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Degenerate parabolic operators of Kolmogorov type with a geometric control condition

We consider Kolmogorov-type equations on a rectangle domain (x, v) ∈ Ω = T × (-1, 1), that combine diusion in variable v and transport in variable x at speed v γ , γ ∈ N * , with Dirichlet boundary conditions in v. We study the null controllability of this equation with a distributed control as source term, localized on a subset ω of Ω.

). In this article, we prove that, when γ > 3, the system is not null controllable (whatever T is) in this conguration. This is due to the diusion weakening produced by the rst order term.

When the control acts on a vertical strip ω = ω1 × (-1, 1) with ω1 ⊂ T, we investigate the null controllability on a toy model, where (∂x, x ∈ T) is replaced by ((-∆) 1/2 , x ∈ Ω1), and Ω1 is an open subset of R N . As the original system, this toy model satises the controllability properties listed above. We prove that, for γ = 1, 2 and for appropriate domains (Ω1, ω1), then null controllability does not hold (whatever T > 0 is), when the control acts on a vertical strip ω = ω1 × (-1, 1) with ω1 ⊂ Ω1. Thus, a geometric control condition is required for the null controllability of this toy model. This indicates that a geometric control condition may be necessary for the original model too.

Introduction 1.Origin of the problem

The goal of this article is to study the null controllability of Kolmogorov-type equations

   ∂ t f (t, x, v) -v γ ∂ x f (t, x, v) -∂ 2 v f (t, x, v) = u(t, x, v)1 ω (x, v) , (t, x, v) ∈ (0, T ) × Ω , f (t, x, ±1) = 0 , (t, x) ∈ (0, T ) × T , f (0, x, v) = f 0 (x, v) , (x, v) ∈ Ω , (1.1) 
where Ω = T × (-1, 1), γ ∈ N * , T > 0, and the control is a source term u(t, x, v) localized on a nonempty open subset ω of Ω. This equation, with γ = 1, is close to linearizations of Prandt or Crocco-type equations for uids [START_REF] Oleinik | Mathematical Models in Boundary Layer Theory[END_REF][START_REF] Buchot | Feedback stabilization of a boundary layer equation, part 1[END_REF][START_REF] Buchot | Feedback stabilization of a boundary layer equation, part2: Nonhomogeneous state equations and numerical simulations[END_REF]; this motivates the study of the controllability of (1.1). For other values of γ ∈ N * , there are less physical motivations, but the behavior of the system with respect to null controllability is extremely interesting, from a theoretical point of view (nite speed of propagation, geometric control condition, the rst order term weakens diusion in variable v).

Denition 1.1 (Null controllability). Let T > 0 and γ ∈ N * . System (1.1) is null controllable in time T if, for any f 0 ∈ L 2 (Ω), there exists u ∈ L 2 ((0, T ) × Ω) such that the solution of (1.1) satises f (T, •, •) = 0 .

By duality, null controllability is equivalent to observability for the adjoint system    ∂ t g(t, x, v) + v γ ∂ x g(t, x, v) -∂ 2 v g(t, x, v) = 0 , (t, x, v) ∈ (0, +∞) × Ω , g(t, x, ±1) = 0 , (t, x) ∈ (0, T ) × T , g(0, x, v) = g 0 (x, v) , (x, v) ∈ Ω .

(1.2) Denition 1.2 (Observability). Let T > 0, γ ∈ N * and ω be a non empty open subset of Ω. System (1.2) is observable in ω in time T if there exists C > 0 such that, for any g 0 ∈ L 2 (Ω), the solution of the Cauchy problem (1.2) satises

Ω |g(T, x, v)| 2 dxdv C T 0 ω |g(t, x, v)| 2 dxdvdt .
Equation (1.2) combines diusion in variable v and transport in variable x (at speed v γ ). Thanks to the interplay between these two phenomena, the equation diuses both in variables v and x (see Proposition 6.2), contrarily to equation (∂ t -∂ 2 v )g(t, x, v) = 0 . But, the global diusion is weaker than for the 2D heat equation (∂ t -∂ 2

x -∂ 2 v )g(t, x, v) = 0 .

Thus, natural questions are the following ones.

Question 1: Is the diusion in variable v strong enough for observability to hold when the control acts on a horizontal strip ω = T × (a, b) with 0 < a < b < 1, whatever γ ∈ N * is? (i.e. as for equation (∂ t -∂ 2 v )g(t, x, v) = 0, (t, x, v) ∈ (0, T ) × T × (-1, 1))

Question 2: Is the diusion in variable x sucient for null controllability to hold when the control acts on a vertical strip ω = ω 1 × (-1, 1) where ω 1 ⊂⊂ T ? (i.e. as for the 2D heat equation (∂ t -∂ 2 x -∂ 2 v )g(t, x, v) = 0 , (t, x, v) ∈ (0, T ) × T × (-1, 1))

The goal of this article is to answer the rst question and to study the second one for a toy-model.

Null controllability of Equation (1.2) is studied in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF] when the control is localized in a horizontal strip ω = T × (a, b) with -1 < a < b < 1 . Precisely, the following theorem is proved by the rst author in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF].

Theorem 1.3. 1. If γ = 1 and ω = T × (a, b) with -1 < a < b < 1 , then System (1.2) is observable in ω in any time T > 0 . 2. If γ = 2 and ω = T × (a, b) with 0 < a < b < 1 then there exists T * a 2 /2 such that

• System (1.2) is observable in ω in any time T > T * ;

• System (1.2) is not observable in ω in time T < T * . 3. If γ = 2 and ω = T × (a, b) with -1 < a < 0 < b < 1 then System (1.2) is observable in any time T > 0 .

When γ = 1, Statement 1 above illustrates that there is an innite speed of propagation in the direction v. When γ = 2, Statements 2 and 3 above illustrate a dierent situation: a nite speed of propagation in variable v occurs and the information needs time to reach the degeneracy {v = 0} from the observation location ω when ω ∩ {v = 0} = ∅ .

Main results

The rst goal of this article is to prove that observability does not hold, when γ 3 and the control acts on a horizontal strip: the presence of the rst order term v γ ∂ x f in the equation reduces diusion in the variable v so strongly that observability becomes false.

Thus, Theorems 1.3 and 1.4 below answer Question 1. Theorem 1.4. If γ 3 and ω = T × (a, b) with -1 < a < b < 1, then System (1.2) is not observable in ω (whatever T > 0 is).

The second goal of this article is to investigate null controllability of Equation (1.2) for γ ∈ {1, 2} when the control acts on a vertical strip ω = ω 1 × (-1, 1) where ω 1 ⊂⊂ T.

Unfortunately, we are not able to work directly on Equation (1.2). Thus, we consider the following toy model.

   ∂ t g(t, x, v) + iv γ (-∆ D x ) β g(t, x, v) -∂ 2 v g(t, x, v) = 0 , (t, x, v) ∈ (0, T ) × Ω , g(t, x, ±1) = 0 , (t, x) ∈ (0, T ) × Ω 1 , g(0, x, v) = g 0 (x, v) , (x, v) ∈ Ω 1 × (-1, 1) , (1.3) 
where

• Ω := Ω 1 × (-1, 1) , Ω 1 is a bounded open subset of R N1 and N 1 ∈ N * , • ∆ D x is the Dirichlet-Laplace operator on Ω 1 D(∆ D x ) = H 2 ∩ H 1 0 (Ω 1 ) , ∆ D x g = ∆g , • γ ∈ N * , β ∈ (0, 1) .
Of course, the case β = 1/2 is of particular interest for System (1.2). We use the same denition for the observability of Systems (1.2) and (1.3).

We are able to deny observability with explicit counterexamples, under an appropriate assumption P(s) on the open sets (Ω 1 , ω 1 ). In order to express this assumption, we introduce the non decreasing sequence (λ n ) n∈N * of the eigenvalues of (-∆ D x ) on Ω 1 and a corresponding orthonormal sequence of associated eigenfunctions,

   -∆ϕ n (x) = λ n ϕ n (x) , x ∈ Ω 1 , ϕ n (x) = 0 , x ∈ ∂Ω 1 , ϕ n L 2 (Ω1) = 1 .
(1.4) Denition 1.5 (Property P(s)). Let s ∈ (0, 1/2) and ω 1 be an open subset of Ω 1 . The pair (Ω 1 , ω 1 ) satises the property P(s) if

lim n→+∞ -1 λ s n ln ω1 |ϕ n (x)| 2 dx = +∞.
This assumption is related to the classical problem of high-frequency localization of the eigenfunctions of the Laplacian. Note that 1/2 is the optimal upperbound for possible values of s (see [START_REF] Lebeau | Applications to unique continuation and control of parabolic equations[END_REF]Theorem 5.4 

Ω 1 = {x = rx ; 0 < r < 1 , x ∈ U } ,
and ω 1 is an open subset of Ω 1 that does not intersect its boundary ∂Ω 1 , then the pair (Ω 1 , ω 1 ) satises Property P(s) for every s ∈ (0, 1/2). One can indeed construct a subsequence of eigenfunctions ϕ k localized near the boundary ∂Ω 1 , called whispering gallery eigenmodes.

Our rst nonobservability result concerns System (1.3) for γ = 1 .

Theorem 1.6. We assume γ = 1 .

1. If β > 0 and ω = Ω 1 × (a, b) where 0 < a < b < 1 then System (1.3) is observable in ω in any time T > 0 .

2. If β ∈ (0, 3/4) and (Ω 1 , ω 1 ) satises Property P 2β 3 , then System (1.3) is not observable in ω = ω 1 × (-1, 1) (whatever T > 0 is).

In particular, when β = 1/2, the diusion in the variable v is strong enough for System (1.3) to be observable in a horizontal strip ω = Ω 1 × (a, b) in any positive time T . On the contrary, the diusion in the variable x is too weak for System (1.3) to be observable in a vertical strip ω = ω 1 × (-1, 1) in nite time T , at least for appropriate pairs (Ω 1 , ω 1 ) that satisfy Property P(1/3) (which happens, for instance, when Ω 1 is a bounded conical open subset of R d and ω 1 ⊂ Ω 1 ). Thus a Geometric Control Condition (GCC) on (Ω, ω) is required for (1.3) to be observable in ω. Theorem 1.6 indicates that System (1.2), with γ = 1, may require a GCC for being observable. This is a conjecture for the answer of Question 2.

Our second noncontrollability result concerns System (1.3) for γ = 2 . Theorem 1.7. We assume γ = 2.

If

β > 0 and ω = Ω 1 × (a, b) where 0 < a < b < 1 then there exists T * a 2 /2 such that • System (1.3) is observable in ω in any time T > T * , • System (1.3) is not observable in ω in time T < T * . 2. If β ∈ (0, 1) and (Ω 1 , ω 1 ) satises Property P β 2 , then System (1.3) is not observable in ω = ω 1 × (-1, 1) (whatever T > 0 is).
In particular, when β = 1/2, the diusion in the variable v is strong enough for System (1.3) to be observable in a horizontal strip ω = Ω 1 × (a, b), but there is a nite speed of propagation of the information from the observation location ω to the degeneracy set {v = 0}. On the contrary, the diusion in the variable x is too weak for (1.3) to be observable in a vertical strip ω = ω 1 × (-1, 1) in nite time T , at least for appropriate pairs (Ω 1 , ω 1 ). Thus a GCC on (Ω, ω) is required for (1.3) to be observable in ω. Theorem 1.7 encourages to conjecture that a GCC condition should be required for System (1.2), with γ = 2, to be observable.

Bibliographical comments

Null controllability of the heat equation

The null and approximate controllabilities of the heat equation are essentially well understood subjects for both linear and semilinear equations, for bounded or unbounded domains [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations ESAIM Control Optim[END_REF][START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF][START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF][START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF][START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: The linear case[END_REF][START_REF] Fernández-Cara | On the null controllability of the one-dimensional heat equation with BV coecients[END_REF][START_REF] González-Burgos | Some results on controllability for linear and nonlinear heat equations in unbounded domains[END_REF][START_REF] Imanuvilov | Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Lopez | Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density[END_REF][START_REF] Miller | On the null-controllability of the heat equation in unbounded domains[END_REF][START_REF] Miller | On exponential observability estimates for the heat semigroup with explicit rates[END_REF][START_REF] Zuazua | Approximate controllability of the semilinear heat equation: boundary control[END_REF][START_REF] Zuazua | Finite dimensional null-controllability of the semilinear heat equation[END_REF] and also with discontinuous [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diusion coecients[END_REF][START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coecient and applications to controllability and an inverse problem[END_REF][START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratied media[END_REF][START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coecients[END_REF] or singular [START_REF] Vancostenoble | Null controllability for the heat equation with singular inverse-square potentials[END_REF][START_REF] Ervedoza | Control and stabilization properties for a singular heat equation with an inverse-square potential[END_REF] coecients.

In particular, the heat equation on a smooth bounded domain Ω of R d (d ∈ N * ), with a source term located on an open subset ω of Ω, is null controllable in arbitrarily small time T and with an arbitrarily small control support ω. This result is related to the innite speed of propagation of information in heat equation. It is proved, for the case d = 1 by H. Fattorini and D. Russell [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]Theorem 3.3], and, for d 2 by O. Imanuvilov [START_REF] Imanuvilov | Boundary controllability of parabolic equations[END_REF][START_REF] Imanuvilov | Controllability of parabolic equations[END_REF] (see also the book [START_REF] Fursikov | Controllability of evolution equations[END_REF] by A. Fursikov and O.Imanuvilov) and G. Lebeau and L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. It is then natural to wonder whether the same result holds for degenerate parabolic equations.

Boundary-degenerate parabolic equations

The null controllability of parabolic equations degenerating on the boundary of the domain in one space dimension is well understood, but much less is known in higher dimension.

Given 0 < a < b < 1 and γ > 0, let us consider the 1D equation

∂ t w(t, x) + ∂ x (x 2γ ∂ x w)(t, x) = u(t, x)1 (a,b) (x) , (t, x) ∈ (0, +∞) × (0, 1) ,
with suitable boundary conditions. Then, null controllability holds if and only if γ ∈ (0, 1) [START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF][START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF], while, for γ ≥ 1, the best result one can obtain is the so called regional null controllability [START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF], which consists in controlling the solution within the domain of inuence of the control. Several extensions of the above results are available in one space dimension, see [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF][START_REF] Martinez | Carleman estimates for one-dimensional degenerate heat equations[END_REF] for equations in divergence form, [START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF][START_REF] Cannarsa | Null controllability of degenerate parabolic operators with drift[END_REF] for operators in nondivergence form, and [START_REF] Cannarsa | Controllability of 1-D coupled degenerate parabolic equations[END_REF][START_REF] Flores | Carleman estimates for degenerate parabolic equations with rst order terms and applications[END_REF] for cascade systems. Fewer results are available for multidimensional problems, and they are mainly obtained in the case of two dimensional parabolic operators which simply degenerate in the normal direction to the boundary of the space domain, see [START_REF] Cannarsa | Carleman estimates and null controllability for boundary-degenerate parabolic operators[END_REF].

Parabolic equations degenerating inside the domain

In [START_REF] Martinez | Regional null controllability of a linearized Crocco type equation[END_REF], P. Martinez, J. Vancostenoble and J.-P. Raymond study linearized Crocco type equations

∂ t f (t, x, v) + ∂ x f (t, x, v) -∂ vv f (t, x, v) = u(t, x, v)1 ω (x, v) , (t, x, v) ∈ (0, T ) × T × (0, 1) , f (t, x, 0) = f (t, x, 1) = 0 , (t, x) ∈ (0, T ) × T .
For a given strict open subset ω of T × (0, 1) , they prove that null controllability does not hold: the optimal result is regional null controllability. Note that, for Kolmogorovtype equations (1.2), the coupling between diusion in v and transport in x (at speed v γ ) generates diusion both in variables x and v (see Proposition 6.2). Thus, the controllability results are dierent.

In [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF], K. Beauchard, P. Cannarsa and R. Guglielmi study Grushin-type equations

∂ t f (t, x, y) -∂ 2 x f (t, x, y) -|x| 2γ ∂ 2 y f (t, x, y) = u(t, x, y)1 ω (x, y) , (t, x, y) ∈ (0, T ) × Ω , f (t, x, y) = 0 , (t, x, y) ∈ (0, T ) × ∂Ω , (1.5) 
where Ω := (-1, 1) × (0, 1) , ω ⊂ (0, 1) × (0, 1) , and γ > 0 . Here, the parabolic operator degenerates along the line {0} × (0, 1) . They prove that

• null controllability holds in any time T > 0 when γ ∈ (0, 1) ;

• null controllability does not hold (whatever T > 0) when γ > 1 ;

• when γ = 1 and ω = (a, b) × (0, 1) with 0 < a < b < 1 , there exists T min a 2 /2 such that null controllability holds when T > T min and does not hold when T < T min .

Note that, contrary to Grushin-type equations (1.5), in Kolmogorov-type equations (1.2), the parabolic operator degenerates everywhere on the domain.

Unique continuation for Kolmogorov-type equations

In this section, we focus on unique continuation for Kolmogorov-type equations (1.2), i.e.

whether the property g(t, x, v) ≡ 0 on (0, T ) × ω does imply g ≡ 0 on (0, T ) × Ω, for a given open subset ω of Ω.

When ω = T × (a, b) is an horizontal strip, then the unique continuation of equation (1.2) holds for every γ ∈ N * , as a consequence of Holmgren theorem (the coecients of the operator are analytic and the hypersurface T × {a, b} is noncharacteristic). In particular, Theorem 1.4 emphasizes that, when γ 3, then observability does not hold even if unique continuation holds.

To our best knowledge, when ω is a general open subset of Ω, then unique continuation for Kolmogorov-type equations (1. 2) is an open problem.

J.-M. Bony proved in [START_REF] Bony | Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF] that Hörmander's operators of the form P = j X 2 j (i.e. such that the Lie algebra generated by the X j has maximal rank at any point) with analytic coecients, satisfy the unique continuation, in the following sense: if, for some f with non zero gradient, f -1 (a) is a strongly noncharacteristic surface and u is a distribution such that P u = 0 and u = 0 on f -1 [(-∞, a)], then u ≡ 0 on a neighborhood of f -1 (a). The validity of the same result for Hörmander's operators of the form P = X 0 + j X 2 j (generalizing

our Kolmogorov operator K = ∂ t + v γ ∂ x -∂ 2 v ) is an open problem.
When coecients are not analytic, but only C ∞ , unique continuation may not hold. For instance, S. Alinhac and C. Zuily built in [START_REF] Alinhac | Uniqueness and nonuniqueness of the Cauchy problem for hyperbolic operators with double characteristics[END_REF] a zero order C ∞ -perturbation of the Kolmogorov operator

K = ∂ t + v γ ∂ x -∂ 2
v for which unique continuation does not hold.

There exist C ∞ -functions u(t, x, v) and a(t, x, v) on a neighborhood V of 0 in R 3 such that Ku + au = 0, u(t, x, v) = a(t, x, v) = 0 when v < 0, and 0 ∈ Supp(u). And the same result holds with any surface {v = constant}.

The result of S. Alinhac and C. Zuily leaves open the question of the unique continuation

for System (1.2). Indeed, their counterexample does not satisfy the boundary conditions of (1.2) and it cannot be built with a = 0. However, it suggests that unique continuation for System (1.2) is a subtle issue.

Structure of the paper

The article is organized as follows.

Section 2 is devoted to the proof of Theorem 1.4.

In Section 3, we prove the negative statements of Theorems 1.6 and 1.7. These results rely on a ne semi classical analysis of the complex Airy and Davies operators.

In Section 4, we propose examples of pairs (Ω 1 , ω 1 ) satisfying Property P(s) for any s ∈ (0, 1/2).

The proof of the positive results of Theorems 1.6 and 1.7 relies on the decomposition of the solution of (1.3) on a Hilbert basis of L 2 (Ω 1 ), called 'Fourier decomposition' with a slight abuse of vocabulary. Thus, the validity of this decomposition and associated well-posedness results are treated in Section 5.

In Section 6, we prove the positive results of Theorems 1.6 and 1.7. The strategy is the same as in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF], but intermediate results have been improved. Hence we rewrite the proof completely. First, we state a Carleman estimate for the 1D-heat equation satised by the Fourier components. Then, we quantify the dissipation of Fourier modes; this result is stronger than in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF]. Then, we combine these two tools to prove the rst statements of Theorems 1.6 and 1.7.

Nonobservability when γ 3

The goal of this section is the proof of Theorem 1.4. The strategy is the same as in [10, Section 5.3] but intermediate results are dierent. Let γ ∈ N * , a , b , T ∈ R be xed, in the whole section, such that γ 3 , T > 0 and 0 < a < b < 1 .

Step 1: Approximate solution.

Let > 0 be such that b < 1 -and θ ± ∈ C ∞ (R) be such that Supp(θ -) ⊂ (-1 -, -1 + ), Supp(θ + ) ⊂ (1 -, 1 + ) and θ ± (±1) = 1.
Let µ ∈ C be some eigenvalue, with smallest real part, of the operator (-∂ 2 y + iy γ ), with domain

D γ := {u ∈ H 2 (R) s. t. y γ u ∈ L 2 (R)} .
Note that this operator has compact resolvent (see [START_REF] Heler | Propriétés asymptotiques du spectre d'opérateurs pseudodiérentiels sur R n[END_REF]); moreover, µ is a simple eigenvalue and a real number if γ = 3. Let ξ be an associated eigenfunction

-ξ (y) + iy γ ξ(y) = µ ξ(y) , y ∈ R , ξ L 2 (R) = 1 .
We recall that (see [START_REF] Sibuya | Global theory of a second order linear ordinary dierential equation with a polynomial coecient[END_REF]Chapter 10,Sections 59 and 60])

|ξ(y)| Ce -c |y| 2+γ 2 , ∀y ∈ R (2.1)
for some constants C, c > 0 .

For n ∈ N * , we dene

gn (t, v) := n 1 2(2+γ)   ξ n 1 2+γ v - σ∈{-,+} ξ σn 1 2+γ θ σ (v)   e -µn 2 2+γ t .
We have

∂ t gn (t, v) + in v γ gn (t, v) -∂ 2 v gn (t, v) = E n (t, v) , (t, v) ∈ (0, T ) × (-1, 1) , gn (t, ±1) = 0 , t ∈ (0, T ) , where E n (t, v) = n 1 2(2+γ) σ∈{-,+} (µ n 2 2+γ -in v γ )θ σ (v) + θ σ (v) ξ σ n 1 2+γ e -µ n 2 2+γ t . (2.2) Let g n be the solution of    ∂ t g n (t, v) + in v γ g n (t, v) -∂ 2 v g n (t, v) = 0 , (t, v) ∈ (0, T ) × (-1, 1) , g n (t, ±1) = 0 , t ∈ (0, T ) , g n (0, v) = gn (0, v) , v ∈ (-1, 1) .
We have

1 2 d dt (g n -g n )(t) 2 L 2 (-1,1) = -∂ v (g n -g n )(t) 2 L 2 (-1,1) +Re 1 -1 E n (t, v)(g n -g n )(t, v)dv .
By Poincaré and Cauchy-Schwarz Inequalities, we deduce that, for every t ∈ [0, T ] ,

d dt (g n -g n )(t) 2 L 2 (-1,1) - π 2 4 (g n -g n )(t) 2 L 2 (-1,1) + 4 π 2 E n (t) 2 L 2 (-1,1)
.

From this inequality and (2.2), we deduce that, for every t ∈ [0, T ]

(g n -g n )(t) 2 L 2 (-1,1) 4 π 2 t 0 E n (τ ) 2 L 2 (-1,1) e -π 2 4 (t-τ ) dτ C n 2+ 1 2+γ σ∈{-1,1} ξ σ n 1 2+γ 2 t 0 e -2Re (µ) n 2 2+γ + π 2 4 τ dτ C n 2-1 2+γ σ∈{-1,1} ξ σ n 1 2+γ
2 where the constant C may change from line to line. By (2.1), we deduce that

(g n -g n )(t) L 2 (-1,1) Cn 3+2γ 2(2+γ) e -c √ n , ∀t ∈ [0, T ]. (2.3)
Step 2: Conclusion.

Working by contradiction, we assume that System (1.2) is observable in ω in time T . The observability inequality applied to the solution g(t, x, v) := g n (t, v)e inx of (1.2) gives

1 -1 |g n (T, v)| 2 dv C T 0 b a |g n (t, v)| 2 dvdt , ∀n ∈ N * .
We deduce from the triangular inequality, the previous relation and

(2.3) that gn (T ) L 2 (-1,1) C T 0 b a |g n (t, v)| 2 dvdt 1/2 + (g n -g n )(T ) L 2 (-1,1) + C T 0 b a |(g n -g n )(t, v)| 2 dvdt 1/2 C T 0 b a |g n (t, v)| 2 dvdt 1/2 + (1 + √ T C)C n 3+2γ 2(2+γ) e -c √ n .
However, there exists C > 0 such that 

gn (T ) L 2 Ce -Re (µ) n 2 2+γ T and T 0 b a |g n (t, v)| 2 dvdt 1/2 = T 0 b a n 1 (2+γ) ξ n 1 2+γ v 2 e -2Re (µ)n 2 2+γ t dvdt 1/2 because b < 1 - = b n 1 2+γ a n 1 2+γ |ξ(y)| 2 dy 1/2 T 0 e -2Re (µ) n 2 2+γ t dt 1/2 C n -1 2+γ b n 1 2+γ a n 1 2+γ e -2c |y|
C n -1 2(2+γ) e -c a 2+γ 2 √ n .
This gives a contradiction, when n → +∞ , because 2 2+γ < 1 2 when γ > 2 .

Nonobservability on a vertical strip

The goal of this section is the proof of the nonobservability results of Theorems 1.6 and 1.7.

Accurate spectral analysis

In this section, we are interested in the spectrum of the operators

A (-R,R) := - d 2 dy 2 + iy and H (-R,R) := - d 2 dy 2 + iy 2
dened on the segment (-R, R), R > 0, with Dirichlet boundary conditions at y = ±R, with domains C) . More precisely, we study the asymptotic behavior, as R → +∞ , of the bottom of the spectrum of A (-R,R) and H (-R,R) and we prove the following two theorems, in Subsections 3.3 and 3.4 respectively. Theorem 3.1. Let µ 1 < 0 be the rst zero of the Airy function. Then,

D(A (-R,R) ) = D(H (-R,R) ) = H 2 ∩ H 1 0 ((-R, R),
lim R→∞ inf Re σ(A (-R,R) ) = |µ 1 | 2 , (3.1) 
where σ(A (-R,R) ) denotes the spectrum of A (-R,R) . Moreover, for every ε > 0, there exists R ε > 0 and M ε > 0 such that, for every R ≥ R ε ,

sup γ ≤ |µ 1 |/2 -ε, ν ∈ R A (-R,R) -(γ + iν) -1 L(L 2 (-R,R)) M ε . (3.2)
Now, let us consider the case of the Davies operator.

Theorem 3.2. We have

lim R→∞ inf Re σ(H (-R,R) ) = √ 2 2 . (3.3)
Moreover, for every ε > 0 , there exists R ε > 0 and M ε > 0 such that, for every R ≥ R ε ,

sup γ ≤ √ 2/2 -ε, ν ∈ R H (-R,R) -(γ + iν) -1 L(L 2 (-R,R)) M ε . (3.4)
Analogous questions have been considered in [START_REF] Almog | The stability of the normal state of superconductors in the presence of electric currents[END_REF][START_REF] Almog | Superconductivity near the normal state in a halfplane under the action of a perpendicular electric current and an induced magnetic eld[END_REF][START_REF] Almog | Superconductivity near the normal state in a halfplane under the action of a perpendicular electric current and an induced magnetic eld II : The large conductivity limit[END_REF][START_REF] Almog | Superconductivity near the normal state under the action of electric currents and induced magnetic elds in R 2[END_REF] and [START_REF] Almog | Global stability of the normal state of superconductors in the presence of a strong electric current[END_REF] in relation with problems occuring in superconductivity. We study these two operators using the techniques developed in these references. The study of more general cases (dimension 2) complementary to those studied in [START_REF] Almog | The stability of the normal state of superconductors in the presence of electric currents[END_REF] and [START_REF] Almog | Global stability of the normal state of superconductors in the presence of a strong electric current[END_REF] will be done in [START_REF] Henry | On the semi-classical analysis of Schrödinger operators with purely imaginary electric potentials in a bounded domain[END_REF].

3.2 Proof of the negative statements of Theorems 1.6 and 1.7

The goal of this subsection is the proof of the second statements of Theorems 1.6 and 1.7, by application of the results of the previous subsection. Thus, in the whole subsection, γ, β, Ω 1 and ω 1 are xed such that

• either γ = 1 , β ∈ (0, 3/4) and (Ω 1 , ω 1 ) satises Property P(2β/3) ,

• or γ = 2 , β ∈ (0, 1) and (Ω 1 , ω 1 ) satises Property P(β/2).

For n ∈ N * , we introduce the operator A n,γ dened by

D(A n,γ ) := H 2 ∩ H 1 0 ((-1, 1), C) , A n,γ ψ := - d 2 ψ dv 2 + iλ β n v γ ψ .
By rescaling (y = λ β 2+γ n v) and using Theorems 3.1 and 3.2, there exist C 1 , C 2 > 0 and n * ∈ N * such that, for every n n * , A n,γ has an eigenvalue µ n satisfying

C 1 λ 2β 2+γ n Re (µ n ) C 2 λ 2β 2+γ n . (3.5)
We introduce a normalized eigenfunction ψ n of A n,γ associated with the eigenvalue µ n ,

   -ψ n (v) + iλ β n v γ ψ n (v) = µ n ψ n (v) , v ∈ (-1, 1) , ψ n (±1) = 0 , ψ n L 2 (-1,1) = 1 .
Then the function

g n (t, x, v) := ϕ n (x)ψ n (v)e -µnt
is a solution of (1.3). The second statement of Theorems 1.6 and 1.7 is a consequence of the following proposition. Proposition 3.3. For every T > 0, we have

lim n→+∞ T 0 ω |g n (t, x, v)| 2 dxdvdt Ω |g n (T, x, v)| 2 dxdv = 0.

Proof of Proposition 3.3:

We have Ω |g n (T, x, v)| 2 dv = e -2 Re (µn)T , because ψ n and ϕ n are normalized in L 2 . By Fubini's Theorem, we get

T 0 ω |g n (t, x, v)| 2 dxdvdt = T 0 e -2 Re (µn) t dt 1 -1 |ψ n (v)| 2 dv ω1 |ϕ n (x)| 2 dx = 1-e -2 Re (µn ) T 2 Re (µn) ω1 |ϕ n (x)| 2 dx . Thus, T 0 ω |g n (t, x, v)| 2 dxdvdt Ω |g n (T, x, v)| 2 dxdv = e 2 Re (µn) T -1 2 Re (µ n ) ω1 ϕ n (x) 2 dx .
Let C be a positive constant such that

C > 2 C 2 T , (3.6) 
where C 2 is as in (3.5).

Let s := 2β 2+γ . By Property P(s), there exists a subsequence (n k ) k∈N such that

-1 λ s n k ln ω1 |ϕ n k (x)| 2 dx C , ∀k ∈ N , or, equivalently ω1 |ϕ n k (x)| 2 dx e -C λ s n k , ∀k ∈ N .
Then, T 0

ω |g n k (t, x, v)| 2 dxdvdt Ω |g n k (T, x, v)| 2 dxdv e (2C2T -C) λ s n k 2C 1 λ s n k -→ k→+∞ 0 , by (3.6) 
, which gives the conclusion.

Semi classical analysis of the complex Airy operator (γ = 1)

The goal of this subsection is the proof of Theorem 3.1.

We introduce two model-operators, that have well known spectral and pseudospectral behavior. Let A (-R,+∞) and A (-∞,R) be the Dirichlet realizations of the operator -d 2 dy 2 +iy on the intervals (-R, +∞) and (-∞, R) respectively. We are going to approximate the resolvent of A (-R,R) by the one of A (-R,+∞) or A (-∞,R) depending on where we are, respectively close to -R or close to +R.

Let us remark that, if

T R : u(x) → u(x + R) and U R : u(x) → u(R -x) (3.7) then T -1 R (A (-R,+∞) -λ)T R = A (0,+∞) -(λ + iR) , (3.8) U -1 R (A (-∞,R) -λ)U R = A * (0,+∞) -(λ -iR) , (3.9) 
thus inf Re σ A (-R,∞) = inf Re σ A (-∞,R) = |µ 1 | 2 , (3.10) 
because inf Re σ A (0,+∞) = |µ 1 |/2, see [START_REF] Almog | The stability of the normal state of superconductors in the presence of electric currents[END_REF].

Step 1: We prove

lim R→+∞ inf Re σ A (-R,R) |µ 1 | 2 (3.11)
and (3.2).

Let ε > 0. We search R ε > 0 such that

∀R ≥ R ε , σ A (-R,R) ∩ (] -∞, |µ 1 |/2 -ε] + iR) = ∅ . (3.12)
We recall that, by [START_REF] Heler | Spectral Theory and its Applications[END_REF], there exists C ε > 0 such that

sup γ ≤ |µ 1 |/2 -ε, ν ∈ R A (0,+∞) -(γ + iν) -1 L(L 2 (0,+∞)) C ε , (3.13 
)

sup γ ≤ |µ 1 |/2 -ε, ν ∈ R A * (0,+∞) -(γ + iν) -1 L(L 2 (0,+∞)) C ε . (3.14) Let λ = γ + iν ∈] -∞, |µ 1 |/2 -ε] + iR and h + , h -∈ C ∞ (R; [0, 1]) be such that Supp (h -) ⊂ (-∞, 1/2) , h -≡ 1 on (-∞, -1/2] , Supp (h + ) ⊂ (-1/2, +∞) , h + ≡ 1 on [1/2, +∞) , h 2 -+ h 2 + ≡ 1 on (-∞, +∞) . For R > 0, we dene η ± R (x) = h ± x R 1 (-R,R) (x) (3.15) 
and

R R (λ) = η - R A (-R,+∞) -λ -1 η - R + η + R A (-∞,R) -λ -1 η + R . (3.16)
R R (λ) will be used as an approximation of the resolvent of A (-R,R) . We have

A (-R,R) -λ R R (λ) = I + [A (-R,R) , η - R ] A (-R,+∞) -λ -1 η - R + [A (-R,R) , η + R ] A (-∞,R) -λ -1 η + R (3.17)
as an equality between operators on L 2 (-R, R).

We estimate the second term on the right hand side. In what follows, the estimates are uniform with respect to ν = Im λ. We have

[A (-R,R) , η - R ] A (-R,+∞) -λ -1 η - R = -(η - R ) -2(η - R ) d dy A (-R,+∞) -λ -1 η - R , (3.18) Using (η - R ) L ∞ (-R,R) = O(R -1 ) and (η - R ) L ∞ (-R,R) = O(R -2
), we get, by (3.8) and

(3.13), (η - R ) A (-R,+∞) -λ -1 η - R L(L 2 (-R,R)) = O 1 R 2 . (3.19)
Moreover, for every v ∈ L 2 (-R, +∞),

d dy A (-R,+∞) -λ -1 v L 2 (-R,+∞) ≤ A (-R,+∞) -λ -1 1/2 + √ γ A (-R,+∞) -λ -1 v L 2 (-R,+∞) . (3.20)
Indeed, let w := (A (-R,+∞) -λ) -1 v, i.e.

-w (y) + iyw(y) -λw(y) = v(y) , y ∈ (-R, +∞) , w(-R) = w(+∞) = 0 .

We have

w 2 L 2 (-R,+∞) = -Re +∞ -R w(y)w (y)dy = Re +∞ -R w[iyw + λw + v] = γ +∞ -R |w| 2 + Re +∞ -R wv γ w 2 L 2 (-R,+∞) + w L 2 (-R,+∞) v L 2 (-R,+∞) .
By taking the square root of this inequality, we get

w L 2 (-R,+∞) √ γ w L 2 (-R,+∞) + w 1/2 L 2 (-R,+∞) v 1/2 L 2 (-R,+∞) ,
which proves (3.20). By applying (3.20

) to v = η - R u, u ∈ L 2 (R), we get (η - R ) d dy A (-R,+∞) -λ -1 η - R L(L 2 (-R,R)) = O 1 R , (3.21) 
which gives, with (3.18) and (3.19),

[A (-R,R) , η - R ] A (-R,+∞) -λ -1 η - R L(L 2 (-R,R)) = O 1 R . (3.22) 
In the same way, we verify that

[A (-R,R) , η + R ] A (-∞,R) -λ -1 η + R L(L 2 (-R,R))
= O 1 R .

(3.23) Equality (3.17) can be written

(A (-R,R) -λ)R R (λ) = I + E R (λ) , with E R (λ) L(L 2 (-R,R)) = O(R -1 ), uniformly with respect to λ ∈] -∞, |µ 1 |/2 -ε] + iR. We deduce the existence of R ε > 0 such that, for every R ≥ R ε , (A (-R,R) -λ) is invertible, with inverse A (-R,R) -λ -1 = R R (λ) I + E R (λ) -1
.

We have proved (3.12). Moreover, according to the denition (3.16) of R R (λ), (3.8), (3.9), (3.13) and (3.14) yield the estimate (3.2).

Step 2: We prove that

lim R→+∞ inf Re σ A (-R,R) |µ 1 | 2 . (3.24)
First, we reduce the study to the complex Airy operator A (0,R) on the interval (0, R) . Indeed, applying the translation T R : u(x) → u(x + R), we get

T -1 R (A (-R,R) -λ)T R = A (0,2R) -(λ + iR) ,
thus Re σ(A (-R,R) ) = Re σ(A (0,2R) ) . Therefore, in order to prove (3.24), we are going to prove that

lim R→+∞ inf Re σ A (0,R) |µ 1 | 2 . (3.25) Let θ 1 , θ 2 ∈ C ∞ (R; [0, 1]) be such that Supp (θ 1 ) ⊂ (-∞, 2/3) , θ 1 ≡ 1 on (-∞, 1/2) , Supp (θ 2 ) ⊂ (1/2, +∞) , θ 2 ≡ 1 on (2/3, +∞) , θ 2 1 + θ 2 2 ≡ 1 on R .
For j = 1, 2 and R > 0 , we dene

χ j R (x) = θ j x R 1 (0,R) (x) . (3.26) 
We want to prove that

1 (0,R) A (0,R) + 1 -1 1 (0,R) -→ R→+∞ A (0,+∞) + 1 -1 in L(L 2 (R + )) . (3.27) Let us remark that σ 1 (0,R) A (0,R) + 1 -1 1 (0,R) = σ A (0,R) + 1 -1
with non vanishing eigenvalues that have the same multiplicity for both operators.

Step 2.a: We prove that

1 (0,R) A (0,R) + 1 -1 1 (0,R) -χ 1 R A (0,+∞) + 1 -1 χ 1 R -→ R→+∞ 0 in L(L 2 (R + )) .
For this, we use the following approximations of the resolvent of (A (0,R) + 1),

RR = χ 1 R A (0,+∞) + 1 -1 χ 1 R + χ 2 R A (0,R) + 1 -1 χ 2 R .
Then, we have

(A (0,R) + 1) RR = I + [A (0,R) + 1, χ 1 R ] A (0,+∞) + 1 -1 χ 1 R + [A (0,R) + 1, χ 2 R ] A (0,2R) + 1 -1 χ 2 R ,
thus, by composing on the left by 1 (0,R) A (0,R) + 1 -1 1 (0,R) , we get

1 (0,R) A (0,R) + 1 -1 1 (0,R) -χ 1 R A (0,+∞) + 1 -1 χ 1 R = χ 2 R A (0,R) + 1 -1 χ 2 R -1 (0,R) A (0,R) + 1 -1 1 (0,R) [A (0,R) + 1, χ 1 R ] A (0,+∞) + 1 -1 χ 1 R -1 (0,R) A (0,R) + 1 -1 1 (0,R) [A (0,R) + 1, χ 2 R ] A (0,R) + 1 -1 χ 2 R .
(3.28)

Now, we control the dierent terms on the right hand side. The terms involving commutators can be estimated as in Step 1, thanks to (3.2), and we get

1 (0,R) A (0,R) +1 -1 1 (0,R) [A (0,R) +1, χ 1 R ] A (0,+∞) +1 -1 χ 1 R L(L 2 (R + )) = O 1 R , (3.29) 1 (0,R) A (0,R) + 1 -1 1 (0,R) [A (0,R) + 1, χ 2 R ] A (0,R) + 1 -1 χ 2 R | L(L 2 (R + )) = O 1 R . (3.30)
Moreover, for u ∈ L 2 ((0, R), C), we have

Im (A (0,R) + 1)u , u = yu , u (3.31) 
where ., . denotes the L 2 ((0, R), C)-hermitian product.

This relation, applied to u = χ 2 R A (0,R) + 1

-1 χ 2 R f , f ∈ L 2 (0, +∞), which is supported in (R/2, R), gives Im (A (0,R) + 1)u , u R 2 u 2 .
Moreover,

(A (0,R) + 1)u = (χ 2 R ) 2 f + [A (0,R) + 1, χ 2 R ] A (0,R) + 1 -1 χ 2 R f .
Thus, estimating the commutator as in Step 1, we get

Im (A (0,R) + 1)u, u C 1 + 1 R f u . Therefore, R 2 u 2 C 1 + 1 R f u .
We have proved that

χ 2 R A (0,R) + 1 -1 χ 2 R L(L 2 (0,+∞)) = O 1 R . (3.32) 
By (3.28), (3.29), (3.30) and (3.32), we have

1 (0,R) A (0,R) + 1 -1 1 (0,R) -χ 1 R A (0,+∞) + 1 -1 χ 1 R L(L 2 (0,+∞)) = O 1 R (3.33)
which ends Step 2.a.

Step 2.b: We verify that

χ 1 R A (0,+∞) + 1 -1 χ 1 R -→ R→+∞ A (0,+∞) + 1 -1 in L(L 2 (0, +∞)) , (3.34) 
which ends the proof of (3.27).

To simplify notation, let us introduce

A + = A (0,+∞) + 1 .
First, we write

χ 1 R A -1 + χ 1 R A + = (χ 1 R ) 2 -χ 1 R A -1 + [A + , χ 1 R ],
then, composing on the right by A -1 + and using that (

χ 1 R ) 2 = 1 -(χ 2 R ) 2 , A -1 + -χ 1 R A -1 + χ 1 R = (χ 2 R ) 2 A -1 + + χ 1 R A -1 + [A + , χ 1 R ]A -1 + . (3.35)
The term involving a commutator can be estimated as in Step 1,

χ 1 R A -1 + [A + , χ 1 R ]A -1 + L(L 2 (R + )) = O 1 R . (3.36) For f ∈ L 2 (0, +∞), we have R 2 (χ 2 R ) 2 A -1 + f 2 y 1/2 (χ 2 R ) 2 A -1 + f 2 (because Supp (χ 2 R ) ⊂ (R/2, R)) = Im A + (χ 2 R ) 2 A -1 + f , (χ 2 R ) 2 A -1 + f A + (χ 2 R ) 2 A -1 + f (χ 2 R ) 2 A -1 + f (χ 2 R ) 2 f + [A + , (χ 2 R ) 2 ]A -1 + f (χ 2 R ) 2 A -1 + f ,
where ., . denotes the L 2 ((0, +∞), C)-hermitian product and . is the associated norm.

Estimating the term with a commutator as in Step 1, we get Step 2.c: Conclusion.

R (χ 2 R ) 2 A -1 + f L 2 (0,+∞) C 1 + 1 R f L 2 (0,+∞) . Thus (χ 2 R ) 2 A -1 + L(L 2 (0,+∞)) = O 1 R . ( 3 
Step 2.a and Step 2.b prove (3.27). The eigenvalues of A -1

+ are isolated, thus we can apply [45, Section IV, 3.5]. For any subsequence R j → +∞ and any eigenvalue λ ∈ σ(A -1 + ) \ {0}, there exists a sequence (λ j ) such that, for every j large enough

λ j ∈ σ 1 (0,Rj ) A (0,Rj ) + 1 -1 1 (0,Rj ) \ {0} = σ A (0,Rj ) + 1 -1

\ {0}

and λ j → λ when j → +∞.

In particular, with λ = 1/( λ + 1), where λ = e iπ/3 |µ 1 | ∈ σ(A (0,+∞) ) is the eigenvalue of A (0,+∞) with smallest real part (see [START_REF] Almog | The stability of the normal state of superconductors in the presence of electric currents[END_REF]), we get a sequence λj = 1/λ j -1 ∈ σ(A (0,Rj ) ) such that Re λj → Re λ = |µ 1 |/2, from which we deduce (3.24).

Semi classical analysis of the Davies operator (γ = 2)

The goal of this section is the proof of Theorem 3.2, which is similar to the one of Theorem 3.1.

Step 1: Let ε > 0. We search R ε > 0 such that

∀R ≥ R ε , σ H (-R,R) ∩ (-∞, √ 2/2 -ε) + iR = ∅ (3.38)
and we prove (3.4).

Let α ∈ (0, 1/3) and ζ 1 R , ζ 2 R , ζ 3 R ∈ C ∞ (R; [0, 1]) be such that Supp ζ 1 R ⊂ (-∞, -R + R α ) , ζ 1 R ≡ 1 on (-∞, -R + R α /2) , Supp ζ 2 R ⊂ (-R + R α /2, R -R α /2) , ζ 2 R ≡ 1 on (-R + R α , R -R α ) , Supp ζ 3 R ⊂ (R -R α , +∞) , ζ 3 R ≡ 1 on (R -R α /2, +∞) , (ζ 1 R ) 2 + (ζ 2 R ) 2 + (ζ 3 R ) 2 ≡ 1 on R , (ζ j R ) L ∞ (R) = O R→+∞ (R -α ) , (ζ j R ) L ∞ (R) = O R→+∞ (R -2α ) , (3.39) 
Close to y = -R, we have

y 2 = -2R(y + R) + R 2 + o(|y + R|) .
Thus, we are going to approximate H (-R,R) , close to y = -R, by the complex Airy type operator on (-R, +∞)

A - R := - d 2 dy 2 -2iR(y + R) + iR 2 .
In the same way, we will approximate H (-R,R) close to y = +R by the complex Airy type operator on (-∞, +R)

A + R := - d 2 dy 2 -2iR(R -y) + iR 2 .
Then, we remark that, if T R and U R are dened by (3.7), then we have

A - R = T R Ã * 2R T -1 R + iR 2 and A + R = U R Ã * 2R U -1 R + iR 2 ,
where ÃR is the Dirichlet realization of the complex Airy operator -d 2 dy 2 + iRy on (0, +∞).

Following [START_REF] Heler | Spectral Theory and its Applications[END_REF], we deduce that

inf Re σ A + R = inf Re σ A - R = (2R) 2/3 |µ 1 | 2 , (3.40)
and, for every ε > 0, there exists

C ε > 0 such that sup γ ∈ [0, R 2/3 |µ 1 |/2 -ε], ν ∈ R A ± R -(γ + iν) -1 C ε R 2/3 . (3.41)
We call H 0 the complex harmonic oscillator -d 2 dy 2 + iy 2 on R, that will serve to approximate [START_REF] Davies | Wild spectral behaviour of anharmonic oscillators[END_REF]) and

H (-R,R) on the support of ζ 2 R . We recall that inf Re σ(H 0 ) = cos π/4 = √ 2/2 (see
sup γ ≤ √ 2/2 -ε, ν ∈ R H 0 -(γ + iν) -1 C ε , (3.42)
for some C ε > 0, see for instance [START_REF] Pravda-Starov | A complete study of the pseudo-spectrum for the rotated harmonic oscillator[END_REF]. Now, we take λ = γ + iν ∈ (0,

√ 2/2 -ε) + iR and we set Q R (λ) = ζ 1 R A - R -λ -1 ζ 1 R + ζ 2 R H 0 -λ -1 ζ 2 R + ζ 3 R A + R -λ -1 ζ 3 R . (3.43)
Then, we have

(H (-R,R) -λ)Q R (λ) = I + [H (-R,R) , ζ 1 R ] A - R -λ -1 ζ 1 R +[H (-R,R) , ζ 2 R ] H 0 -λ -1 ζ 2 R + [H (-R,R) , ζ 3 R ] A + R -λ -1 ζ 3 R +ζ 1 R (H (-R,R) -A - R ) A - R -λ -1 ζ 1 R + ζ 3 R (H (-R,R) -A + R ) A + R -λ -1 ζ 3 R ,
as equality between operators on L 2 (-R, R) . The terms involving commutators can be estimated as in Step 1 of the previous section, by using (3.39), (3.41), (3.42) and we get

[H (-R,R) , ζ 1 R ] A - R -λ -1 ζ 1 R L(L 2 (-R,R)) + [H (-R,R) , ζ 2 R ] H 0 -λ -1 ζ 2 R L(L 2 (-R,R)) + [H (-R,R) , ζ 3 R ] A + R -λ -1 ζ 3 R L(L 2 (-R,R)) = O(R -α ) .
Moreover, we have, by denition of

A - R , (H (-R,R) -A - R )u(y) = i(y + R) 2 u(y) ,
and on the support of ζ 1 R , we have y + R ≤ R α . Therefore, by (3.41)

ζ 1 R (H (-R,R) -A - R ) A - R -λ -1 ζ 1 R L(L 2 (-R,R)) ≤ R 2α A - R -λ -1 L(L 2 (-R,+∞)) ≤ C ε R 2(α-1/3) .
In the same way, we verify

ζ 3 R (H (-R,R) -A + R ) A + R -λ -1 ζ 3 R L(L 2 (-R,R)) ≤ C ε R 2(α-1/3) .
Thus, we have proved that

(H (-R,R) -λ)Q R (λ) = I + ẼR (λ),
with ẼR (λ) → 0 as R → +∞ , uniformly with respect to λ in the interval (0,

√ 2/2-ε)+iR . Thus, there exists R ε > 0 such that, for every R ≥ R ε , (H (-R,R) -λ) is invertible, with H (-R,R) -λ -1 = Q R (λ) I + ẼR (λ) -1 . (3.44)
This proves the existence of R > 0 such that (3.38) holds. The resolvent estimate (3.4) follows from (3.41), (3.42) and (3.43).

Step 2: We prove

lim R→+∞ inf Re σ H (-R,R) √ 2 2 . (3.45) 
Let ϕ 1 R , ϕ 2 R ∈ C ∞ (R, [0, 1]) be such that Supp (ϕ 1 R ) ⊂ (-∞, -R/2) ∪ (R/2, +∞) , ϕ 1 R ≡ 1 on (-∞, -2R/3) ∪ (2R/3, +∞) , Supp (ϕ 2 R ) ⊂ (-2R/3, 2R/3) , ϕ 2 R ≡ 1 on (-R/2, R/2) , (ϕ 1 R ) 2 + (ϕ 2 R ) 2 ≡ 1 on R , (ϕ j R ) L ∞ (R) = O R -1 , (ϕ j R ) L ∞ (R) = O R -2 .
We recall that H 0 denotes the operator -d 2 dx 2 + ix 2 dened on R, and we set

QR = ϕ 2 R H 0 + 1 -1 ϕ 2 R + ϕ 1 R H (-R,R) + 1 -1 ϕ 1 R .
Thus, we have

H (-R,R) + 1 QR = I + P R , where P R = [H (-R,R) , ϕ 2 R ] H 0 + 1 -1 ϕ 2 R + [H (-R,R) , ϕ 1 R ] H (-R,R) + 1 -1 ϕ 1 R , and P R L(L 2 (-R,R)) = O(R -1 ) . (3.46) 
By composing on the left with (H (-R,R) + 1) -1 , we get

H (-R,R) +1 -1 -ϕ 2 R H 0 +1 -1 ϕ 2 R = ϕ 1 R H (-R,R) +1 -1 ϕ 1 R -H (-R,R) +1 -1 P R . (3.47)
By going back over the proof of (3.32) and replacing (3.31) by

Im H (-R,R) u, u = x 2 u, u , (3.48) 
we get

ϕ 1 R H (-R,R) + 1 -1 ϕ 1 R L(L 2 (-R,R)) = O 1 R .
By (3.47), the previous relation, together with (3.46) and (3.4) imply

H (-R,R) + 1 -1 -ϕ 2 R H 0 + 1 -1 ϕ 2 R L(L 2 (-R,R)) = O 1 R . (3.49) 
Then, we prove that the operator ϕ 2 R (H 0 + 1) -1 ϕ 2 R converges to (H 0 + 1) -1 in L(L 2 (R)), when R → +∞, with the same arguments as in Step 2.b of the previous section. Thus, (3.45) is proved, with the same arguments as in Step 2.c of the previous section, and this ends the proof of Theorem 3.2.

4 Examples of (Ω 1 , ω 1 ) satisfying Property P(s)

The goal of this section is to give examples of pairs (Ω 1 , ω 1 ) that satisfy Property P(s) for any s ∈ (0, 1/2). Precisely, we prove that it is the case if Ω 1 is a conical bounded subset of R d and ω 1 is any open subset of Ω 1 that does not intersect the boundary ∂Ω 1 . Note that the result covers the situation where Ω 1 is a disk or a circular sector in 2D, a ball in any space dimension. 

Ω 1 := {x = rx ; 0 < r < 1 , x ∈ U } .

Let ω 1 be an open subset compactly embedded in

Ω 1 . There exist constants C, K > 0, a sequence ( λ k ) k∈N * of eigenvalues of the operator (-∆ D Ω1 ) (with domain H 2 ∩ H 1 0 (Ω 1 )) and associated normalized eigenvectors ( ϕ k ) k∈N * such that ω1 | ϕ k (x)| 2 dx Ke -C √ λ k , ∀k ∈ N * .
In particular (Ω 1 , ω 1 ) satises Property P(s) for any s ∈ (0, 1/2).

We refer to [START_REF] Nguyen | Localization of laplacian eigenfunctions in circular and elliptical domains[END_REF] for other similar results. Our proof of Proposition 4.1 relies on properties of Bessel functions, recalled in the next statement.

Proposition 4.2. The Bessel functions of the rst kind J ν satisfy 0 < J ν (νx) e νg(x) , ∀ν ∈ (0, +∞) , x ∈ (0, 1) ,

|J ν (νx)| < (1 + x 2 ) 1/4 e νg(x) x √ 2πν , ∀ν ∈ (0, +∞) , x ∈ (0, 1) , (4.1) 
J ν (ν) ∼ ν→+∞ a ν 1/3 , (4.3) where g(x) := ln(x) + 1 -x 2 -ln[1 + 1 -x 2 ] and a := 2 1/3 3 2/3 Γ(2/3) > 0 . (4.2) 
Inequalities (4.1) and (4.2) are proved in [START_REF] Siegel | An inequality involving Bessel functions of argument nearly equal to their orders[END_REF]; inequality (4.3) is in [1, Formula 9.3.31,

Page 368]. Note that g is negative and increasing on (0, 1) and that g(1) = 0.

Proof of Proposition 4.1: We recall that, in coordinates (r, x ), the Dirichlet-Laplacian writes

(-∆ D Ω1 )ϕ = - ∂ 2 ϕ ∂r 2 - d -1 r ∂ϕ ∂r + 1 r 2 (-∆ D U )ϕ .
Let (λ k ) k∈N * be the increasing sequence of eigenvalues of (-∆ D U ) and (X k ) k∈N * be associated eigenfunctions

   (-∆ D U )X k (x ) = λ k X k (x ) , x ∈ U , X k (x ) = 0 , x ∈ ∂U , X k L 2 (U ) = 1 .
For k ∈ N * , we dene

ν k := λ k + d 2 -1 2 
and j k the rst positive zero of the Bessel function of rst kind J ν k . Note that

ν k < j k < ν k + δν 1/3 k , ∀k ∈ N * , (4.4) 
for some constant δ > 0 (see [1, Formula 9.5.14, Page 371]). Let

C k := 1 0 r -d 2 +1 J ν k (j k r) 2 r d-1 dr 1/2
, ∀k ∈ N * .

Then, for every k ∈ N * , the function

ϕ k (rx ) := 1 C k r -d 2 +1 J ν k (j k r)X k (x ) , ∀r ∈ (0, 1) , x ∈ U ,
is a normalized eigenfunction of (-∆ D Ω1 ) associated to the eigenvalue

λ k := j 2 k . (4.5) 
Step 1: We prove the existence of C 1 > 0 such that, for k large enough

C k C 1 ν 3/4 k . ( 4.6) 
Let ∈ (0, 5/6). Performing changes of variables, we get, for k large enough We deduce from (4.7) and (4.8) that (4.6) holds for some constant C 1 > 0.

C k = 1 0 |J ν k (j k r)| 2 rdr 1/2 = 1 j k j k 0 |J ν k (ρ)| 2 ρdρ 1/2 1 j k ν k 0 |J ν k (ρ)| 2 ρdρ 1/2 by (4.4) ν k j k 1 0 |J ν k (ν k r)| 2 rdr 1/2 C    1 1-ν -5 6 - k |J ν k (ν k r)| 2 dr   
Step 2: Conclusion.

Let ω 1 be an open subset of R d such that ω 1 ⊂ Ω 1 . There exists a ∈ (0, 1) such that

ω 1 ⊂ {x = rx ; 0 < r < a, x ∈ U } . Thus, for every k ∈ N * , ω1 | ϕ k (x)| 2 dx a 0 1 C k r -d 2 +1 J ν k (j k r) 2 r d-1 dr a 2 2C 2 k sup {J ν k (j k r); 0 < r < a} .
Let b ∈ (a, 1). By (4.4), we have j k a ν k < b < 1 for k large enough. Then, by (4.1) for every r ∈ (0, a),

0 < J ν k (j k r) = J ν k ν k j k r ν k e ν k g j k r ν k
.

Explicit computations show that g (x) > 0, for every x ∈ (0, 1), thus

g j k r ν k < g (b) < 0 , ∀r ∈ (0, a). Therefore, ω1 | ϕ k (x)| 2 dx a 2 2C 2 k e -|g(b)|ν k .
By (4.6), (4.4) and (4.5), we get the conclusion.

Finally, let us quote, without proof, other examples of pairs (Ω 1 , ω 1 ) satisfying Property P(s) for appropriate values of s.

If Ω 1 is a lled ellipse and ω 1 is an open subset of Ω 1 that does not intersect ∂Ω 1 , then the pair (Ω 1 , ω 1 ) satises property P(s) for any s ∈ (0, 1/2). This can be proved by working in separate variables as in [START_REF] Nguyen | Localization of laplacian eigenfunctions in circular and elliptical domains[END_REF] and constructing "whispery galleries" solutions. The same result holds if ω 1 intersects ∂Ω 1 but does not intersect the small axis of Ω 1 (see [START_REF] Nguyen | Localization of laplacian eigenfunctions in circular and elliptical domains[END_REF]Theorem 3.1,page 786]). This time this corresponds to "focusing solutions".

All these results can be proved with semi-classical analysis (see, for instance [START_REF] Toth | Counting nodal lines wich touch the boundary of an analytic domain[END_REF] and [START_REF] Didelot | Etude d'une perturbation singulière elliptique dégénérée[END_REF]).

Well posedness and Fourier decomposition

In this section γ ∈ N * and β ∈ (0, 1)

are xed. For f ∈ C ∞ c (Ω, C), we dene |f | V := Ω |∂ v f (x, v)| 2 dxdv 1/2 and V := Adh |.| V [C ∞ c (Ω, C)] .
Observe that H 1 0 (Ω) ⊂ V ⊂ L 2 (Ω) , thus V is dense in L 2 (Ω) . We dene the operator A γ,β by We consider a solution g ∈ C 0 ([0, T ], L 2 (Ω)) of (1.3). Then, the function x → g(t, x, v) belongs to L 2 (Ω 1 ) for almost every (t, v) ∈ [0, +∞) × (-1, 1), thus, it can be developed on the Hilbert basis (ϕ n ) n∈N * (see (1.4)) as follows

D(A γ,β ) := {f ∈ V ; -∂ 2 v f + iv γ (-∆ x ) β f ∈ L 2 (Ω)} , A γ,β f := -∂ 2 v f + iv γ (-∆ x ) β f . Then D(A γ,β ) is dense in L 2 (Ω) , (A γ,β , D(A γ,β ))
g(t, x, v) = n∈N * g n (t, v)ϕ n (x) where g n (t, v) := T g(t, x, v)ϕ n (x)dx , ∀n ∈ N * . (5.1)
In what follows, with a slight abuse of vocabulary, this decomposition is called 'Fourier decomposition' and the functions g n (t, v) are called 'Fourier components'. Proposition 5.1. For every n ∈ N * , g n is the unique solution of

   ∂ t g n (t, v) + iλ β n v γ g n (t, v) -∂ 2 v g n (t, v) = 0 , (t, v) ∈ (0, +∞) × (-1, 1) , g n (t, ±1) = 0 , t ∈ (0, +∞) , g n (0, v) = g 0,n (v) , v ∈ (-1, 1) , (5.2) 
where g 0,n ∈ L 2 (-1, 1) is given by

g 0,n (v) := Ω1 g 0 (x, v)ϕ n (x)dx , v ∈ (-1, 1) .
This result can be proved by following the same steps as in [11, Section 2.2].

Observability on a horizontal strip

The goal of this section is the proof of the statements 1 of Theorems 1.6 and 1.7. Note that the negative part of the rst statement of Theorem 1.7 (i.e. no null controllability, when γ = 2 and T < T * ) can be done exactly as in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF].

Global Carleman estimate

The goal of this subsection is the statement of a global Carleman estimate, proved in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF]Appendix] and useful for the proof of the statements 1 of Theorems 1.6 and 1.7. For λ ∈ R and γ ∈ {1, 2}, we introduce the operator

P λ,γ g := ∂ t g + iλv γ g -∂ 2 v g . Proposition 6.1. Let a, b be such that -1 < a < b < 1.
There exist a weight function

β ∈ C 1 ([-1, 1], R * + ), positive constants C 1 , C 2 such that, for every λ ∈ R, γ ∈ {1, 2}, T > 0 and g ∈ C 0 ([0, T ], L 2 (-1, 1)) ∩ L 2 (0, T ; H 1 0 (-1, 1 
)) the following inequality holds

C 1 T 0 1 -1 M t(T -t) ∂g ∂v (t, v) 2 + M 3 (t(T -t)) 3 g(t, v) 2 e -M β(v) t(T -t) dvdt T 0 1 -1 |P λ,γ g(t, v)| 2 e -M β(v) t(T -t) dvdt + T 0 b a M 3 (t(T -t)) 3 |g(t, v)| 2 e -M β(v) t(T -t) dvdt , (6.1) 
where M := C 2 max{T + T 2 ; |λ|T 2 } .

In this proposition, the weight β is the usual one for Carleman estimates for 1D heat equations; since its explicit expression will not be used in this article, we do not specify its properties. Note that we have sharp dependency of M on λ and T . In particular, if we treat the term iλv γ g as a lower-order term, to apply the Carleman estimate for the operator (∂ t -∂ 2 v ), then, we can obtain a less sharp dependency M = O(λ 2/3 ), which is not sucient in this article. The proof of this Carleman estimate is done in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF]Appendix], by revisiting the usual proof.

Dissipation of Fourier components

The Dirichlet realization of the operator -∂ 2 v + iλ β n v γ on (-1, 1) is not a normal operator.

Thus it is not obvious that the exponential decay of the solutions of (5.2) is given by the smallest real part of the eigenvalues of this operator. This question is answered in the following statement. Proposition 6.2. Let γ ∈ {1, 2} and

d := 2γβ 2 + γ .
There exist K, δ > 0 such that, for every n ∈ N * and g 0,n ∈ L 2 (-1, 1), the solution of (5.2) satises

g n (t) L 2 (-1,1) Ke -δλ d n t g 0,n L 2 (-1,1) , ∀t > 0 . (6.2)
Moreover, for every > 0, there exists n * > 0 such that, for every n > n * , (6.2) holds with

K = K and δ = |µ 1 |/2 -ε if γ = 1 , √ 2/2 -ε if γ = 2 , (6.3) 
where µ 1 is the rst zero (from the right) of the Airy function.

Finally, the exponent d of λ n in (6.2) is optimal, and the critical value of δ in (6.3) is also optimal.

This result is stronger than [10, Propositions 10 and 17] because in (6.2), we have L 2norms on both sides, whereas in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF] there was an H 1 -norm on the right hand side. We study this problem in semi-classical formulation (take h n = λ -β/2 n and s = h n t).

Let h 0 > 0. For h ∈ (0, h 0 ) and ψ 0,h ∈ L 2 (-1, 1), we consider the equation

   h∂ t ψ h (t, v) -h 2 ∂ 2 v ψ h (t, v) + iv γ ψ h (t, v) = 0 , (t, v) ∈ (0, +∞) × (-1, 1) , ψ h (t, ±1) = 0 , t ∈ (0, +∞) , ψ h (0, v) = ψ 0,h (v) ,
v ∈ (-1, 1) .

(6.4) Proposition 6.3. Let e = 2γ/(γ + 2) . There exist K, δ > 0 such that, for every h ∈ (0, h 0 ) and ψ 0,h ∈ L 2 (-1, 1) , the unique solution of (6.4) satises

ψ h (t) L 2 (-1,1) ≤ Ke -δh e-1 t ψ 0,h L 2 (-1,1) , ∀t > 0 . (6.5) 
Moreover, for every ε > 0, there exists h * ∈ (0, h 0 ) such that, for every h ∈ (0, h * ) , (6.5) holds with K = K ε and (6.3) where µ 1 is the rst zero (from the right) of the Airy function.

Finally, the exponent d of h in (6.5) is optimal, and the critical value of δ in (6.3) is also optimal.

Proof of Proposition 6.3:

Let A h be the operator dened by

A h = -h 2 d 2 dv 2 + iv γ , D(A h ) = H 2 (-1, 1) ∩ H 1 0 (-1, 1)
.

By rescaling (R = R(h) = h -e/γ and y = Rv) and using Theorems 3.1 and 3. C δ h 1-e .

(6.7)

Moreover, the operator h -1 A h is maximally accretive, thus it generates a semigroup of contractions:

ψ h (t) L 2 (-1,1) ψ 0,h L 2 (-1,1) , ∀t > 0 .

(6.8)

We can apply [40, Theorem 1.5], with ω = -δh e-1 < 0, r(ω) -1 ≤ C δ h 1-e , m(t) ≡ 1 and a = ã = t/2 . Note that 1 2

L 2 ((0,t/2);e ωt dt) =

1 -e ωt/2 -ω .

Thus, we obtain ψ h (t, •) L 2 (-1,1) δC δ 1 -e -δh e-1 t/2 e -δh e-1 t ψ 0,h L 2 (-1,1) , ∀t > 0 .

(6.9) Let c 0 > 0 and t h = 2c 0 h 1-e /δ . Then, by (6.9), ψ h (t, •) L 2 (-1,1) K 1 e -δh e-1 t ψ 0,h L 2 (-1,1) , ∀t ≥ t h with

K 1 = δC δ 1 -e -c0 .
Moreover, by (6.8), ψ h (t) L 2 (-1,1) K 2 e -δh e-1 t ψ 0,h L 2 (-1,1) , ∀t ≤ t h with K 2 = e 2c0 . Thus, ψ h (t) L 2 (-1,1) Ke -δh e-1 t ψ 0,h L 2 (-1,1) , ∀t > 0 (6.10) with K = max(K 1 , K 2 ). Finally, if ε > 0 is xed, by (6.6) there exists h * ∈ (0, h 0 ) such that all the previous estimates hold for h ∈ (0, h * ) and δ as in (6.3). Indeed, we have δ < δ * := min h∈(0,h * ) h -e inf Re σ(A h ).

To prove the optimality of exponent (e -1) of h in (6.5), we just consider ψ 0,h ∈ ker(A h -λ 0,h h e ) , where λ 0,h satises h e λ 0,h ∈ σ(A h ) and h e Re λ 0,h = inf Re σ(A h ). Then, we have ψ h (t, v) = e -λ 0,h h e-1 t ψ 0,h (v) .

Thus, by (6.6), for every t > 0 and ε > 0 , there exists h * > 0 such that, for every h ∈ (0, h * ) , ψ h (t, •) L 2 (-1,1) = e -λ 0,h h e-1 t g 0,n L 2 (-1,1) e -(ν+ε)h e-1 t ψ 0,h L 2 (-1,1) ,

with ν = |µ 1 |/2 if γ = 1 and ν = √ 2/2 if γ = 2 .
6.3 Proof of the positive statements of Theorems 1.6 and 1.7

The positive statements in Theorems 1.6 and 1.7 are consequences of the following proposition and of the Bessel-Parseval equality.

Proposition 6.4. Let β ∈ (0, 1) and 0 < a < b < 1 .

• If γ = 1 , then, for every T > 0 , there exists C > 0 such that for every n ∈ N * and g 0,n ∈ L 2 (-1, 1) , the solution of (5.2) satises • If γ = 2 , then, there exists T 1 > 0 such that, for every T > T 1 , there exists C > 0 such that for every n ∈ N * and g 0,n ∈ L 2 (-1, 1) , the solution of (5.2) satises (6.11). Proof of Proposition 6.4:

We deduce from Proposition 6.1 that (usual observability inequality for 1D heat equations). Thus, the uniform observability constant C := max{C H , C n ; 1 n n 0 } gives the conclusion.

Case 2: γ = 2 . Then d = β 2 , thus, when T > T 1 := 3c * 2δ , the observability constant in (6.13) converges to zero as n → +∞ and the proof can be ended as in the previous case.

. 37 )

 37 Finally, (3.35), (3.36) and (3.37) imply (3.34).
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 41 Let d ∈ N, d 2 and U be an open subset of S d-1 . Let Ω 1 be the conical open subset of R d dened by

(4. 7 )2ν 1 / 3 -ν 1- 5 by

 7135 For r ∈ (1 -ν -5 6 -, 1) and ν large enough, we have|J ν (νr)| |J ν (ν)| -ν(1 -r) sup{|J ν (νσ)|; σ ∈ (r, 1)} a

  is a closed operator and both A γ,β and A * γ,β are dissipative, thus (A γ,β , D(A γ,β )) generates an strongly continuous semigroup of contractions of L 2 (Ω) (see the Lumer-Phillips Theorem [55, Corollary 4.4, Chapter 1, page 15], or the Hille Yosida Theorem [15, Theorem VII.4, page 105]).

(6. 6 )

 6 Thus, we can considerδ * := min h∈(0,h0) h -e inf Re σ(A h ) > 0 .Let δ ∈ (0, δ * ). By Theorems 3.1 and 3.2, there exists C δ such that sup ν∈R A h -δh e -iν

  t, v)| 2 dvdt .

C 3 λ 3β/ 2 n 1 - 1 2 T 1 - 1 C 5 := K 2 C 4 /C 3 .Case 1 : γ = 1 .> β 2 , 1 - 1 1 - 1

 21121152431121111 n (t, v)| 2 dvdt C 4 T 0 b a |g n (t, v)| 2 dvdt (6.12)for n large enough, whereC 3 := C 2 max{4C 1 ; (4C 1 ) 3 } , c * := 9 2 C 2 max{β(v); v ∈ [-1, 1]} , C 4 := max{x 3 e -β * x ; x 0} and β * := min{β(v); v ∈ (a, b)} . Moreover, thanks to Proposition 6.2, we have |g n (T, v)| 2 dv 3K |g n (t, v)| 2 dvdt Then d = 2β3 thus the observability constant above converges to zero as n → +∞. This proves the existence of a uniform observability constant for high frequencies: there exists C H > 0 and n 0 ∈ N * such that|g n (T, v)| 2 dv C H T 0 b a |g n (t, v)| 2 dvdt , ∀g 0 n ∈ L 2 (-1, 1), n > n 0 .Moreover, for every n ∈ {1, ..., n 0 }, there exists a constant C n > 0 such that|g n (T, v)| 2 dv C n T 0 b a |g n (t, v)| 2 dvdt , ∀g 0 n ∈ L 2 (-1, 1)
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