1, ..., m.



162 David Ford, Sebastian Pauli, Xavier-Frangois Roblot

Appendix A. Computing the p-adic GCD.

Let relatively prime polynomials Wy (z) and Wa(x) in Z,[x] be given, such
that

®(z) | U1(2)¥a(z) and pZy[z] = (V1(2)Zp[x] + Vo(z)Zp[x]) N Zp.
Define

Gi(z) = ged(®(z), U1 (2)), Hi(z) = ¥1(2)/G1(),
Ga(z) = ged(®(x), Ua(x)), Ha(x) = Va(z)/Ga(z),
so that
P(z) = G1(2)Ga(2),
and let

P* Ly = (Ga(2)Zp[z] + Hy(2)Zy[2]) N Zy,
Py = (Gl(ﬂf)me + H2(93)Zp[x]) N Zp.
Because ¥ (z) = G1(z)Hi(x) and ¥a(x) = Ga(x)Ha(x) we have s; < rg
and so < 1.
For j =1, 2 let Sp v, be the Sylvester matrix of ® and W;. It is clear
that row-reduction of Sg ¢, over Q, gives the coefficients of Gij(x) in its last
non-zero row. It follows (because the rank is invariant) that row-reduction

of Sg v, over Z, gives the coefficients of p"iGj(z) in its last non-zero row,
for some r; > 0. Since

pYGj(x) € ®(x)Zpla] + Vj(2)Zp[7]

it follows that r; < s;, and since

)
@) 5 10
G;(z)
it follows that s; < r;; hence r; = s;.
If m > 7o then row-reduction of Se¢ y, over Z, performed modulo p™

gives in its last non-zero row the coefficients of p% ®;(x), with ®;(x) in
Zplx], ®j(x) monic, and

®j(x) = Gj(z) (mod p™ ™ Zp[z]).

P e

It follows that
Dy (z) = gcd(q)(x), ‘Ill(x)) (mod p™TTOZy[x]),
Py () = ged(P(z), Vo(z)) (mod p™ "0Zyz]).

Remark A.1. In the construction of ®;(x) and ®9(x) it is sufficient to
have approximations to ®(z), ¥i(x), and ¥y(z) that are correct modulo

P L[]
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Appendix B. Hensel Lifting

The well-known technique of Hensel lifting allows a sufficiently accurate
approximate p-adic factorization of a polynomial to be refined to any de-
sired degree of precision.

Suppose f(x), fi(z), fa(z), ..., fm(x) are monic polynomials belonging
to Zplz] and a1(x), az(x), ..., am(x) are polynomials in Zy[z] such that

f@)=]]fi(z) (mod p°Z,x]),
Jj=1

p' =Y aj(@) [[ fiz) (mod p**'Z,[a)),
j=1 i#j
with d > 0 and e > 2d 4+ 1. Taking

and defining

for 1 < j < m, gives

with ]?j(a:) = f;(z) mod p°~9Z,[z] for 1 < j < m.
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Appendix C. Fast Computation of v,

Let y(x) € Op and let p? be the reduced discriminant of ®. For0 < k <n
let

a;alx”_l + ak72x”_2 +-tag, = ’y(x)k mod ®(x) € p_de[x].
Define

Qn,1 an2 - An,n—1 Qan.n
an—-1,1 Qan-1,2 - An—1n-1 0n-1n
G — . . . .
a1 a2 ot Qlp-1 a1n
ao,1 ap,2 te agn—1 ag,n
and let
G I
A= |p™lr 0
0 pl
Row-reduction of A over Z, yields its p-adic Hermite normal form
B x
HNE,(A)=10 C
0 0
with
* ok * Cn,0 Cn,1 T Cnyn—1 Cn,n
kooeee ok ok Cpn—1,1 **° Cp—1n—1 OCn—1n
B = s C e .
0 k% 0 Cln—1 Cln

Co,n
For 0 <k <nlet
hi(t) = Ck,nfktk + Ck,n7k+1tk_1 + -+

and define
H = pZy[x] + pZply(z)] + @(2)Qp[z],
L:{h(t [Hh(’y( GH}
J = ho(t)Zylt ] + hl(t)Zp[ [+ + ha(t)Zylt],
P = { h(t) € Zy[t] | v} (h(y )>0}.
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Observe the following.
(1) L="ho(t)Zp+ h1(t)Zp + - - - + hn(t)Zp + x+ (1) Zp[t].

X (8) = hn(t) € ho(t)Zp + hA(E)Zp + -+ + hn_1 (£) Zy.

J is an ideal in Zp(t] and x(t) € J.
There exists a monic polynomial \(t) € Zp[t] such that
J = NOZylt] + pZ, 1.
(7) 7t = ged (ol - .. Fn().
(8) P is an ideal in Z,[t] and pZ,[t|CP.
(9) There exists a monic polynomial u(t) € Zy[t] such that
P = u(OZ,ft] + pZ, 1.
(10) The polynomial p(t) is congruent modulo p to the product of the
distinct irreducible factors of x,(t) modulo p. In other words, fi(?)
is the squarefree part of . (t) in F,[t].
(11) 7(t) | A(t), since JCP.
(12) p™10sCpZy[x] + ®(2)Q,[z]CH.
(13) vp(p(7)) = 1/n = vp(p(y)"@) > d+1
—

= )"

Therefore A(t) | 7a(t)(4+1).
It follows that the distinct irreducible factors of 7i(t) and A(t) in F,[t] are the
same, and therefore that the distinct irreducible factors of A(t) and X, ()
in F,[t] are the same. If A(t) is a power of a single irreducible polynomial

modulo p then that irreducible polynomial is v (t), modulo p; otherwise y
fails the Hensel test.
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Appendix D. Experimental Results

The new algorithm is included in the forthcoming PARI/GP 2.2.0. Tests
were run to compare the new version with PARI/GP 2.0.16, KANT V4/
Kasu 2.2, and MAGMA 2.7. The tests were run on a Pentium MMX
200MHz with 80Mo of RAM. Computations running more than one hour
were interrupted. (Polynomial f3y produced an error with MAGMA.) Exe-
cution times are expressed in seconds.

POLY- LOCAL REDUCED GP GP KAsH MAGMA
NOMIAL  DISC DISC 2.2.0 2.0.16 2.2 2.7
fi 215 24 0.12 0.11 0.09 0.53
fa 210 22 0.05 0.06 0.06 0.57
f3 39 3 0.04 0.04 0.05 0.35
fa 30 32 0.09 0.11 0.06 1.78
fs 210 2 0.02 0.02 0.02 1.20
fo 210 26 0.06 0.05 0.06 2.22
fz 215 24 0.14 0.16 0.12 0.50
fe 5 5 0.09 0.11 0.10 0.96
fo 214 24 0.07 0.13 0.16 0.45
fio 12897 12897 0.15 0.17 0.10 2.59
fn 222 24 0.08 0.11 0.11 2.55
fi2 3% 32 0.07 0.08 0.05 0.94
f13 113 112 0.16 0.17 0.13 1.45
fia 17 172 0.11 0.13 0.09 1.69
f1s 232 23 0.10 0.13 0.10 0.40
f1e 212 22 0.10 0.13 0.12 0.90
fiz 210 23 0.18 0.21 0.19 3.08
f18 7 7 0.10 0.10 0.11 0.51
fio 71? 712 0.26 0.30 0.20 3.77
fa0 31 3 0.34 0.43 0.21 1.70
far 520 52 0.08 0.09 0.11 0.79
fa2 31 3 0.14 0.16 0.11 2.09
fa3 31 3 0.39 0.47 0.28 3.27
fou 27 213 0.27 0.40 0.53 4.19
fas 4770 47? 1.50 1.76 0.81 16.22
fo6 6198 6116 1.63 54.47 18.30 7.05
far 292 29 142 421.00  710.00 7.10
fos 3100 320 1.97 73.00  175.00 > 1hr
fa 3% 3° 1.37 16.64 7.75 15.01
f30 2284 29 7.16 >1hr  1960.00 (error)
fa1 254 278 4520  >1hr  >1hr 22.60

f32 2240 218 13.60 > 1hr 235.00 370.00
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Examples from Ford & Letard [4]

fi=a"—2z* — 1023+ — 2

fo=a" =225+ 1723 + 4

fz =27 223 - 10

fir=a0 4729 — 228 — 227 — 325 4 2% + 1

fs =20 — 42 —82% + 521 + 1

fo =x'% =229 — 15

fr=al 4 2% - 222 +4

fa=att — 26 — 223 — 1222 — 6

fo=all — 210 — g% 4

fro =22 —32° + 42 — 25 — 22 410

fi1 = 212 + 421 4 5210 4 626 — 324 + 12

fi2 =124 29— 927 — 246 — 925 — 6

fiz = '3 + 6210 — 102° + 922 — 2

fia =B+ 210429 — 42 — 2t 422 -1

fis = 213 42118

fi6 = at — 22 — 27 41025 — 4

fir =2 +228 + 62— 1

fig = x4 — 827 + 418

fio = &' + 42" + 12210 4 23 — 4

foo = 21 +92° + 1

fo1 = z® —132% — 2

fa2 = 2% — 30213 + 3602 — 22002° + 720027 — 120962 + 896023 — 120z
— 249

foz = 1% — 3023 + 3602 — 22002° + 720027 — 120962° + 896023 — 120z
— 257

fos = 20 + 132214 4 6868212 4 179570210 4 249497228
+ 181118205 + 65000173z* + 10223400022 + 46240000

fos = 22! — 42219 + 75627 — 76162'° + 4704023 — 183456211
+ 44844829 — 65894427 4+ 532224x° — 19712023 + 215042 — 1691
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Examples for which PARI 2.0.16 performs poorly

fog = 12 — 181170x!"
+ 1367607037510
— 5646357345354752°
+ 14120575648656 75679528
— 2242138615313499468660602"
+ 22993249281271008372578336402°
— 151201320321084108854079537805052°
+ 6160702193945317525480492011696751524
— 14453608333021361466631770614636509456523
+ 1704260776174553135113614378038525389349042:2
— 831392354554742456276415098628880620140925602
+ 12253655221465755667504199645608996691723374656
for = 10 — 1221 — 84213 — 196212 + 28562 4 6328210
— 4233627 — 6482028 + 35246427 + 29892825 — 17760962°
— 2624162* 4 54586562% — 187587222 — 66884162 + 7866576
fog = 16 — 432214 + 68688212 — 4717440210 + 11263730428
+ 40940640028 + 27743057282* + 404115609622 + 11224978704
fog = 24 4+ 57222 + 1197220 + 1368128 + 136854216 + 1048044214
+ 460389222 + 114600152'° + 160011002% + 111310142
+ 27393392 — 36879322 — 7569
fa0 = 232 4+ 16
f31 = 232 4+ 160230 + 1121622 + 455360225 4- 11928052224
+ 212540000222 + 2645190320220 + 2322364256028
+ 1434025479262 + 6132835908804 + 1764753386480z 12
+ 3275906117440219 4 378837149845228 + 294075434832025
+ 17692788697762* + 7344528800022 + 87782430961
fag = 240 — 2039 4 3238 — 22237 4+ 26236 — 2235 + 185234 — 120233
— 270232 — 1232231 + 689230 + 1972229 + 4298228 — 2588227
— 6040226 — 555822° 4 19939224 + 21850223 + 12277222
— 2089022 + 4071220 4 2838829 4 3521028 + 10304217
+ 18728216 + 1408z1° — 3352214 — 16288213 + 20512212
+ 163202t — 37728210 — 133122° — 71682% + 256027 — 128025
— 768025 4+ 104962 + 716823 + 51222 + 2048z + 1024

Example foq is from [1]; example f3 is from [3]. The other examples are due
to Karim Belabas, Bill Allombert, and Igor Schein of the PARI development
team.
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