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1

Abstract2

The present research is focused on the application of hyperspectral images for the3

supervision of quality deterioration in ready to use leafy spinach during storage4

(Spinacia oleracea). Two sets of samples of packed leafy spinach were considered: a)5

first set of samples was stored at 20°C (E-20) in order to accelerate the degradation 6

process; these samples were measured the day of reception in the laboratory and after7

two days of storage; b) second set of samples was kept at 10°C (E-10); the 8

measurements were taken throughout the period of storage, beginning the day of9

reception and repeating the acquisition of images three, six and nine days after.10

Twenty leaves per testing date of test were analyzed. Hyperspectral images were 11

acquired with a push-broom CCD camera equipped with a spectrograph VNIR (400 to12

1000 nm). Calibration set of spectra was extracted from E-20 samples, containing three13

classes of degradation: class A (optimal quality), class B and class C (maximum14

deterioration). Reference average spectra were defined for each class. Three models,15

computed on the calibration set, with a decreasing degree of complexity were 16

compared, according to their ability for segregating spinaches at different quality17

stages: spectral angle mapper distance (SAM), partial least squares discriminant 18

analysis models (PLS-DA), and a non linear index (Leafy Vegetable Evolution, LEVE)19

combining five wavelengths included among the previously selected by CovSel20

procedure. In sets E-10 and E-20, artificial images of the membership degree 21

according to the distance of each pixel to the reference classes, were computed22

assigning each pixel to the closest reference class. The three methods were able to 23

show the evolution of the leaves along the time.24

25
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1

1. Introduction2

Fresh-cut fruit and vegetables, initially called minimally processed or lightly processed3

products, can be defined as any fresh fruit or vegetable that has been physically4

modified from its original state (by peeling, trimming, washing and cutting) to obtain 5

100% edible product that is subsequently bagged or prepackaged and kept in 6

refrigerated storage (Martín-Belloso and Soliva-Fortuny, 2011).7

The major preservation techniques applied to prevent or delay spoilage are chilling8

storage and modified atmosphere packaging, combined with chemical treatments and9

application of moderate heat treatments such as hot water or steam (Martín-Diana et10

al., 2007). Innovative sanitizers and preservation techniques are being introduced.11

However, change from use of conventional to innovative treatments requires 12

knowledge of the benefits and restrictions as well as a practical outlook. These13

techniques must satisfy the consumers and maintain a balance between sensory and 14

quality. Consequently, the sector is asking for innovative, fast, cheap and objective 15

techniques to evaluate the overall quality and safety (or some of the specific quality16

parameters) of fresh-cut products in order to obtain decision tools for implementing17

new packaging procedures. Hyperspectral imaging technique could be a first approach.18

In recent years, hyperspectral imaging technique has been regarded as an analytical19

tool for analyses conducted for quality evaluation of food products in research, control,20

and industries. The hyperspectral imaging system allows integrating spectroscopic and 21

imaging techniques to enable direct identification of different components or quality22

characteristics and their spatial distribution in the tested sample (ElMasry et al., 2010).23

Measurement of the optical properties of food products has been one of the most24

successful nondestructive techniques for quality assessment to provide several quality25

details simultaneously. In these spectroscopic techniques, it is possible to obtain 26
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information about the sample components based on the light absorption of the sample,1

but it is not easy to extract the information on position/location. i. The combination of2

the strong and weak points of visible/near-infrared spectroscopic techniques and vision3

techniques is the hyperspectral imaging technique. Because hyperspectral imaging 4

techniques overcome the limits of spectroscopic techniques and vision techniques,5

they have emerged as a powerful technique in agricultural and food systems. Based on6

hyperspectral imaging techniques, multispectral imaging system can be built for real-7

time implementations (Lee et al., 2005). It involves measuring the intensity of diffusely8

reflected light from a surface at one or more wavelengths with relatively narrow band9

passes. Since image data are considered two-dimensional, by adding a new dimension10

of ‘‘spectrum’’ information, the hyperspectral image data can be perceived as a three-11

dimensional data cube (Chao et al., 2001). Hyperspectral imaging, like other12

spectroscopy techniques, can be carried out in reflectance, transmission or13

fluorescence modes, being the reflectance the most usual mode.14

One of the main challenges in the hyperspectral vision is the management and analysis 15

of large and complex databases to extract relevant information contained in them16

(Fernandez Pierna et al., 2010). The starting point for this are the methods of spectral17

pre-processing (normalization, smoothing, differentiation, etc.) and multivariate analysis 18

(correlation techniques, principal component analysis, discriminant analysis, etc.)19

traditionally applied to spectroscopy (Gowen et al., 2007). In the case of hyperspectral20

vision these procedures can be applied to the whole image or to sub-populations of21

pixels representative of the variability of the samples. The projection of the whole 22

images onto new spaces generated by multivariate analysis or the computation of23

indexes based on some wavelengths generate virtual images that must be analyzed24

searching for similarity.25

On hyperspectral imaging, spectral pre-processing techniques are applied to remove 26

non -chemical biases from the spectral information, e.g. scattering, temperature27
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influence (Hernandez-Sanchez et al., 2003) or device calibrations (Gowen et al., 2007);1

(Fearn et al., 2009); (Rinnan et al., 2009). Geometric pre-processing methods are2

applied to correct spectral data from drift baseline, non linearity, curvilinearity, as well3

as additive and multiplicative effects. Some of these methods are the standard normal4

variate transform (SNV), smoothing and differentiation (Zeaiter et al., 2005). However 5

pre-processing could also destroy valuable information and therefore these methods6

should be applied carefully.7

Researchers are often interested in finding the most relevant few wavelengths that8

could influence the quality evaluation of the product (ElMasry et al., 2007). Several9

strategies have been performed to select few wavelengths from hyperspectral data in10

order to design the best adapted multispectral imaging system, such as general visual11

inspection of the spectral curves and correlation coefficients (Keskin et al., 2004),12

analysis of spectral differences from the average spectrum (Liu et al., 2003), stepwise 13

regression (Chong and Jun, 2005), orthogonal projection methods such as principal14

component analysis (Mehl et al., 2004); (Xing and De Baerdemaeker, 2005) or CovSel15

method (Roger et al., 2011), a priori knowledge of pigment spectral signatures and/or16

comparison of different spectral indexes, (Lu and Peng, 2006; Lleo et al., 2011; Mehl et 17

al., 2004; Merzlyak et al., 2003; Zude, 2003)18

Image analysis can be implemented in several food products characterization (Du and 19

Sun, 2006); (Sun, 2010); (Cubero et al., 2011); Gowen et al. (2007). Regarding20

hyperspectral in fruits and vegetables safety, there are many published results 21

(ElMasry et al., 2012); some of them are related to the detection of sour skin 22

(Burkholderia cepacia) in infected onions (Wang et al., 2012), fecal contamination in 23

apples (Liu et al., 2007) and contamination by fungi in maize (Del Fiore et al., 2010).24

However, few applications of hyperspectral vision system have been focused on ready25

to use leafy vegetables until now. As an example, there is a research concerning rapid 26
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detection of Escherichia coli contamination in packaged fresh spinach using 1

hyperspectral imaging (Siripatrawan et al., 2011).2

The present work aims at proposing a) the development and optimization of a3

hyperspectral vision system for monitoring the evolution of minimally processed 4

spinaches during storage, b) the establishment of multivariate analysis procedures to 5

identify and classify the damages that occur over the lifetime of the product, like the6

changes of pigments and structure and incipient rot. Models with decreasing degree of7

complexity are compared according to their ability for segregating spinaches at8

different quality stages. In a first step all the wavelengths of the spectra were taken into9

account, computing spectral angle mapper distance to the reference spectra (SAM), in10

a second step partial least squares discriminant analysis models (PLS-DA) were 11

performed, and finally the CovSel procedure for variables selection was implemented12

and a non linear index based on a subset of the selected wavelengths is proposed.13

2. Materials and Methods14

2.1. Sample collection15

Two sets of samples of spinach (Spinacia oleracea) minimally processed, packed in 16

sealed plastic bags (200 g) were considered for further tests and analysis, with the goal17

of generating sufficient variability in the rate of deterioration. A single leaf of spinach18

was considered as one sample unit. Two sets of experiments were conducted on two 19

sets of samples. In the first experiment, packed leafy spinach purchased from a local20

wholesale produce distributor was stored at 20°C (E-20), in order to accelerate the21

degradation process, and measured the day of reception of samples in the laboratory22

(T0) and after 2 days of storage (T2). In the second experiment, other set of samples 23

with the same origin (E-10), was left at 10°C; the measurements were taken throughout24

the period of storage, beginning the day of reception (T0) and repeating the acquisition25

of images 3, 6 and 9 days after (T3, T6 and T9 respectively). 20 leaves per day of test26
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were analyzed; in every date, leaves coming from two different packages were 1

considered. Unopened bags of spinach were used for each date. Figure 1 shows RGB2

images of representative leaves of the four days of measurements of the E-10 test.3

2.2. Hyperspectral imaging4

The hyperspectral vision system consisted of a push-broom EMCCD Luca-R camera 5

(AndorTM Technology, Northern Ireland) equipped with a spectrograph Hyperspec® 6

VNIR (spectral range: 400 to 1000 nm;). The spectral binning was configured to obtain 7

189 wavelengths (spectral resolution 3.17 nm). The acquisition and the storage of the8

images were made through specific software (Headwall Hyperespec®, Headwall9

Photonics Inc, USA). The illumination was provided by two halogens lamps with 10

regulated and variable intensity. Each individual leaf was placed on a platform that11

moved under the camera (MoCo DC motor controller, Micos, USA). The sample was 12

scanned line by line according to the movement (push-broom system). The spatial13

resolution was 260 µm.14

The leaves were placed on a black platform to acquire the greater dimension (direction15

of the main nerve) and a width of 20 mm. The images were acquired from the beam of16

the leaves. Once the raw images were acquired, the corresponding relative reflectance17

hypercube was computed, containing the relative reflectance spectrum of each pixel of 18

the image with respect to a reference (mean spectrum of a barium sulfate white 19

reference).20

2.3. Calibration set21

Calibration set was extracted from E-20 samples, which contained the deterioration22

extreme states. Three classes of degradation were identified on those images: Class A, 23

optimal quality, fresh tissue from first day (T0); Class B, from non-fresh tissues 24

belonging to samples of the second date of measurements (T2), but without visible 25

deterioration; Class C, regions with visible deterioration on T2 samples. On the26
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hyperspectral images, areas belonging to different leaves were manually selected and 1

their pixels assigned to one of the three defined classes. All the spectra of those 2

regions composed the calibration set that was constituted by 3600 spectra (12003

spectra of each class). The average spectrum of each class was computed.4

This calibration set was considered for the computation of PLS-DA model and the5

application of CovSel procedure.6

2.4. SAM distance7

One of the most applied strategies for material mapping is the use of similarity8

measures. Frequently, studies make use of a deterministic similarity measure to 9

compare an unknown pixel spectrum with a library of reference spectra (Keshava, 10

2004). Spectral Angle Mapper (SAM), is a common distance metric, which compares11

an unknown pixel spectrum t to each spectrum r of the K considered spectra of12

reference, and assigns t to the class reference having the smallest distance. The13

reflectance spectra of individual pixels can be described as vectors in an n-dimensional14

space, where n is the number of spectral bands. Each vector has a certain length and15

direction. The length of the vector represents brightness of the pixel, while the direction16

represents the spectral feature of the pixel. Variation in illumination mainly affects the17

length of the vector, while spectral variability between different spectra affects the18

angle between their corresponding vectors (Kruse et al., 1993). The more similar the19

two spectra are, the smaller the spectral angle between them. The spectral angle can20

have values between 0 and π/2 and is calculated by the formula derived from the inner21

product of two vectors, Θ = cos-1 (∑tiri /(∑ti2∑ri2)1/2), where the sum is extended to all22

the spectral bands, t the reflectance of the actual spectrum and r the reflectance of the23

reference spectrum. The standard Spectral Angle Mapper (SAM), available in most24

image processing software packages, uses the average spectrum of each region of25

interest as spectrum reference (Luc et al., 2005).26
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SAM distances were computed between the average spectrum of each quality class 1

and each anonymous spectrum of the images belonging to E-20 and E-10 sets. From2

the distance values the membership degree to each class was computed in order to 3

obtain virtual images with pixels having values between 0 and 1. Each pixel was 4

assigned to the reference class to which it computed the maximum membership 5

degree. Artificial images of the assignation of the pixels to the classes were computed.6

2.5. Partial Least Square-Discriminant Analysis (PLS-DA)7

In spectroscopy, in order to create calibration models, a (generally) linear relationship 8

is sought between spectra and reference measurements (responses). Until few years 9

ago discrimination from spectra was less common, in spite of a great number of10

potential applications: defect detection, object or product recognition, outlier detection,11

etc. In discrimination, the variable to predict is qualitative, i.e. it takes its values in an 12

unordered discrete set. Except in the simple case of 2 classes, which is analogous to a 13

quantitative response case, the factorial regression methods are unsuited. The14

discriminant methods, which solve the issues of dimensioning and conditioning,15

proceed similarly to factorial regression: a classical discriminant analysis (DA) is16

performed on latent variables, provided either by a principal component analysis (PCA-17

DA), or by a PLS between the spectra and the class membership (PLS-DA). As far as 18

regression is concerned, PLSR is generally more powerful than PCR, since the latent19

variable design takes into account the relationship between the spectra variables and 20

the responses. Due to the same reason, in the discrimination case, PLS-DA is 21

generally more efficient than PCA-DA (Barker and Rayens, 2003).22

Partial least square and discriminant analysis, PLS-DA, was applied on the calibration23

set (n=3600) between two matrices X and Y. The spectra constituted the X matrix, n x24

p, being n the total number of spectra of the calibration set, and p the number of25

wavelengths. Y matrix had n rows and three columns corresponding to the three26
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classes A, B, C of the calibration set. In the Y matrix, each pixel was codified by three1

numbers corresponding to ‘‘membership values’’, one for each class, with value of 0 or2

1; e.g., a response encoded (0 1 0) means that the sample belongs to class B. Firstly,3

a PLS-2 computed k latent variables, which maximize the covariance between X and Y,4

transforming X in a n x k matrix. On this new reduced matrix, a classical linear 5

discriminant analysis was performed to determine the most discriminant subspace. 6

Each sample was then projected onto this subspace, yielding scores.7

The prediction results are displayed in a confusion matrix, presenting the number of8

samples assigned to each class. These results allow the computation of the error of the9

model (Roussel et al., 2003). A cross validation process was applied, splitting the10

population in ten parts. The resulting errors allowed us to determine the optimal value11

of latent variables. Further the procedure generates discrimination vectors, which allow12

the projection of any anonymous individual on the space generated by these vectors13

obtaining their new coordinates (scores) in this space. 14

The obtained model from calibration set was applied to the totality of the pixels of the15

hyperspectral images E-20 and E-10, and therefore the artificial images of the scores16

were computed. The distance of Mahalanobis was computed between the new17

coordinates of the pixel (scores) and the centroid of each quality class (A, B, C) of the18

calibration set. Each pixel of the images was assigned to the class with the maximum19

membership degree computed according to the distance of Mahalanobis.. Artificial20

images of the assignation of the pixels to the classes were computed.21

2.6. CovSel computation and LEVE index22

CovSel is an algorithm which performs variable selection step by step on the basis of23

their global covariance with all the responses. Each variable selection is followed by24

the projection of the data orthogonally to the selected variable. Therefore the selected25

variables are independent each other as much as possible. At the exit of this procedure 26
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a set of a predetermined number k of variables is generated. CovSel can be used for1

multi-response regression or for discrimination as well.2

CovSel algorithm was applied to the spectra of calibration set aiming at obtaining the3

best combination of wavelengths regarding the process of deterioration. For that, the4

same matrices X, Y than in the mentioned above case of PLS-DA were employed for5

such selection. As a result, a group of k wavelengths of X were selected producing a6

smaller matrix X* of dimension n rows and k columns.7

Further, a non linear index was proposed, resulting of the combination of some of the8

most relevant wavelengths selected by CovSel. Artificial images containing the values 9

of this index were obtained for E-10 and E-20 sets. Analogously to the procedure 10

explained in previous paragraphs, the distances and the membership degrees of the11

pixels to each quality class was computed, considering the centroid values of the index12

for each class. The corresponding artificial images of the assignation of pixels were 13

also obtained for this procedure.14

2.7. Comparison between procedures 15

Several procedures were carried out in order to compare the performance of each16

proposed procedure and its concordance in the assignation of pixels and leaves.17

The artificial images of membership degrees to class C obtained by the procedures 18

proposed were studied by means of Analysis of Variance (ANOVA) in order to compare19

them for the detection of the evolution of the leaves. All pixels of leaves were pulled20

together for the first day (first group n=197,660 corresponding to T0 of E-10 set) and21

for the last day (second group n=182,531 corresponding to T9 of E-10 set).22

Additionally, concordance in the assignation of pixels between methods was tested23

taking into account the percentage of pixels assigned to the same class by the different24

procedures in E-20 and E-10 sets.25
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Finally, each leave was assigned to the class for which it presented the maximum 1

relative frequency (e.g.: number of pixels of Class X/total number of pixels of the leave) 2

according to SAM, PLS-DA and CovSel+LEVE index; so, three assignations (to 3

classes A, B or C) were computed and compared for each sample.4

All the analyses were made by means of routines generated in Matlab 7.0 5

(MathWorks).6

3. Results and discussion7

Preliminary analysis (data not shown) showed that the best performance of the models8

was obtained considering raw spectra; further on, no pre-processing techniques were 9

applied to the spectra before the multivariate data analysis.10

Figure 2a shows the average spectra of the 3 classes A, B, C calculated on the11

calibration set (n=1200 for each class). The reflectance spectrum corresponding to 12

class C presents a general decrease in the whole range from 450 till 1000 nm, being13

particularly high in the region of NIR from 700 till 1000 nm. In addition, the slope of the14

spectrum between 710 and 900 nm is increasing from class A to class C, being this 15

change especially relevant for the most deteriorated samples (class C). Regarding the16

VIS range of the spectra, a general decrease in reflectance values from the soundest17

to the most deteriorated pixels was observed. The spoilage in these leaves induced18

spectral changes different from the ones caused by the aging and senescence typically19

described in leaves by remote sensing researches (Asner, 1998); (Liy et al., 2010).20

These authors stated that aging of vegetation induces a decrease in water content and21

in foliar pigments; as a result, global reflectance increases in all the visible and near-22

infrared range. The high decrease in global reflectance in the spectra of class C could23

indicate that the main effect of the evolution is not the water loss, suggesting that the24

spoilage suffered by packed leaves is different from the typical deterioration observed25

in vegetation by remote sensing. In fact, the deteriorated areas observed in packed26
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leaves seemed to be smashed and moist (Figure 1, treatment T9) whereas in remote 1

sensing the areas affected by deterioration show yellowness, loss of water, chlorophyll2

and some other pigments, but not a moist or smashed aspect.3

Jacquemoud and Baret (1990) stated that the interaction of the light with plant leaves 4

depends on the chemical and physical characteristics of the tissues. Absorption is 5

essentially a function of changes on molecules (chlorophyll a and b, carotenoids, 6

water... etc) and is responsible for the holes in the reflectance spectrum. The refractive 7

index discontinuities within tissue induce scattering which acts on the global trend of8

the reflectance spectrum. The internal structure of the leaves affects the scattering of9

the light, therefore it controls the reflectance of the whole spectrum, being clearer this 10

effect where the absorption is low, especially in NIR.11

The main deterioration effect in the present study is probably the destruction of the12

internal structure of the tissue (wall cells) inducing an increase in free water. It could be13

supposed that refractive index discontinuities decrease within the leaves, leading to a14

reduction of the light scattering and consequently a decrease in the reflectance of the15

spectra. This decrease in reflectance was observed on class C spectra, being16

especially pronounced in the NIR region (above 700 nm) according to Jacquemoud 17

and Baret (1990). Additionally the presence of free water facilitates deeper penetration 18

of the light in the tissue, increasing the path length and making more probable the19

absorption of the light during its travel by the pigments, which decreases the 20

reflectance, mostly in the visible range. Around red edge (670-720 nm) both 21

phenomena occurred: a) the general decrease of global reflectance in NIR region and22

b) the specific decrease in reflectance at red edge induced by the absorption of the23

chlorophyll. The high slope at NIR region (700–900 nm) in the average spectrum of24

class C (Figure 2a) could be caused by the differences in the intensities of these two 25

mentioned phenomena in the red edge range and in the rest of the NIR range where 26

the effect of the absorption could be considered negligible. The average spectrum of27
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class B showed an intermediate stage that could denote an incipient phase of the1

degradation of the structure of the leaves. 2

3.1. PLS-DA / CovSel3

A total of 6 latent variables were chosen for the PLS-DA by means of a cross-validation4

procedure (Geisser, 1993). In addition, it has been checked that the score images5

showed less noise with 7 than with 8 latent variables; in images obtained considering 8 6

latent variables structure details of the leaves, such as veins, were not clearly identified7

(image not shown).8

Figure 2b shows the score plot of the calibration set. Each point of this graph 9

corresponds to the projection of one spectrum of this set onto the 2-dimensional10

discriminant space spanned by the discriminant vectors of the PLS-DA (vp1, vp2). Thus,11

the abscissa and the ordinates of the scores can be interpreted with regard to the12

combination of spectra features (peaks, slopes, etc.) and the shape of the discriminant13

vectors. However, PLS-DA discriminant vectors are normalized but not orthogonal; in 14

our case they are almost collinear, making their interpretation difficult. Trying to15

improve the interpretation of the discriminant vectors, a new vector (u) was computed16

by orthogonalizing vp2 against vp1: u = (I- vp1
T vp1) vp2. Figure 2c and Figure 2d17

present the two vectors vp1 and u, respectively.18

The score plot of Figure 2b shows that vp1 clearly orders the 3 classes from C19

(negative scores) to A (positive scores), through B (null and little positive scores). On20

this axis, classes A and B are overlapping. The discriminant vector vp1 (Figure 2c)21

shows three main features that explain that ordering:22

- A large positive peak around 550 nm contributes positively to the score for23

spectra presenting a high reflectance in this zone, as those of classes A and B,24

meaning that the leaves are less and less green while aging25
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- A sharp positive peak at 700 nm computes a part of the scores which 1

corresponds to the position of the red edge, which collapse when the leaves age 2

- The combination of a negative peak at 720 nm and a positive zone around 760 3

nm computes the slope of the red edge, which decreases when the leaves age4

The second axis of the score plot (Figure 2b) discriminates the low scores of classes A5

and C from the high scores of the class B. The vector u (Figure 2d), which represents 6

the part of vp2 not included in vp1, shows also three main features:7

- A negative zone between 400 and 530 nm combined with a positive one 8

between 530 and 660 nm realizes a colorimetric balance between blue/green and 9

yellow/red colour of the leaves. 10

- A series of peaks and holes in the NIR region, between 800 and 1000 nm. This 11

shape cannot be finely analyzed, but may be due to subtle changes in chemicals.12

Indeed, this spectral zone is affected by sugars, proteins and water (Osborne and 13

Fearn, 1986).14

- A negative peak at 707 nm, which cannot be directly interpreted relatively to 15

score plot.16

The six wavelengths chosen by the CovSel algorithm were: 752, 902, 538, 717, 430 17

and 647 nm, as reported on Figure 2a. With the perspective of a multispectral18

approach, a new non linear index was tested based on the most relevant wavelengths 19

selected by CovSel and on the loadings of the first discriminant vector of PLS-DA.20

Leafy Vegetable Evolution index (LEVE index) focuses on two spectral regions: NIR21

region (750 -900 nm) and VIS region (506 – 614 nm). LEVE index is defined by the22

expression ((R900-R750)/(R900+R750))/((R519+R646)/R538), where Rx corresponds to the23

relative reflectance at x nm.24
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The numerator of LEVE index located at NIR region computed a kind of normalized1

slope between 750 and 900 nm, including the two first wavelengths selected by2

CovSel. The denominator located at VIS region (including two of the wavelengths3

selected by CovSel) was an approximation to the minus normalized second derivative 4

at 538 nm according to the proposal by Lleó et al. (2011). LEVE index increased from5

class A to class C.6

3.2. Virtual images of membership degree7

In Figure 3 and Figure 4, the virtual images of membership degree to class C are 8

showed for the three described classification procedures (i.e. based on SAM, PLS-DA 9

and CovSel plus LEVE index) applied on samples of set E-20 and E-10 respectively.10

All the procedures identified the regions belonging to class C very accordingly. More 11

accentuated evolution could be observed on samples from set E-20, which is 12

concordant with the storage conditions. Inside each leaf it can be observed pixels with 13

a very different rate of deterioration. In addition, leaves belonging to the same storage14

conditions presented different rates of degradation. This fact is especially evident on15

the second date (second row of images of Figure 4) of E-20, where the third, fourth and16

sixth leaves (from left of the row) contained little regions close to class C, whereas the17

last five leaves showed patches of very deteriorated pixels. Regarding E-10, on the18

third line at Figure 5 (third measurement date) four leaves presented an appearance 19

similar to the corresponding to the first date of measurements. That suggests that the20

evolution rate of the leaves is very heterogeneous inside commercial batches, which 21

could be explained by the original condition of the vegetal material on harvest and22

postharvest chain (Medina et al., 2012).23

For ANOVA computation the membership degrees to class C obtained by the three24

methods was considered, comparing the first date of measurements of E-10 spectra 25

with the last date (n=197,660 pixels for first date; n= 182,531 pixels for last date). All26
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methods sense the evolution with a better performance for PLS-DA (F value 582,705 at1

p level 0), which could be expected taking into account that this model includes all the2

wavelengths and it is based on the covariance matrix between the spectra (X) and the3

visual assignation to the deterioration classes A, B and C (Y). Similar F values were 4

obtained for PLS-DA and LEVE index, 333,099 and 320,215 respectively.5

3.3. Virtual images of assignation to quality class6

As mentioned before all pixels of the leaves were assigned to their closest class 7

according to membership degree; the assignation was to the class with highest8

membership degree. Figure 5 shows, such as example, the virtual images for9

assignation to the classes according to LEVE index. Similar pattern of distribution of10

regions in the three artificial images of pixels classification was observed in calibration11

(E-20) and validation (E-10) sets of leaves (data not shown). The analysis of this 12

observation was performed quantifying the percentage of pixels with the same 13

assignation for the different procedures (Table 1).14

The assignation of the pixels to one of the three classes showed high concordance15

when comparing the three methods of analysis. The highest levels of concordance16

occurred between the assignations based on SAM distance and on LEVE index (93% 17

and 87% for E-20 and E-10 sets respectively), whereas the most discrepant 18

assignations corresponded to the comparison between PLS-DA and LEVE index (76% 19

and 75% for E-20 and E-10 sets). Consequently, LEVE index could be employed20

instead of PLS-DA or SAM distance, presenting the advantage of using only 5 21

wavelengths and not all the spectra, which could be integrated in a simpler 22

multispectral vision system.23

In addition, classification of leaves into the class in which the relative frequency of 24

pixels is the highest reinforced the fact of concordance between methods (Table 2): the25

82.5% and the 92.5% of leaves of E-20 and E-10 respectively, were classified in the26
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same category by the three methods. The highest level of coincidence was achieved1

between SAM distance and LEVE index with the 95% (E-20) and 97.5% (E-10) of the2

leaves assigned to the same quality class. Regarding the discrepancies, LEVE index3

assigned higher membership degree to class C which allowed segregating better4

between class C and class B. Figure 6 presents the images of membership degree to5

class C of one leave of E-10 set assigned to class B according to SAM distance (left)6

and to class C according to LEVE index (right). It suggests that if the identification of all7

the possible problematic leaves is crucial, it could be better to use LEVE index instead 8

of SAM distance.9

4. Conclusions10

The main differences observed in the reflectance spectra over storage time was an 11

overall decline in the intensity of VIS and NIR ranges and an increase in the slope of12

between 710 and 900 nm, which was particularly pronounced for the most deteriorated13

quality category. A hypothesis has been formulated for the explanation of these effects:14

the destruction of the internal structure of tissue cause an increase in free water15

content and consequently the decrease of the refractive index discontinuities within the 16

leaves and the reflectance of the spectra. Furthermore, the same fact also facilitates17

the deeper penetration of light increasing the probability of being absorbed by pigments18

in the VIS range, which also decrease the reflectance. The differences in the intensities 19

of these two phenomena (increase in free water content and increase in absorption of20

the light by pigments) in the red edge could explain the high slope at the NIR region in 21

the average spectrum of the most deteriorated class.22

The performed tests showed the ability in discriminating between different storage23

periods of virtual images resulting from the application of three analytical techniques24

(SAM, PLS-DA, CovSel and non linear index) to the hyperspectral images.25
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Due to the high intra-date and intra-leaf variability, the study of a first calibration set1

composed according to dates was unsuccessful. Therefore, a calibration population 2

(3600 spectra) was defined by a supervised selection visually of pixels according to3

their evolution stage.4

The implementation of different multivariate techniques on the calibration sub-5

population generated classification models in three categories that responded to the6

main states of the evolution, followed by the product in the tests. The projection of the7

hyperspectral images onto the generated subspaces and the assignation of each pixel8

to one of the defined categories, allowed the identification of regions with different9

states of evolution in the leaves. The system made possible to determine the10

percentages of the areas of these regions and to establish decision rules about the11

overall quality of the leaf, which is a clear advantage compared to the12

spectrophotometric methods that analyze a small area of the sample.13

The method CovSel, dedicated to the problem of variable selection for highly14

multivariate data, allowed the identification of the most relevant (and independent) 1015

wavelengths, which were the starting point for the definition of a non linear index, LEVE16

index, combining 5 of the 10 wavelengths selected by CovSel, achieving similar results 17

that SAM distance analysis and PLS-DA, these last two procedures using the complete 18

spectra. More than the 95% of the leaves were classified into the same quality class by19

SAM distance and by LEVE index.20

Acknowledgements21

The funding of this work has been covered by the MICINN with the project Multihort22

(AGL2008-05666-C02-01) and by the Technical University of Madrid with de project23

Durasfrut II (AL11-P(I+D)-06). LPF-TAGRALIA is part of the CEI Moncloa Campus of24

Excellence, UPM-UCM25

Author-produced version of the article published in Postharvest Biology and Technology, 2013, 85, 8-17. 
The original publication is available at http://www.sciencedirect.com. 
DOI :  10.1016/j.postharvbio.2013.04.017 



21

1

Table 1.Percentage of concordance between methods in the assignation of the pixels 2

of leaves to the classes A, B and C for E-20 and E-10 samples3

Table 2. Percentage of concordance between methods in the assignation of the leaves 4

to the three classes A, B and C for E-20 and E-10 samples.5

Figure 1. Representative leaves of the E-10 set along the dates of measurements.6

Figure 2. a: Average spectra of the 3 classes A, B and C (n=3600 spectra in total);7

vertical lines indicate the 6 wavelengths selected by CovSel; b: scores of the 3 classes8

calculated by the PLS-DA on the learning set; c: first discriminant vector (vp1); d:9

residual of the second discriminant vector to the first one (u).10

Figure 3. Visualization of the membership degree to class C, in E-20 samples, for the11

different proposed procedures (each row of the table). Redder pixels are closest to 12

class C (more deteriorated areas) whereas deep blue pixels are far from class C 13

(healthy tissues). Each image contains the leaves corresponding to first date, first row,14

ant last date of measurements, second row15

Figure 4. Visualization of the membership degree to class C, in E-10 samples, for the16

different proposed procedures. Redder pixels are closest to class C (more deteriorated17

areas) whereas deep blue pixels are far from class C (healthy tissues). Each image18

contains the leaves corresponding to the four dates of measurements: each row19

corresponds to one of the dates of measurements.20

Figure 5. Visualization of the assignation of each pixel to one of the three quality21

classes considering the maximum membership degree. Blue color corresponds to class 22

A, orange color to class B and color brown to class C.23
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Figure 6. Images of membership degree to class C of one leave of E-10 set assigned1

to class B according to SAM distance (left) and to class C according to LEVE index2

(right).3
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SAM PLS-DA LEVE index

E-20

SAM 100% 77% 93%

PLS-DA 77% 100% 76%

LEVE index 93% 76% 100%

E-10

SAM 100% 80% 87%

PLS-DA 80% 100% 75%

LEVE index 87% 75% 100%

Table 1.Percentage of concordance between methods in the assignation of the pixels 

of leaves to the classes A, B and C for E-20 and E-10 samples

Table
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SAM PLS-DA LEVE index

E-20

SAM 100% 85% 95%

PLS-DA 85% 100% 85%

LEVE index 95% 85% 100%

E-10
SAM 100% 93.75% 97.5%

PLS-DA 93.75% 100% 93.75%

LEVE index 97.5% 93.75% 100%

Table 2. Percentage of concordance between methods in the assignation of the leaves 

to the three classes A, B and C for E-20 and E-10 samples.

Table
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Figure 1. Representative leaves of the E-10 set along the dates of measurements.
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a b

c d

Figure 2. a: Average spectra of the 3 classes A, B and C (n=3600 spectra in total);

vertical lines indicate the 6 wavelengths selected by CovSel; b: scores of the 3 classes

calculated by the PLS-DA on the learning set; c: first discriminant vector (vp1); d:

residual of the second discriminant vector to the first one (u).
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Procedures Calibration

SAM distance

PLS_DA

7 latent variables

CovSel + LEVE index

Figure 3. Visualization of the membership degree to class C, in E-20 samples, for the

different proposed procedures (each row of the table). Redder pixels are closest to 
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class C (more deteriorated areas) whereas deep blue pixels are far from class C 

(healthy tissues). Each image contains the leaves corresponding to first date, first row,

ant last date of measurements, second row.
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CovSel + 

LEVE index

Figure 4. Visualization of the membership degree to class C, in E-10 samples, for the

different proposed procedures. Redder pixels are closest to class C (more deteriorated

areas) whereas deep blue pixels are far from class C (healthy tissues). Each image

contains the leaves corresponding to the four dates of measurements: each row

corresponds to one of the dates of measurements.
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Procedures E-20 set E-10 set

LEVE index

Figure 5. Visualization of the assignation of each pixel to one of the three quality

classes considering the maximum membership degree. Blue color corresponds to class 

A, orange color to class B and color brown to class C.
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Figure 6. Images of membership degree to class C of one leave of E-10 set assigned

to class B according to SAM distance (left) and to class C according to LEVE index

(right).
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