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Degenerate parabolic operators of Kolmogorov type
with a geometric control condition

Karine BEAUCHARD? Bernard HELFFER! Raphael HENRY? Luc ROBBIANOSY

Abstract

We consider Kolmogorov-type equations on a rectangle domain (z,v) € Q = T X
(—1,1), that combine diffusion in variable v and transport in variable = at speed v7,
~v € N*, with Dirichlet boundary conditions in v. We study the null controllability of
this equation with a distributed control as source term, localized on a subset w of 2.

In dimension one, when the control acts on a horizontal strip w = T x (a, b) with
0 < a < b <1, then the system is null controllable in any time 7" > 0 when v = 1, and
only in large time 7" > Tynin > 0 when v = 2 (see [10]). In this article, we prove that,
when v > 3, the system is not null controllable (whatever T is) in this configuration.
This is due to the diffusion weakening produced by the first order term.

When the control acts on a vertical strip w = w1 X (—=1,1) with w1 C T, we
investigate the null controllability on a toy model, where (9, € T) is replaced by
((=A)/2,z € Q1), and Q; is an open subset of RY. As the original system, this toy
model satisfies the controllability properties listed above. We prove that, for v = 1,2
and for appropriate domains (€21, w1 ), then null controllability does not hold (whatever
T > 0 is), when the control acts on a vertical strip w = w1 x (—1,1) with w7 C Q4.
Thus, a geometric control condition is required for the null controllability of this toy
model. This indicates that a geometric control condition may be necessary for the
original model too.

1 Introduction

1.1 Origin of the problem
The goal of this article is to study the null controllability of Kolmogorov-type equations

Orf(t,z,v) — v 0, f(t, x,v) — O2f(t, x,v) = u(t,z,v)1,(z,v), (t,z,v) € (0,T) x £,
flt,z,£1) =0, (t,z) € (0,T) x T,
f(o,l‘,v):fo(l‘,’l}), (x,v)EQ,
(1.1)
where @ =T x (—1,1), v € N*, T'> 0, and the control is a source term u(t, z, v) localized
on a nonempty open subset w of 2. This equation, with v = 1, is close to linearizations
of Prandt or Crocco-type equations for fluids [54, 17, 16]; this motivates the study of the

controllability of (1.1). For other values of v € N*, there are less physical motivations, but
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the behavior of the system with respect to null controllability is extremely interesting, from
a theoretical point of view (finite speed of propagation, geometric control condition, the first
order term weakens diffusion in variable v).

Definition 1.1 (Null controllability). Let T > 0 and v € N*. Systemn (1.1) is null control-
lable in time T if, for any fo € L*(2), there exists u € L?((0,T) x Q) such that the solution
of (1.1) satisfies f(T,-,-) =0 .

By duality, null controllability is equivalent to observability for the adjoint system

Oeg(t, 2, v) + 070, 9(t, x,v) — O2g(t,z,v) =0, (t,z,v) € (0,400) x 0,
g(t,z,£1) =0, (t,z) € (0,T) x T, (1.2)
g(O,I,’l)):go(SC,’U), (I’,U)EQ

Definition 1.2 (Observability). Let T > 0, v € N* and w be a non empty open subset of Q.
System (1.2) is observable in w in time T if there exists C > 0 such that, for any go € L*(£2),
the solution of the Cauchy problem (1.2) satisfies

T
/|g(T,z,v)|2dxdv<c/ /|g(t,x,v)|2dxdvdt.
Q 0 w

Equation (1.2) combines diffusion in variable v and transport in variable z (at speed
v7). Thanks to the interplay between these two phenomena, the equation diffuses both in
variables v and z (see Proposition 6.2), contrarily to equation (9; — 92)g(t,x,v) = 0. But,
the global diffusion is weaker than for the 2D heat equation (9; — 92 — 92)g(t,x,v) = 0.
Thus, natural questions are the following ones.

Question 1: Is the diffusion in variable v strong enough for observability to hold when
the control acts on a horizontal strip w = T X (a,b) with 0 < a < b < 1, whatever v € N*
is? (i.e. as for equation (9; — 92)g(t,x,v) =0, (t,xz,v) € (0,T) x T x (—1,1))

Question 2: Is the diffusion in variable x sufficient for null controllability to hold when
the control acts on a vertical strip w = wy x (—1,1) where w; CC T ? (i.e. as for the 2D
heat equation (9; — 82 — 92)g(t,z,v) =0, (t,z,v) € (0,T) x T x (—1,1))

The goal of this article is to answer the first question and to study the second one for a
toy-model.

Null controllability of Equation (1.2) is studied in [10] when the control is localized in
a horizontal strip w = T x (a,b) with —1 < a < b < 1. Precisely, the following theorem is
proved by the first author in [10].

Theorem 1.3.

1. Ify=1and w =T x (a,b) with =1 < a < b < 1, then System (1.2) is observable in
w in any time T > 0.

2. Ify=2and w=T x (a,b) with0 < a <b<1 then there exists T* > a*/2 such that

e System (1.2) is observable in w in any time T > T*;
e System (1.2) is not observable in w in time T < T™* .

3. Ify=2and w=T X (a,b) with —1 < a <0 <b<1 then System (1.2) is observable
i any time T > 0.

When v = 1, Statement 1 above illustrates that there is an infinite speed of propagation
in the direction v. When v = 2, Statements 2 and 3 above illustrate a different situation:
a finite speed of propagation in variable v occurs and the information needs time to reach
the degeneracy {v = 0} from the observation location w when wN{v =0} = 0.



1.2 Main results

The first goal of this article is to prove that observability does not hold, when v > 3 and
the control acts on a horizontal strip: the presence of the first order term v7d, f in the
equation reduces diffusion in the variable v so strongly that observability becomes false.
Thus, Theorems 1.3 and 1.4 below answer Question 1.

Theorem 1.4. If v >3 and w =T x (a,b) with —1 < a < b < 1, then System (1.2) is not
observable in w (whatever T > 0 is).

The second goal of this article is to investigate null controllability of Equation (1.2) for
~v € {1,2} when the control acts on a vertical strip w = w; X (=1,1) where w; CC T.
Unfortunately, we are not able to work directly on Equation (1.2). Thus, we consider the
following toy model.

Dug(t, 2,v) + v (AP g(t,,0) — Rg(t,5,0) = 0, (t,2,0) € (0,T) x 2,
g(t,z,£1) =0, (t,z) € (0,T) x 1, (1.3)
g(O,x,v) :90(1.’”)’ (xav) €y x (7171)7

where

e Q:=Q x (—1,1), Q is a bounded open subset of RN and N; € N*,
e APZ is the Dirichlet-Laplace operator on €y
D(A7)=H*NHs(n),  Ajg=Ag,

e yeN* g€(0,1).

Of course, the case f§ = 1/2 is of particular interest for System (1.2). We use the same
definition for the observability of Systems (1.2) and (1.3).

We are able to deny observability with explicit counterexamples, under an appropriate
assumption P(s) on the open sets (€21, w1 ). In order to express this assumption, we introduce
the non decreasing sequence (A, )nen- of the eigenvalues of (—AL) on Q; and a corresponding
orthonormal sequence of associated eigenfunctions,

—App(z) = Anpn(z), €,
on(x) =0, x €00, (1.4)

lenllzz,) =1.

Definition 1.5 (Property P(s)). Let s € (0,1/2) and wy be an open subset of Qy. The pair
(Q1,w1) satisfies the property P(s) if

e _1 2 o
. ([ ora)]

This assumption is related to the classical problem of high-frequency localization of
the eigenfunctions of the Laplacian. Note that 1/2 is the optimal upperbound for possible
values of s (see [47, Theorem 5.4 and Proposition 5.5]). Particular examples of pairs (€1, w1)
satisfying Property P(s) for any s € (0,1/2) are discussed in Section 4. For instance, if {0y
is a conical open subset of R? (d > 2) generated by an open subset U of S~!,

Y ={z=rr';0<r<1,2' €U},

and w; is an open subset of ; that does not intersect its boundary 921, then the pair
(©1,w1) satisfies Property P(s) for every s € (0,1/2). One can indeed construct a sub-
sequence of eigenfunctions @y, localized near the boundary 02, called “whispering gallery
eigenmodes”.

Our first nonobservability result concerns System (1.3) for v =1.



Theorem 1.6. We assume v =1.

1. If >0 and w = Q4 X (a,b) where 0 < a < b < 1 then System (1.3) is observable in
w in any time T > 0.

2. If B € (0,3/4) and (Q1,w1) satisfies Property P (%), then System (1.8) is not ob-
servable in w = wy x (—1,1) (whatever T > 0 is).

In particular, when 8 = 1/2, the diffusion in the variable v is strong enough for System
(1.3) to be observable in a horizontal strip w = 7 x (a,b) in any positive time 7. On the
contrary, the diffusion in the variable = is too weak for System (1.3) to be observable in
a vertical strip w = wy x (—=1,1) in finite time 7', at least for appropriate pairs (21, w;)
that satisfy Property P(1/3) (which happens, for instance, when €2 is a bounded conical
open subset of R? and wy C €2;). Thus a Geometric Control Condition (GCC) on (Q,w)
is required for (1.3) to be observable in w. Theorem 1.6 indicates that System (1.2), with
v = 1, may require a GCC for being observable. This is a conjecture for the answer of
Question 2.

Our second noncontrollability result concerns System (1.3) for v = 2.
Theorem 1.7. We assume v = 2.

1. If 3> 0 and w = Oy x (a,b) where 0 < a < b < 1 then there exists T* > a®/2 such
that

e System (1.8) is observable in w in any time T > T*,
e System (1.8) is not observable in w in time T < T*.

2. If B € (0,1) and (21, w1) satisfies Property P (g), then System (1.3) is not observable
inw=w; X (—1,1) (whatever T > 0 is).

In particular, when 8 = 1/2, the diffusion in the variable v is strong enough for Sys-
tem (1.3) to be observable in a horizontal strip w = Q1 X (a,b), but there is a finite speed
of propagation of the information from the observation location w to the degeneracy set
{v = 0}. On the contrary, the diffusion in the variable z is too weak for (1.3) to be ob-
servable in a vertical strip w = wy x (—1,1) in finite time T, at least for appropriate pairs
(@1, w1). Thus a GCC on (Q,w) is required for (1.3) to be observable in w. Theorem 1.7
encourages to conjecture that a GCC condition should be required for System (1.2), with
v = 2, to be observable.

1.3 Bibliographical comments
1.3.1 Null controllability of the heat equation

The null and approximate controllabilities of the heat equation are essentially well under-
stood subjects for both linear and semilinear equations, for bounded or unbounded domains
[3, 27, 30, 32, 33, 34, 37, 44, 46, 48, 51, 52, 62, 63] and also with discontinuous [28, 12, 13, 57]
or singular [61, 29] coefficients.

In particular, the heat equation on a smooth bounded domain 2 of R? (d € N*), with
a source term located on an open subset w of €, is null controllable in arbitrarily small
time T and with an arbitrarily small control support w. This result is related to the infinite
speed of propagation of information in heat equation. It is proved, for the case d = 1 by
H. Fattorini and D. Russell [31, Theorem 3.3|, and, for d > 2 by O. Imanuvilov [42, 43]
(see also the book [36] by A. Fursikov and O.Imanuvilov) and G. Lebeau and L. Robbiano
[46]. It is then natural to wonder whether the same result holds for degenerate parabolic
equations.



1.3.2 Boundary-degenerate parabolic equations

The null controllability of parabolic equations degenerating on the boundary of the domain
in one space dimension is well understood, but much less is known in higher dimension.
Given 0 < a < b < 1 and v > 0, let us consider the 1D equation

dw(t,x) + Oy (x?0pw)(t, ) = u(t, z)1(qp) (), (t,z) € (0,400) x (0,1),

with suitable boundary conditions. Then, null controllability holds if and only if v € (0,1)
[22, 23], while, for v > 1, the best result one can obtain is the so called “regional null
controllability”[21], which consists in controlling the solution within the domain of influence
of the control. Several extensions of the above results are available in one space dimension,
see [2, 49] for equations in divergence form, [20, 19] for operators in nondivergence form, and
[18, 35] for cascade systems. Fewer results are available for multidimensional problems, and
they are mainly obtained in the case of two dimensional parabolic operators which simply
degenerate in the normal direction to the boundary of the space domain, see [24].

1.3.3 Parabolic equations degenerating inside the domain

In [50], P. Martinez, J. Vancostenoble and J.-P. Raymond study linearized Crocco type
equations

atf(t7‘/'r7v) + axf(t7‘/'r7v) - 8’U’Uf(t’ "I},’U) = u(t7$7v)]‘w(m7/u)7 (t7 ‘r’ ’U) e (07T) X T X (07 ]‘)7
f(t,z,0)= f(t,z,1)=0, (t,z) € (0,T) x T.

For a given strict open subset w of T x (0,1), they prove that null controllability does
not hold: the optimal result is regional null controllability. Note that, for Kolmogorov-
type equations (1.2), the coupling between diffusion in v and transport in = (at speed v?)
generates diffusion both in variables x and v (see Proposition 6.2). Thus, the controllability
results are different.

In [11], K. Beauchard, P. Cannarsa and R. Guglielmi study Grushin-type equations

{ atf(t7xay) - 82f(t,$,y) - |Z‘|2Wa§f(t,$’y) = u(t7xay)1w('xay) ) (t,a:,y) € (O7T) X Qa
flt,z,y) =0, (t,z,y) € (0,T) x 9%,
(1.5)
where Q := (-1,1) x (0,1), w € (0,1) x (0,1), and v > 0. Here, the parabolic operator
degenerates along the line {0} x (0,1). They prove that

e null controllability holds in any time 7" > 0 when v € (0,1);
e null controllability does not hold (whatever 7' > 0) when v > 1;

e when v =1 and w = (a,b) x (0,1) with 0 < a < b < 1, there exists T},,;, > a?/2 such
that null controllability holds when T > T,,;,, and does not hold when T' < T}y, .

Note that, contrary to Grushin-type equations (1.5), in Kolmogorov-type equations (1.2),
the parabolic operator degenerates everywhere on the domain.

1.3.4 TUnique continuation for Kolmogorov-type equations

In this section, we focus on unique continuation for Kolmogorov-type equations (1.2), i.e.
whether the property g(t,z,v) =0 on (0,7) X w does imply g = 0 on (0,7") x €, for a given
open subset w of Q.

When w = T x (a,b) is an horizontal strip, then the unique continuation of equation
(1.2) holds for every v € N*, as a consequence of Holmgren theorem (the coefficients of the
operator are analytic and the hypersurface T x {a, b} is noncharacteristic). In particular,



Theorem 1.4 emphasizes that, when v > 3, then observability does not hold even if unique
continuation holds.

To our best knowledge, when w is a general open subset of (2, then unique continuation
for Kolmogorov-type equations (1.2) is an open problem.

J.-M. Bony proved in [14] that Hormander’s operators of the form P =3 X7 (i.e. such
that the Lie algebra generated by the X; has maximal rank at any point) with analytic
coefficients, satisfy the unique continuation, in the following sense: if, for some f with non
zero gradient, f~!(a) is a strongly noncharacteristic surface and u is a distribution such that
Pu=0and u=0on f~[(—o0,a)], then u = 0 on a neighborhood of f~1(a). The validity
of the same result for Hormander’s operators of the form P = Xy + ), X7 (generalizing
our Kolmogorov operator K = d; + v79, — d2) is an open problem.

When coefficients are not analytic, but only C'°°, unique continuation may not hold.
For instance, S. Alinhac and C. Zuily built in [4] a zero order C*°-perturbation of the
Kolmogorov operator K = 9; + v79, — 02 for which unique continuation does not hold.
There exist C*°-functions u(t,r,v) and a(t,z,v) on a neighborhood V of 0 in R3 such that
Ku+au=0, u(t,z,v) = a(t,z,v) = 0 when v < 0, and 0 € Supp(u). And the same result
holds with any surface {v = constant}.

The result of S. Alinhac and C. Zuily leaves open the question of the unique continuation
for System (1.2). Indeed, their counterexample does not satisfy the boundary conditions of
(1.2) and it cannot be built with @ = 0. However, it suggests that unique continuation for
System (1.2) is a subtle issue.

1.4 Structure of the paper

The article is organized as follows.

Section 2 is devoted to the proof of Theorem 1.4.

In Section 3, we prove the negative statements of Theorems 1.6 and 1.7. These results
rely on a fine semi classical analysis of the complex Airy and Davies operators.

In Section 4, we propose examples of pairs (21,w;) satisfying Property P(s) for any
s€(0,1/2).

The proof of the positive results of Theorems 1.6 and 1.7 relies on the decomposition of
the solution of (1.3) on a Hilbert basis of L*(Q1), called "Fourier decomposition’ with a slight
abuse of vocabulary. Thus, the validity of this decomposition and associated well-posedness
results are treated in Section 5.

In Section 6, we prove the positive results of Theorems 1.6 and 1.7. The strategy is
the same as in [10], but intermediate results have been improved. Hence we rewrite the
proof completely. First, we state a Carleman estimate for the 1D-heat equation satisfied
by the Fourier components. Then, we quantify the dissipation of Fourier modes; this result
is stronger than in [10]. Then, we combine these two tools to prove the first statements of
Theorems 1.6 and 1.7.

2 Nonobservability when v > 3

The goal of this section is the proof of Theorem 1.4. The strategy is the same as in [10,
Section 5.3] but intermediate results are different. Let v € N*, a,b,T € R be fixed, in the
whole section, such that

v23, T>0and0<a<b<1.

Step 1: Approximate solution.
Let € > 0 be such that b < 1—¢€ and 61 € C*°(R) be such that Supp(f_) C (-1 —¢,—1+¢€),



Supp(f+) C (1—¢,1+¢€) and 0+ (+1) = 1. Let u € C be some eigenvalue, with smallest real
part, of the operator (785 +14y7), with domain

D, :={uec H*[R)s. t. y'u e L*(R)}.

Note that this operator has compact resolvent (see [39]); moreover, u is a simple eigenvalue
and a real number if v = 3. Let £ be an associated eigenfunction

{ —&"(y) +iyey) = nély), yeR,
€@y = 1.

We recall that (see [58, Chapter 10, Sections 59 and 60])
24y
Ey)| < Ce W Wy eR (2.1)

for some constants C,¢c > 0.
For n € N*, we define

oce{—,+}
We have
{ s Gn(t,0) +in vV gn(t,v) — 02Gn(t,v) = E,(t,v), (t,v) € (0,T) x (-1,1),
gn(t, £1) =0, te(0,T),
where

E,(t,v) = nE Z ((u nT —in )0, (v) + Hg(v))f (0’ nﬁ) e HPITE L (2.2)
06{754'}

Let g, be the solution of

Osgn(t,v) +invY g, (t,v) — 0%gn(t,v) =0, (t,v) € (0,T) x (-1,1),
gn(t, 1) =0, ¢
gn((),v) = gn(ou U) y v

We have

1d, 2 ~ 2 P
§$H(gn_gn)(t)”L2(fl,l) = —100(gn—9n) )| 72(=1,1)TRe X En(t,v)(gn — gn)(t,v)dv | .
By Poincaré and Cauchy-Schwarz Inequalities, we deduce that, for every ¢ € [0,T],

2

d, . 4
1@ = 92) Ol 7210 < = 1@ = 9 ON72 (1,0 + S IEOIZ2(-1,1)

From this inequality and (2.2), we deduce that, for every ¢ € [0, T]

~ t _x2 (it
H(gn_gn)(t)niﬂfl,l) <7 o ||En(7')||%2(71,1)6 T dr
2 - nTy 422 )7
<Cn2+ﬁ > f(onﬁ)‘ fote( 2Re (p) 2+"r+4> dr
oe{-1,1}

conh . [e(oh)f

oce{-1,1}



where the constant C' may change from line to line.
By (2.1), we deduce that

(G — 90) ()| L2 (-1.1) < CREEFT eV Ve e [0,T]. (2.3)
Step 2: Conclusion.

Working by contradiction, we assume that System (1.2) is observable in w in time 7. The
observability inequality applied to the solution g(t,z,v) := g, (t,v)e™" of (1.2) gives

1 T b
/ |gn(T,v)|2dv<C/ / |gn(t,v) > dvdt, ¥n € N*.
-1 0 a

We deduce from the triangular inequality, the previous relation and (2.3) that

5 T b~ 9 1/2 ~
190 (D)l L2(=1,1) < (C fo f |Gn (¢, v)] dvdt) 1@ = 90) (D)l 22(-1.0)
1/2
(Cfo J2 /(G = gn) tv)|2dvdt)
1/2 B+2y
< (C s fa |§n(t,v)|2dvdt) + (14 VTC)C nitFe=cVn
However, there exists C' > 0 such that
_2
HQTL(T)”LQ > Cefﬁe(,u)n2+'vT
and
1/2
( NIAG |2dvdt)
2 2
(4 27 e o)
1 1/2 N 12
= <f 1+ (y)|? dy) <f0T eZRe(u)n2+wtdt>
= 1/2
Cn2+v (fb 1 —2C|Zl\ =5 dy> by (2.1)

—caz
< Cn2(2+w)e ca ﬁ

o 1/2
f nE= e—2Re (u)n 27t dvdt> because b < 1 — ¢

N

This gives a contradiction, when n — 400, because % < % when v > 2. O

3 Nonobservability on a vertical strip

The goal of this section is the proof of the nonobservability results of Theorems 1.6 and 1.7.

3.1 Accurate spectral analysis

In this section, we are interested in the spectrum of the operators

2 2

A(—Rr,r) = d2+zy and H_g Rr) dTl? 2

+ 1y
defined on the segment (—R, R), R > 0, with Dirichlet boundary conditions at y = £R,

with domains
D(A(-r.r) = D(H(_r.r)) = H* N Hy((—R, R),C).

More precisely, we study the asymptotic behavior, as R — +oo, of the bottom of the spec-
trum of A(_g gy and H_g r) and we prove the following two theorems, in Subsections 3.3
and 3.4 respectively.



Theorem 3.1. Let py1 < 0 be the first zero of the Airy function. Then,

. |1
H}gnoo (mfRea(A(_RR))) =5 (3.1)

where 0(A(_g,r)) denotes the spectrum of A_g r).- Moreover, for every ¢ > 0, there exists
R. > 0 and M. > 0 such that, for every R > R,,

-1
su ACrp — (v +iv)) H < M.. 3.2
VS laalf2 s |(Acnm = +w) ca-rR) (32)
v € R
Now, let us consider the case of the Davies operator.
Theorem 3.2. We have
V2
lim_(‘in rm)) = .
Jim {in Reo(H(—r,Rr)) 5 (3.3)

Moreover, for every € > 0, there exists R, > 0 and M, > 0 such that, for every R > R.,

sup H <"H(_R7R) —(y+iv < M. (3.4)
v < V2/2 — ¢,
v ER

-1
)) Hl:(Lz(fR,R))

Analogous questions have been considered in [5, 8, 7, 9] and [6] in relation with problems
occuring in superconductivity. We study these two operators using the techniques developed
in these references. The study of more general cases (dimension 2) complementary to those
studied in [5] and [6] will be done in [41].

3.2 Proof of the negative statements of Theorems 1.6 and 1.7

The goal of this subsection is the proof of the second statements of Theorems 1.6 and 1.7,
by application of the results of the previous subsection. Thus, in the whole subsection, =,
B8, 21 and w; are fixed such that

e either y =1, 8 € (0,3/4) and (21, w;) satisfies Property P(25/3),
e ory=2,5¢€(0,1) and (21,w;) satisfies Property P(5/2).
For n € N*, we introduce the operator A, ., defined by

2
D(ATL,’Y) = H2 n H(%((_L 1)7(C) ) A?L,’Yw = _Cdl? + Z)\gl)’y’(ﬂ :

8
By rescaling (y = A" v) and using Theorems 3.1 and 3.2, there exist C1,Cs > 0 and n, € N*
such that, for every n > n., A, 5 has an eigenvalue p,, satisfying

% 22-f’¥
Cian™ < Re(un) < CoAn™ . (3.5)

We introduce a normalized eigenfunction v, of A, , associated with the eigenvalue u,,

—¢n(v) + Mngn(v) = pinn(v), veE(-1L1),
Y (£1) =0,
[¥nllL2(—10) =1.
Then the function
Gn(t,2,0) 1= o (2), (v)e Fnt
is a solution of (1.3). The second statement of Theorems 1.6 and 1.7 is a consequence of the
following proposition.



Proposition 3.3. For every T > 0, we have

fo f lgn (t, z,v)|? dedvdt
n~>+oo -

Jo lgn (T, 2, v)|? dadv

Proof of Proposition 3.3:
We have

/ |gn (T, x,0)|>dv = e~ 2Re ()T
Q

because 1,, and ¢,, are normalized in L2.
By Fubini’s Theorem, we get

Iy S lgn(t o) P dadvdt = (f; e2Re G tat) (1 [pa@) dv) ([, lon(@)] de)

e~ 2Re(un)T

= 1= QRC(,uT,) fwl \gon(x)|2 dx .

Thus,
fOT fw |gn(t, 2,v)|? dodvdt — e2Re(m)T _ 1 / "y
= n(z)? dx .
Jo lgn (T, z,0)|? dzdv 2Re (jin) " ¥

Let C be a positive constant such that

C>2CT, (3.6)

where Cs is as in (3.5).
Let s:= % By Property P(s), there exists a subsequence (ny)xren such that

-1
YR In ( gonk(:v)|2d:c) >C, VkeN,
N w1

or, equivalently
/ o, (2)2dz < e | Wk eN.
wi

Then,
Jo© S \gn, (b2, 0)? dadvdt_ 62T=C) N
< —
Jo 19n, (T, 2,v) |2 dedv 201 X3, koo

by (8.6), which gives the conclusion. OJ

3.3 Semi classical analysis of the complex Airy operator (v = 1)

The goal of this subsection is the proof of Theorem 3.1.

We introduce two model-operators, that have well known spectral and pseudospectral
behavior. Let A(_g 4 ) and A(_,r) be the Dirichlet realizations of the operator — 7 2Ty
on the intervals (—R,+o0) and (—oo, R) respectively. We are going to approximate the
resolvent of A_p gy by the one of A_g 1) or A_ r) depending on where we are,
respectively close to —R or close to +R.

Let us remark that, if

Tr:u(zx) —»u(lx+R) and Ug:u(z)— u(R—2) (3.7)

then
T (A(—Rtoo) = VTR = A 400) — (A +iR), (3.8)
U (ACoo.r) = MUR = Al 1oy — (A= iR), (3.9)

10



thus

inf Reo(A(,R,oo)) = inf ReU(A(,OoyR)) = % , (3.10)

because inf Rea(.A(o,Jroo)) = |u1]/2, see [5].

Step 1: We prove

. . ||
lim (infReo(.A _ > 3.11
R—Troo( ( ( R’R))) 2 ( )
and (3.2).
Let ¢ > 0. We search R, > 0 such that
VR > R., J(A(_R,m) N (] = oo, |p1]/2 — ] +iR) = 0. (3.12)
We recall that, by [38], there exists C. > 0 such that
A - C
(4 H <., 3.13
iy, [ (Ao = ) LA O04) (3.13)
v ER
(Aforemy — (v +i0)) ¢ (3.1
sup H (0too) — (Y +iv H < C.. 3.1
VS 2. (0o =1 L(L?(0,+00)) :
Let A =7 +iv €] — o0, |u1]/2 — €] + iR and hy,h_ € C*(R; [0, 1]) be such that
Supp (h—) - (—OO, 1/2)’ - =1lon (—OO, _1/2} )
Supp (h4) C (—1/2,+00), hy=1on [1/2,+00),
h% +h% =1 on (—o0,400).
For R > 0, we define
x
M (%) = ha (E) 1 grpr(x) (3.15)
and . .
Re() =1 (A riine) = A) iz + 0k (Ao = A) - (3.16)
Rpr(A) will be used as an approximation of the resolvent of A_g ry. We have
p— _1 —
(Acram = N)ReW) =1 + [Acrmal (Ac-rie —A)
+ Acrmy bl (Acsem =) mh (3.17)

as an equality between operators on L*(—R, R).
We estimate the second term on the right hand side. In what follows, the estimates are
uniform with respect to v = Im A\. We have

— -t —\ _vd -t
[‘A(fR,R)anR]('A(fR,Jroo)_)\) NMr = (—(773) —2(ng) dy> <‘A(7R,+oo)_)\) N, (3-18)

Using [|[(ng)/ |~ (—r,r) = O(R™') and [|(ng)" L (-r,r) = O(R™?), we get, by (3.8) and

(3.13),
L ) . (3.19)

H(n;%)” (A(’R*“’O) B A)iln’;Hc(w(—R,R)) =0 (RQ

Moreover, for every v € L?(—R, +00),

-1
d
@(A(—R,+oo) - /\) ol
L2(—R,+00) (3.20)

& (e )T vl nrmr ) 1) s

11



Indeed, let w := (AR 4o0) — A) "', Le.
—w"(y) +iyw(y) — Mw(y) =v(y), y€ (=R, +o0),
w(—R) = w(+00) =0.

We have

+oo
0|2 ppoey = —Re (_fR w(y)w"(y)dy>

+oo
= Re ( | wliyw + Mw + v])
“R
+oo “+o0

=7 [ |[w*+Re | [ wv
“R “R

<MWz g 400y + 1Wll22(= R o0 19l 22 (~ R 4 00) -
By taking the square root of this inequality, we get

1/2 1/2
1| 2= Roey < VA0l L2 ro0) + 01T ooy 11257 ey

which proves (3.20). By applying (3.20) to v = nzu, u € L*(R), we get

H(né)’diy (Ao~ ) e ~0 (112) , (3.21)

L(L*(-R,R))

which gives, with (3.18) and (3.19),

1 1
A JNr] A - _H =0|=). 3.22
H[ (~R.R) ”R]( (=R, +o0) ) TR (r2 - roy) (R) (3.22)
In the same way, we verify that
A 1A - A ot =0 1
_ _ = . 3.23
H[ ( R’R)’nR]( (=00, R) ) nRHc(Lz(—R,R)) (R) (8.23)

Equality (3.17) can be written
(A=r,r) = MRr(A) =1+ Er(N),

with |Er(N)|lz(p2(—r,r)) = O(R™!), uniformly with respect to A €] — 0o, |u1]/2 — €] 4 iR.
We deduce the existence of R. > 0 such that, for every R > R., (A_g,g) — A) is invertible,
with inverse

(Acrm —2) = Ra) (1 +£R(N) -

We have proved (3.12). Moreover, according to the definition (3.16) of Rr(}\), (3.8), (3.9),
(3.13) and (3.14) yield the estimate (3.2).

Step 2: We prove that

REM (inf Reo(A(_R,R)>) < “;71‘ . (3.24)

First, we reduce the study to the complex Airy operator A, gy on the interval (0, R).
Indeed, applying the translation Tg : u(z) — u(z + R), we get

Tp' (Arr) — NTr = Ap2r) — (A +iR),
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thus Reo(A(_g,r)) = Reo(Aq,2r)) - Therefore, in order to prove (3.24), we are going to

prove that
1 f < —.
i (infReo(Aqn)) < 4
Let 61, 02 € C*°(R; [0,1]) be such that
Supp (91) C (_0072/3) ) 01 =1on (—OO, 1/2)7
Supp (92) C (1/27 +OO) ) 92 =1on (2/37+OO)7
0? +02=1onR.

For j =1,2 and R > 0, we define

We want to prove that

-1 -1
1(0,R) (A(O,R) + 1) 1(0,R) Ao (A(0,+oo) + 1) in L(L*(RT)).

Let us remark that

o (1(0,R) (A(O,R) + 1)_11(0,}%)) =0 <(A(0,R) n 1)—1)

with non vanishing eigenvalues that have the same multiplicity for both operators.

Step 2.a: We prove that

-1 -1
1o,R) (»A(O,R) + 1) lo,r) — Xk (-’4(0,-1-00) + 1) Xg — 0 in L(L*(RT)).

R—+o00

For this, we use the following approximations of the resolvent of (Ao g) + 1),

- —1 —1
Rr =Xk (A(O,+oo) + 1) Xk + XE (A(O,R) + 1) X% -
Then, we have
- —1
(Ao,r) + )Rr=1 + [Awr +1,Xz] <A<o,+oo) + 1) Xk

1
+ [Aw.r +1, XE| (A(0,2R) + 1) XF

-1
thus, by composing on the left by 1 g) (A((),R) + 1) 1(0,r), We get

(3.25)

(3.26)

(3.27)

1(0,R) (A(O,R) + 1) 1((),R) - X}g (A(07+00) + 1) X}% = X?% (-A(O,R) + 1) X?DL

-1 -1
71(07R) (A(O,R) + 1) 1(0,R) [A(QR) + 1, X}{] (A(0,+OC) + 1) X}%

-1 —1
—1(0,R) (A(O,R) + 1) 10,7 [A.r) + 1, X7 (A(O,R) + 1) X&-

(3.28)

Now, we control the different terms on the right hand side. The terms involving commutators

can be estimated as in Step 1, thanks to (3.2), and we get
Aom+1) Aw.my+1, x5 (A ) o2
H ©0,r) (A,r)+ 0.0 A0,rR)T1LXRI A0+ 1) XR L) I

13
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1 1 1

Hl(o,R) (A(O,R)+1> Lo, [Aq,r) +1,XE] (A(07R)+1) X%H|£(L2(R+)) =0 (R> . (3.30)
Moreover, for u € L?((0, R),C), we have

Im ((Aw,r) + Du, u) = (yu, u) (3.31)

where (.,.) denotes the L?((0, R), C)-hermitian product.
-1
This relation, applied to u = x% (.A(O’R) + 1) x%f, f € L*(0,+00), which is supported in
(R/2, R), gives
R
Im ((Ao,r) + Du, u) > §||U||2-

Moreover,

-1
(Ao, + Du= (R)*f + Ao + 133 (Aom +1) xS

Thus, estimating the commutator as in Step 1, we get

1
i (A + D] <€ (14 3 ) 171l

Therefore,
R, 1
= < = .
5 lull” < C <1+ R) (11l
We have proved that

1

> . (3.32)

-1
2 2
HXR (A(O,R) + XR C(LA(0400)) <R

By (3.28), (3.29), (3.30) and (3.32), we have

-1 -1 1
1 1 — il
le,R) (Am,R) + 1) Lo.r) = Xr (A<o,+oo> + 1) XRHE ooy O ( R) (3.33)

which ends Step 2.a.

Step 2.b: We verify that

—1 —1
h (Ao +1) ¥ == (Awreo +1)  in LL2(0,400)). (3.34)

which ends the proof of (3.27).
To simplify notation, let us introduce

A+ = A(0,+oo) +1.

First, we write
XpAT XRAL = (XR)* = XA A4, Xk,
then, composing on the right by A7 and using that (x%)? =1 - (x%)?,
ATH = XRAT X = ()P AT+ xRAT A XRJAT (3.35)

The term involving a commutator can be estimated as in Step 1,

1) . (3.36)

1 -1 1 —1 _
HXRA+ A XrlAL Hz:(LZ(Rﬂ) =0 (R

14



For f € L?(0,+o0), we have
TNGPAT I < 1972037 AT TP (because Supp (xh)  (B/2, R)
= Im (A (x7)2ATf, (XR)PAT )
< AL O AT P0G AL
< (G271 + A+, OGRAAT N I0GR)PAT AL

where (.,.) denotes the L?((0,+00), C)-hermitian product and ||.|| is the associated norm.
Estimating the term with a commutator as in Step 1, we get

- 1
RIOGPAT 1) < © (14 ) Iflz20.0)

Thus )
2\2 1—1
=0(=). 3.37
H(XR) Ay HC(LQ(O,Jroo)) <R> (3.37)

Finally, (3.35), (3.36) and (3.37) imply (3.34).

Step 2.c: Conclusion.

Step 2.a and Step 2.b prove (3.27). The eigenvalues of Ajrl are isolated, thus we can apply
[45, Section IV, §3.5]. For any subsequence R; — +oo and any eigenvalue A € o(A;")\ {0},
there exists a sequence (A;) such that, for every j large enough

\€o <1(0,Rj) (Awo.my) + 1)_11(07,@)) \{0} =0 ((A(O,Rj) + 1)_1> \ {0}

and A\; — A when j — +o0.

In particular, with A\ = 1/(X 4 1), where A\ = €/™/3|u;| € 0(A(0,+00)) is the eigenvalue of
A(0,4+00) With smallest real part (see [5]), we get a sequence S\j =1/\j -1 € o(A(,r,)) such
that Re\; — Re A = |u1|/2, from which we deduce (3.24).

3.4 Semi classical analysis of the Davies operator (7 = 2)

The goal of this section is the proof of Theorem 3.2, which is similar to the one of Theo-
rem 3.1.

Step 1: Let £ > 0. We search R. > 0 such that
YR> R., o (Hnm)N ((—oo, V2/2 —¢) + iR) —0 (3.38)

and we prove (3.4).
Let o € (0,1/3) and (R, (3, ¢ € C*(R; [0,1]) be such that

Supp gk C (70077R+Ra)7 C}l% =1lon (70077R+Ra/2)7
Supp (3 C (-R+R“/2,R—R*/2), (:(=1on(-R+ R*, R— R"),
Supp ¢3 € (R— R* 4+o0), (3 =1on (R—-R*/2,+c0),
(CR)* + (CR)* + (CR)*=1on R,
1R hmy = O (B, IR lw =, OB, (339)

Close to y = —R, we have

y? = —2R(y+R)+ R*>+o(ly+ R|).
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Thus, we are going to approximate H(_g gy, close to y = —R, by the complex Airy type

operator on (—R, +00)
- d? ; 52

In the same way, we will approximate H(_g g close to y = +R by the complex Airy type
operator on (—oo, +R)
2
n d

Af = —— —2iR(R —y) +iR*
Then, we remark that, if T and Uy are defined by (3.7), then we have
Ap = TRARTR +iR* and AL = UrA3pUg" +iR?,
where Ap, is the Dirichlet realization of the complex Airy operator —% + iRy on (0, +00).

Following [38], we deduce that

infReo (A}) =infReo (Ag) = (2R)2/3% , (3.40)

and, for every ¢ > 0, there exists C. > 0 such that
0\t C,
sup H (Aﬁ —(v+ w)) H < RT% . (3.41)

v €0, R?/3|uy|/2 — €],
v ER

We call Hg the complex harmonic oscillator —j—; +14y? on R, that will serve to approximate
H(_p,r) on the support of (%. We recall that inf Re s (Ho) = cosm/4 = v/2/2 (see [25]) and

-1
sup H (7'[0 — (v + w)) H <CL, (3.42)
v <V2/2 — ¢,

v ER

for some C. > 0, see for instance [56].
Now, we take A = v +iv € (0,v/2/2 — ¢) + iR and we set

0rN) = Ch(Ar - A) Cht (Mo A) Gra(ar-A) G (643)
Then, we have
(o ~ NQr(Y) = 1+ My Ch (A7~ 2) ch
I, GI(Ho—X) Gt e I (A -)
FCh M mm — AR) (Ag ~A) Ch+ M nm — AR (4 -2) G

as equality between operators on L?(—R,R). The terms involving commutators can be
estimated as in Step 1 of the previous section, by using (3.39), (3.41), (3.42) and we get

[ 45 3) gy [ i)

L(L*(-R,R)) L(L*(—R,R))

+H[/H(7R,R)7C?2] (AE _/\)AC%H O(R™).

L(L*(-R,R)) -
Moreover, we have, by definition of Ay,

(H—r,r) — Ap)uly) = i(y + R)*u(y)
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and on the support of (j, we have y + R < R*. Therefore, by (3.41)

1 —1
Ly AN A~ 1 H < R*|(A; -\ H
HCR(H( R,R) AR)(AR ) CR L(L2(-R,R)) (AR ) L(L%2(—R,+00))
< C.RXe-1/3)
In the same way, we verify
3 (AT — e C.R2(a=1/3)
_ _ < as .
HCH(H(‘R’R) AR)(AR ) CIE“HL(L%R,R)) = Ch

Thus, we have proved that
(H—r,r) — NQr(A) = I+ Er(N),

with ||Eg(A\)|| — 0 as R — +oc , uniformly with respect to A in the interval (0, v/2/2—¢)+iR .
Thus, there exists R. > 0 such that, for every R > R., (H(_g,r) — A) is invertible, with

(H(,R,R) - A) — Qr()) (1 + SNR()\)>71. (3.44)

This proves the existence of R. > 0 such that (3.38) holds. The resolvent estimate (3.4)
follows from (3.41), (3.42) and (3.43).

Step 2: We prove

ol

1 . <
REIEOO inf Reo (H(_r,Rr)) <

Let ¢k, ¢% € C*(R,[0,1]) be such that

(3.45)

Supp (¢k) C (—00,—R/2) U (R/2,+c0), ¢k =1on (—oo0,—2R/3)U (2R/3,+0) ,
Supp (¢%) C (—2R/3,2R/3), ¢%=1on (-R/2,R/2),
(¢r)*+ (pR)?=1on R,

H(@%)’HL%(R) =0 (R, [(¢R) llp~m@ =0 (R?) .

We recall that Hy denotes the operator f;l—; + 922 defined on R, and we set

. —1 —1
Or = ¢% (7'[0 + 1) 0%+ 0k (H(—R,R) + 1) PR -

Thus, we have R
(H(—R,R) + 1) Or=1+Pr,

where

—1 —1
Pr = [H(-r,R) ¥% (Ho + 1) ©% + [H(—r.R), R (H(—R,R) + 1) PR

and
IPrlle(r2—r,r) = O(R™Y). (3.46)

By composing on the left with (H_g r) + 1)~1, we get

(H(fR,R)‘Fl) - —o% (Ho-i‘l) 714/)??, =oR (H(—R,R)+1> 71@%3— (,H(fR,R)‘i‘l) 71791% - (3.47)

By going back over the proof of (3.32) and replacing (3.31) by

Im <H(_R7R)u, u> = (z%u,u), (3.48)
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we get

1 1
_ 1 [ —o(=).
HwR (H< RR) T ) PR\ £ o2 mry (R>
By (3.47), the previous relation, together with (3.46) and (3.4) imply

1
=0(=). 3.49
L(L2(~R,R)) (R) (349
Then, we prove that the operator p%(Ho + 1)~ 1¢% converges to (Ho + 1)~! in L(L*(R)),
when R — +o0o, with the same arguments as in Step 2.b of the previous section. Thus,
(3.45) is proved, with the same arguments as in Step 2.c of the previous section, and this
ends the proof of Theorem 3.2.

(i 1) = (o +1) ]

4 Examples of (;,w) satisfying Property P(s)

The goal of this section is to give examples of pairs (21,w) that satisfy Property P(s) for
any s € (0,1/2). Precisely, we prove that it is the case if Q; is a conical bounded subset of
R? and w; is any open subset of €; that does not intersect the boundary 9€;. Note that
the result covers the situation where ; is a disk or a circular sector in 2D, a ball in any
space dimension.

Proposition 4.1. Let d € N, d > 2 and U be an open subset of S Let Q; be the conical
open subset of R? defined by

Y={r=ra';0<r<1,2 €U}.

Let wy be an open subset compactly embedded in Q. There exist constants C,K > 0, a
sequence (\p)ren+ of eigenvalues of the operator (—Af ) (with domain H? N H{(Q1)) and
associated normalized eigenvectors (Py)xen« such that

i (2)2de < Ke CV™ | vk e N*.
w1

In particular (Q1,w1) satisfies Property P(s) for any s € (0,1/2).

We refer to [53] for other similar results. Our proof of Proposition 4.1 relies on properties
of Bessel functions, recalled in the next statement.

Proposition 4.2. The Bessel functions of the first kind J,, satisfy

0< Jy(ve) <e’® | Yue(0,+00),z€(0,1), (4.1)
1+m2)1/4eug(w)
J (vz <( , VYve(0,+00),z€(0,1), 4.2
Tyw)| < EE (0, 4+00) 2 € (0,1) 42)
a
Ju(v) v loe DB (4.3)
where
S S 21/
=1 1—22—1In[l 1—a? = = .
g(x) :=In(x) + 22 —In[l + z2] and a 52T (2)3) >0

Inequalities (4.1) and (4.2) are proved in [59]; inequality (4.3) is in [1, Formula 9.3.31,
Page 368]. Note that g is negative and increasing on (0, 1) and that g(1) = 0.
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Proof of Proposition 4.1: We recall that, in coordinates (r,z’), the Dirichlet-Laplacian
writes

P d—1 5‘30 1
A Vp=——L — —_
(=Aa,)¢ or? T or T
Let (A} )ken- be the increasing sequence of eigenvalues of (—AF) and (X}, )ken- be associated

eigenfunctions

(—AD)e.

(—Ag)Xk(x/) = N Xi(2'), ' elU,
Xi(z') =0, ' e dU,
| X&llz2y = 1.

d 2
Vg = /\;C+(2—1)

and jj the first positive zero of the Bessel function of first kind J,,. Note that

For k € N*| we define

v <k <wve+ou?, Yk eN*, (4.4)

for some constant § > 0 (see [1, Formula 9.5.14, Page 371]). Let

1/2

1 2
Cy = </ ’r7%+1Jl’k (]kr)‘ ledT> , VkeNr.
0
Then, for every k € N*, the function

- 1
or(ra’) == C—r_%HJyk (jer) Xk (2'),Vr € (0,1),2" € U,
&

is a normalized eigenfunction of (—A§ ) associated to the eigenvalue
e = j2. (4.5)

Step 1: We prove the existence of C; > 0 such that, for k£ large enough

Cr 22—/ (4.6)

Let € € (0,5/6). Performing changes of variables, we get, for k large enough

. 1/2
Cr = (fol |0, jkr)|27‘dr>
1/2

= %k( IJyk p) pdp)
1/2
> L (fo" 1T (p) P pdp) by (4.4)
, 1/2 (4.7)
> ]’; ( Ju, (Vi) rdr)
1/2
1
=>C [ T (ver)|?dr by (4.4).
171/;%7E
For r € (1 —v~67¢,1) and v large enough, we have
| (vr)] = | ()] —v( —r)sup{|J,(vo)|;o € (r,1)}
>4 pl=6-<C 1y (4.2) and (4.3)
> 2Vl ” a C v (48)
= pl/3 (5 - F)
2 a
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We deduce from (4.7) and (4.8) that (4.6) holds for some constant C; > 0.

Step 2: Conclusion.
Let wy be an open subset of R¢ such that @7 C Q. There exists a € (0,1) such that

wi C{r=ra’;0<r<a,z’ €U}.

Thus, for every k € N*,

2

—r‘gHJl,k (Jrr) rd=ldr

“|1
o () dz </
[ ) &

< QLC,% sup{Jy, (Jxr);0 <r < a} .

Let b € (a,1). By (4.4), we have % < b < 1 for k large enough. Then, by (4.1) for every
r€(0,a),

0< Jyk(jkr) =J,, (ijykr> < eukg(Jfkr) .
k

Explicit computations show that ¢'(x) > 0, for every « € (0,1), thus

g(jkr> <g() <0, Vre(0,a).

Vi

Therefore,

2
- a® y
|Gk (2)Pdz < 57e @l

w1 k

By (4.6), (4.4) and (4.5), we get the conclusion. O

Finally, let us quote, without proof, other examples of pairs (Q1,w;) satisfying Property
P(s) for appropriate values of s.

If Q, is a filled ellipse and wy is an open subset of £2; that does not intersect 92y, then
the pair (Q,w; ) satisfies property P(s) for any s € (0,1/2). This can be proved by working
in separate variables as in [53] and constructing "whispery galleries" solutions. The same
result holds if wy intersects 9; but does not intersect the small axis of €21 (see [53, Theorem
3.1, page 786]). This time this corresponds to "focusing solutions".

All these results can be proved with semi-classical analysis (see, for instance [60] and
126]).

5 Well posedness and Fourier decomposition

In this section v € N* and 5 € (0,1) are fixed. For f € C°(Q,C), we define

1/2
|flv = (/Q |(“)Uf(m,v)|2dxdv>

Observe that H}(2) C V C L?(2), thus V is dense in L?(£2). We define the operator A, g
by

and

D(Ayp) :={f € V; =05 f + " (-A.)’ f € L*()},
Ay pf = =02 f +iv (—A,)Pf.
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Then D(A, ) is dense in L?(Q), (A5, D(A,)) is a closed operator and both A, 5 and
A? 5 are dissipative, thus (A, ,D(A, 3)) generates an strongly continuous semigroup of

contractions of L?(Q2) (see the Lumer-Phillips Theorem [55, Corollary 4.4, Chapter 1, page
15], or the Hille Yosida Theorem [15, Theorem VIIL.4, page 105]).

We consider a solution g € C°([0,T], L3()) of (1.3). Then, the function x — g(t, x,v)
belongs to L?(4) for almost every (t,v) € [0,400) x (—1,1), thus, it can be developed on
the Hilbert basis (¢, )nen+ (see (1.4)) as follows

g(t,x,v) Z gn(t,v)pn(x) where g,(t,v):= /g(t,x,v)gpn(ac)dx, Vn e N*.
neN* T
(5.1)

In what follows, with a slight abuse of vocabulary, this decomposition is called ’Fourier
decomposition’ and the functions g, (¢, v) are called 'Fourier components’.
Proposition 5.1. For every n € N*, g, is the unique solution of

Orgn(t,v) +iNvY g, (t,v) — O2gn(t,v) =0, (t,v) € (0,+00) x (—1,1),

gn(t,£1) =0, t € (0,+00), (5.2)

gn(oav) :go,n(v)7 v € (7171)3

where go, € L?(—1,1) is given by

go,n (V) := /Q go(z,v)on(x)dx, ve(-1,1).

This result can be proved by following the same steps as in [11, Section 2.2].

6 Observability on a horizontal strip

The goal of this section is the proof of the statements 1 of Theorems 1.6 and 1.7. Note that
the negative part of the first statement of Theorem 1.7 (i.e. no null controllability, when
v=2and T < T*) can be done exactly as in [10].

6.1 Global Carleman estimate

The goal of this subsection is the statement of a global Carleman estimate, proved in [10,
Appendix]| and useful for the proof of the statements 1 of Theorems 1.6 and 1.7. For A € R
and v € {1, 2}, we introduce the operator

Pany g :=0ig +irv"g — O2g

Proposition 6.1. Let a,b be such that —1 < a < b < 1. There exist a weight function
B e CY([-1,1],R%), positive constants C1,Co such that, for every X € R, v € {1,2}, T > 0
and g € C°([0,T), L?(—1,1)) N L3(0,T; H}(—1,1)) the following inequality holds

T 3 2\ _MB)
Cq fo f_ ( (JJ“V[t) av(t v)| —|— 7@(TMt )3|g (t,v | )e W0 dudt
fo f |Prg(t,v)%e” e dvdtJrfO f T t))g,\g(t v)|%e aiea) dvdt
where M = Co max{T + T?;\/|\|T?}

In this proposition, the weight £ is the usual one for Carleman estimates for 1D heat
equations; since its explicit expression will not be used in this article, we do not specify its
properties. Note that we have sharp dependency of M on A and 7. In particular, if we
treat the term ¢Av”g as a lower-order term, to apply the Carleman estimate for the operator
(0y — 82), then, we can obtain a less sharp dependency M = O(\?/3), which is not sufficient
in this article. The proof of this Carleman estimate is done in [10, Appendix], by revisiting
the usual proof.

(6.1)
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6.2 Dissipation of Fourier components

The Dirichlet realization of the operator —92 + iA\2v” on (—1,1) is not a normal operator.
Thus it is not obvious that the exponential decay of the solutions of (5.2) is given by the
smallest real part of the eigenvalues of this operator. This question is answered in the
following statement.

Proposition 6.2. Let v € {1,2} and

_ B
bt

There ezist K, 6 > 0 such that, for every n € N* and go,, € L*(—1,1), the solution of (5.2)
satisfies

_oyd
lgn(®)llz2(—1,1) < Ke ' |lgonllL2(-1,1), VE>0. (6.2)
Moreover, for every e > 0, there exists n. > 0 such that, for every n > n., (6.2) holds with
K=K, and
_f lml2—eify=1,
s={ VS5 (03

where py is the first zero (from the right) of the Airy function.
Finally, the exponent d of A\, in (6.2) is optimal, and the critical value of § in (6.3) is also
optimal.

This result is stronger than [10, Propositions 10 and 17| because in (6.2), we have L2-
norms on both sides, whereas in [10] there was an H'-norm on the right hand side. We

study this problem in semi-classical formulation (take h, = A\, B2 and s = hnt).

Let hg > 0. For h € (0, hg) and v, € L?(—1,1), we consider the equation

hOyn (t,v) — 2024y (t,v) + iv Yy (t,v) =0, (t,v) € (0,+00) x (—1,1),
Un(t,£1) =0, t € (0, +00), (6.4)
¥r(0,0) = to,n(v), ve(-1,1).

Proposition 6.3. Let e = 2v/(y+2). There exist K, > 0 such that, for every h € (0, ho)
and o, € L?(—1,1), the unique solution of (6.4) satisfies

e—1
[on)lz2(—1.1) < Ke™® donllre-1y, VE>0. (6.5)

Moreover, for every e > 0, there exists h* € (0,hg) such that, for every h € (0,h*), (6.5)
holds with K = K. and (6.8) where p; is the first zero (from the right) of the Airy function.
Finally, the exponent d of h in (6.5) is optimal, and the critical value of § in (6.3) is also
optimal.

Proof of Proposition 6.3:
Let Aj be the operator defined by

2

Ap = —hQ% +ivY, D(Ap) = H*(=1,1) N H}(-1,1).

By rescaling (R = R(h) = h~¢/7 and y = Rv) and using Theorems 3.1 and 3.2, we have

ify=1,

ify=2. (6.6)

.. _J lml/2
%1_>moh 1nfRea(Ah)—{\/§/2

Thus, we can consider

0*:= min h™°infRec(A,) >0.
he(0,ho)
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Let 6 € (0,6*). By Theorems 3.1 and 3.2, there exists Cs such that

sup (4 av =) 7 < 2.

-1
(ih —dhe = iu)

Moreover, the operator h~'A; is maximally accretive, thus it generates a semigroup of
contractions:

Thus,

sup < Cshl™e. (6.7)

veR

lYn(Oll 2 (=1, < Yonlle2(=1,1), VE>0. (6.8)

We can apply [40, Theorem 1.5], with w = —dh¢~! < 0, r(w)~! < Csh'=¢, m(t) = 1 and
a=a=1t/2. Note that

1— wt/2
1132 0 0/2ysc0tary = ————
t/2); —w
Thus, we obtain
0Cs _spe—1
[on(t M2 (1) < T —ne=iza® M onllLz—1,1y, VE>0. (6.9)

Let co > 0 and t;, = 2¢coh!=¢/5. Then, by (6.9),

e—1
1n(t, Mz < Kie ™ Honllrz-iy, VE>th
with
K= 6Cys
S T
Moreover, by (6.8),
[ ()|l L2(-1,1) < K2e ™" o nllrziny, YVE<t,
with Ky = e2%. Thus,
e—1
[on @)l 2—1,1) < Ke ™ onlle-11y, V>0 (6.10)

with K = max(K7, K»).
Finally, if € > 0 is fixed, by (6.6) there exists h* € (0, ho) such that all the previous estimates
hold for h € (0,h*) and § as in (6.3). Indeed, we have

§<6*:= min h ®infRec(A).
he(0,h*)

To prove the optimality of exponent (e — 1) of h in (6.5), we just consider
o,n € ker(Ap — Aonh®),
where Ao j, satisfies h°A\g , € o(Ap) and h°Re Ao, = inf Reo(A). Then, we have
Yp(t,v) = e_/\o’hhklti/)o’h(v) .
Thus, by (6.6), for every ¢t > 0 and € > 0, there exists h* > 0 such that, for every h € (0,h*),
lont Mz = e lgomllra)
> 67(V+E)hc_lt||¢O,h||L2(—1,1);

with v = [u1]/2if y=1and v = v2/2if y=2. O
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6.3 Proof of the positive statements of Theorems 1.6 and 1.7

The positive statements in Theorems 1.6 and 1.7 are consequences of the following propo-
sition and of the Bessel-Parseval equality.

Proposition 6.4. Let f € (0,1) and0<a<b<1.

o If~v =1, then, for every T > 0, there exists C' > 0 such that for every n € N* and
gon € L2(—1,1), the solution of (5.2) satisfies

1 T b
/ |gn (T, 0)|? dv < C/ / |gn (t,v)|* dvdt . (6.11)
-1 0 a

o If v =2, then, there exists T1 > 0 such that, for every T > Ti , there exists C > 0
such that for every n € N* and go ,, € L*(—1,1), the solution of (5.2) satisfies (6.11).

Proof of Proposition 6.4:
We deduce from Proposition 6.1 that

2T/3

e |
T/3

1 T b
/ |gn(t,0) [Pdvdt < C4/ / |gn (2, v) [Pdvdt (6.12)
-1 0 a

for n large enough, where C3 := Cymax{4Cy; (4C1)%}, ¢* := 2Comax{B(v);v € [-1,1]},
Cy = max{z3e %, x > 0} and B, := min{B(v);v € (a,b)}.
Moreover, thanks to Proposition 6.2, we have

Jh lgn(T0)[P do < 3E 2T/ [T 1 g, (1 0) 2 dudt
<

T
*\B/2_o5yd T b
/\3535/2 eC D 2605T/3 fo fa |gn(t,v)|2 dudt

(6.13)

where C5 := K2C4/Cs .

Case 1: y=1. Then d = % > g , thus the observability constant above converges to
zero as n — +o0o. This proves the existence of a uniform observability constant for high
frequencies: there exists Cy > 0 and ng € N* such that

1 T b
/ |gn (T, 0)|* dv < CH/ / lgn(t,v) > dvdt, Vg° € L*(—1,1),n > ny.
1 0 a

Moreover, for every n € {1,...,n¢}, there exists a constant C,, > 0 such that

1 T b
[la@opa<c, [ [lowoPda, v ey
-1 0 a

(usual observability inequality for 1D heat equations). Thus, the uniform observability con-
stant C' := max{Cp,Cp;1 < n < ng} gives the conclusion.

Case 2: v =2. Then d = % , thus, when T' > Ty := 3256*’ the observability constant in

(6.13) converges to zero as n — +oo and the proof can be ended as in the previous case. [J
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