
HAL Id: hal-00863037
https://hal.science/hal-00863037v1

Submitted on 18 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime function instrumentation with EZTrace
Charles Aulagnon, Damien Martin-Guillerez, François Rue, François Trahay

To cite this version:
Charles Aulagnon, Damien Martin-Guillerez, François Rue, François Trahay. Runtime function in-
strumentation with EZTrace. PROPER - 5th Workshop on Productivity and Performance, Aug 2012,
Rhodes Island, Greece. pp.395-403, �10.1007/978-3-642-36949-0_45�. �hal-00863037�

https://hal.science/hal-00863037v1
https://hal.archives-ouvertes.fr


Runtime function instrumentation with EZTrace

Charles Aulagnon1, Damien Martin-Guillerez2, François Rué2, and
François Trahay3

1 ENSEIRB / INRIA Bordeaux Sud-Ouest charles.aulagnon@gmail.com
2 INRIA Bordeaux Sud-Ouest firstname.lastname@inria.fr

3 Institut Mines-Télécom - Télécom SudParis francois.trahay@it-sudparis.eu

Abstract. High-performance computing relies more and more on com-
plex hardware: multiple computers, multi-processor computer, multi-core
processing unit, multiple general purpose graphical processing units... To
efficiently exploit the power of current computing architectures, modern
applications rely on a high level of parallelism. To analyze and optimize
these applications, tracking the software behavior with minimum impact
on the software is necessary to extract time consumption of code sections
as well as resource usage (e.g., network messages).
In this paper, we present a method for instrumenting functions in a
binary application. This method permits to collect data at the entry and
the exit of a function, allowing to analyze the execution of an application.
We implemented this mechanism in EZTrace4 and the evaluation shows
a significant improvement compared to other tools for instrumentation.

1 Introduction

The complexity of modern supercomputer hardware, due to the use of
NUMA architecture, hierarchical caches or accelerators, as well as the use
of hybrid programming models that mix MPI with OpenMP or PThread
make it difficult to exploit efficiently a supercomputer. Optimizing a par-
allel application requires to understand precisely its behavior, which can
be tedious because of the hardware and software stacks.

Generating and analyzing execution traces of an application is a great
help for developers who want to optimize their programs. The generation
of such traces requires to intercept the calls to a set of key functions –
MPI communication primitives, synchronization functions, etc. – and to
record events in a file. The instrumentation of a program must not modify
its behavior and thus should have an overhead as low as possible.

In this paper, we present a mechanism for intercepting the calls to a
set of functions in an application. This mechanism can be used in a perfor-
mance analysis tool for generating execution trace. We implemented this

4 We would like to thanks Julien Pedron for his work on the packaging of this
method in EZTrace – http://eztrace.gforge.inria.fr

http://eztrace.gforge.inria.fr


technique in the EZTrace framework for performance analysis. The re-
mainder of this paper is organized as follows: Section 2 briefly presents the
framework in which our contribution takes place as well as the problems
of the instrumentation mechanism that was previously implemented. In
Section 3, we present various research related to function instrumentation.
The mechanism that we propose and its implementation in EZTrace are
described in Sections 4 and 5. Finally, the results of the evaluation of our
implementation are reported in Section 6.

2 The EZTrace software

EZTrace [12] is a general framework for generating traces of a program
without recompilation. It is able to instrument functions in dynamic li-
braries and record events in trace files. Several modules are provided
that contains function instrumentations for standard libraries like MPI
or pthread. For instance, it can save each call (and the timespamp at
which the call happened) to MPI Send into a trace using the mpi module.
Moreover, EZTrace provides a simple mean to generate user-defined
modules.

To generate a trace, events have to be recorded before and after each
call to specified functions. Recording these events permits to keep track of
entry and exit of each function of interest. To do so, EZTrace uses the
LD PRELOAD mechanism that preloads shared libraries before any other
shared libraries. As depicted in Figure 1, the symbols provided by a
preloaded library take priority over other symbols when the symbol res-
olution is done. Since EZTrace defines a function f in a library called
libeztrace-foo that is preloaded, when the application calls f, the func-
tion defined by EZTrace is called. This function records an event, then
calls the original function f that is defined by the libfoo library. When
the original f ends, EZTrace records another event and returns to the
application.

Fig. 1. Instrumentation of the function f with LD PRELOAD in EZTrace



The LD PRELOAD mechanism used in EZTrace is very simple and very
efficient. It has enabled the development of a fast and efficient framework
for trace generation. However, it can only instrument functions in shared
libraries. Thus, EZTrace cannot intercept calls to functions that are
defined in a statically-linked library or within the program.

3 Related work

During the optimization of an application, running the program, collect-
ing an execution trace and analyzing it is a great help for identifying the
application bottlenecks. Several tools are dedicated to a particular library
or programming model like MPI [13], pthread [3] or OpenMP [4]. In order
to analyze applications that use several libraries or programming models
as well as user-defined functions, generic tools like Pablo [10], Tau [11]
or VampirTrace [8] were developed. These tools provide a set of pre-
defined modules for the main programming models used in HPC (MPI,
OpenMP, ...) These tools use instrumentation in order to insert probes
that record events when a specific function (MPI Send for instance) is
called.

The instrumentation can be based on the application source-code: the
application is recompiled and functions of interest are instrumented. The
main drawback of this technique is that it requires a recompilation of the
program.

An alternative solution for instrumentation consists in modifying the
binary code for inserting probes. To do so, Valgrind [9] relies on par-
tial emulation of the machine to enable dynamic rewriting and inserting
specific hooks in the system. The list of hooks that Valgrind provides is
limited and cannot be easily extended. Moreover, the emulation obviously
makes this solution slow in testing high performance programs. PIN [7],
DynamoRIO [1], DynInst [2] or MAQAO [6] rely on instruction decod-
ing to instrument the code. These tools reverse engineer programs and
directly insert opcodes anywhere in the binary. This fine-grain instrumen-
tation allows to modify precisely a binary by, for instance, inserting a
set of instructions between two opcodes or removing some of the opcodes.
Figure 2 depicts how these tools can be used for instrumenting functions
such as f: the first opcodes of the function are replaced by a trampoline
that calls a prolog function (which is in charge of recording an event in
the output trace) before executing the function opcodes. The same oper-
ation is performed for inserting a call to the epilog function before the
end of the function.



Fig. 2. Instrumentation of the function f with DynInst

These fine-grain instrumentation tools permit to modify precisely an
application, but using this kind of mechanism in EZTrace for coarse-
grain tracing (recording an event at the entry and the exit of a function)
may cause an overhead. It requires to install several trampolines: one
should be installed at the entry of the function, and each exit point should
be instrumented. Defining a variable in the prolog function and using it
in the epilog is also complex to implement. Moreover, there is a major
issue if the function exit is located at the beginning of a branch: in that
case, complex mechanisms have to be used.

4 Coarse-grain instrumentation in EZTrace

In order to generate an execution trace of an application, EZTrace needs
to record events at the entry and the exit of a set of functions (MPI
primitives for instance). Using LD PRELOAD for that is very convenient as
it permits to write a C function that describes how the function should
be instrumented. Moreover, it allows to declare local variables that can
be used from the entry to the exit of the function. Figure 3 shows an
example of function instrumentation in EZTrace. This code is compiled
into a shared library that is preloaded before the application. The f orig

variable contains the address of the original function f obtained at the
initialization of the instrumentation library.

Since this mechanism can only intercept calls to functions located
in a shared library, EZTrace needs an alternative method for statically-
linked functions. We propose to design a mechanism similar to LD PRELOAD

that is able to instrument these functions. In order to do this, EZTrace
needs to replace the original function f with its own version that would
be similar to the function depicted in Figure 3. EZTrace function can
record events and use the f orig callback to call the original function



double (*f_orig)(int n, double* a);

double f(int n, double* a) {

record_event(F_ENTRY, n);

double ret = f_orig(n, a);

record_event(F_EXIT, ret);

return ret;

}

Fig. 3. Instrumenting the function f in EZTrace

f. This requires EZTrace to retrieve the address of the function f and
assign it to the f orig callback. When using LD PRELOAD with shared
libraries, these steps are achieved thanks to the dynamic linker that as-
sociates function names to addresses in the memory space. When the
function to instrument is not in a shared library, the address of the func-
tion is hardcoded in the binary and EZTrace has to modify the binary
program to perform the function interception.

Fig. 4. Instrumentation of the statically-linked function f in EZTrace

The replacement of the function f is depicted in Figure 4: a trampoline
to EZTrace’s f is inserted at the entry of the original function f. The
overwritten opcodes are relocated in a replay section. At the end of the
relocated opcodes, a jump to the remainder of the function is added. The
address of the replay code is assigned to the f orig callback. Thus, when
the application calls f, the execution flow is redirected to the EZTrace
version of the function. EZTrace can collect information and record
events before using the f orig callback to call the original function. Once
the original function f returns, the remaining instructions of EZTrace’s
f are processed.



This mechanism allows to instrument functions located in a statically-
linked program. In case the function to intercept is defined in a shared
library, the LD PRELOAD mechanism can be used since the instrumentation
code remains similar to the one described in Figure 3. Unlike the methods
presented in Section 3, this coarse-grain instrumentation only requires to
install a trampoline at the entry of the function to instrument. Thus, it
is not necessary to solve the complex problems of multiple exit points in
the function or exit points located in a branch. Moreover, the intercep-
tion function can declare local variables before the entry of the original
function to instrument and use them after its exit.

5 Implementation

We have designed and implemented this mechanism in EZTrace. For
instrumenting an application, the following steps are processed:

1. Get the symbols of the function to instrument (f), the replacement
function (eztrace f), and the callback to the original function (f orig)
by reading the binaries.

2. Run the target program tracing with the ptrace() system call.

3. Fetch the base address of the library containing eztrace f and f orig.

4. Instrument the function f: construct the base trampoline (the jump
to eztrace f), the replay code and write the base trampoline and the
f orig value in the target process memory.

5. Detach the process and let the target process run.

These steps happen at the application startup, when the process is
being launched. In case of an MPI application, these actions are per-
formed by each MPI process. Thus, an overhead due to the instrumenta-
tion during the startup phase is to be expected. However, we measured
that instrumenting 100 functions with EZTrace only delays the startup
by 280 ms.

5.1 Collecting the necessary information

In order to get the relative address of a symbol – such as the function to
instrument – EZTrace uses the Binary File Descriptor library (BFD).
The collected address is relative to the beginning of the ELF section that
contains the function. If the symbol is defined in the program or in a
statically-linked library, the base address of the ELF section is known
and the absolute address of the symbol can thus be found.



If the symbol is defined in a shared library, the base address of the
section is known only once the library is loaded. EZTrace thus uses the
tracing mechanism and wait for the dlopen() corresponding to the library
(an open() on the library followed by a mmap()) in order to determine
the base address of the library – and thus the address of the symbol – in
the address space.

5.2 Function instrumentation

Once EZTrace knows the addresses of the required symbols (f, eztrace f

and f orig), it constructs a base trampoline that jumps from the orig-
inal function to the instrumentation function when the former is called
as depicted in Figure 4. Since installation of the base trampoline over-
writes the first instructions of f, it is required to relocate them before
the installation as shown in Figure 4. In order to determine the size of
the overwritten instructions, EZTrace can rely on the libopcodes. If it
is not available, EZTrace implements an alternative method that con-
sists in single-stepping the instructions and observing how the instruction
pointer is modified. A memory space is allocated in the target process to
install the relocated code (using mmap()). Once the base trampoline and
the replay code are installed, the address of the replay code is assigned
to f orig in the target process (using ptrace()).

5.3 Discussion

The model we propose has been implemented in EZTrace and will be
integrated in the 0.8 release as open-source. This model is not specific
to EZTrace and it could be integrated in other performance analysis
tools. Our implementation currently only supports Linux, but it is appli-
cable to other systems like Mac OS X or FreeBSD. Porting this method
to these systems is part of our future work. Also, in order to construct
the trampoline, machine-dependent code is needed. Since we restrict the
architecture-specific code to the minimum, this part of the code is very
limited (less than 300 lines of code) compared to the architecture-specific
code in other tools like DynInst or PIN. Therefore, porting our code to
other architectures requires little effort.

6 Evaluation

Since instrumenting an application and collecting information during its
execution increases the number of instructions to execute, it is expected



that our implementation implies an overhead compared to running the
application without instrumentation. In this Section, we evaluate this
overhead and we compare EZTrace to other tools that can be used for
instrumentation : DynInst 7.1 and PIN 2.11. The results presented here
were obtained on an Intel Xeon X5550 at 2.67 GHz.

6.1 Raw overhead

In order to evaluate the raw overhead of our implementation, we use a
program that calls repeatedly an empty function (compute) located in
a library. The program is linked either statically or dynamically against
the library depending on the interception method to analyze. We instru-
ment this program by counting the number of times the program enters
the function and the number of times it leaves the function. The instru-
mentation with PIN and DynInst thus consists in inserting a call to
the counting function (count calls) at the entry and the exit of the
function. With EZTrace, the entry of compute is replaced with a call
to ezt count calls that increments a variable, calls compute and incre-
ments another variable.

Table 1 shows the average duration of an iteration in this program.
In the case of the shared library, DynInst failed to instrument the pro-
gram. The results show that the instrumentation with PIN, DynInst
and EZTrace cause a light overhead comprise between 5 and 25 ns.

Interception method no instrumentation PIN DynInst EZTrace

Statically linked library 4.7 ns 20.2 ns 28.8 ns 12.3 ns

Shared library 5.2 ns 24.0 ns - 11.3 ns

Table 1. Function duration when counting the number of calls to a function

Since the goal of our instrumentation tool is to generate execution
traces, we run the same experiment, but instead of modifying a variable
at the entry and exit of compute, we record two events in a trace file
using the FxT library [5]. The results of this experiment are reported in
Table 2. Recording an event being more time consuming than modifying
a variable, the measured overheads are higher. The results show that the
overhead of EZTrace is lower than for DynInst and PIN. However,
because of FxT internals, we observed large variations in this overhead
gain depending on the computer used.



Interception method no instrumentation PIN DynInst EZTrace

Statically linked library 4.7 ns 1287 ns 1294 ns 245.2 ns

Shared library 5.3 ns 1293 ns - 227.4 ns

Table 2. Function duration when recording events during a function call

6.2 Overhead on an application

In order to evaluate the overhead of the instrumentation on a real life
application, we instrumented an OpenMP application that computes a
MD simulation. By recording events at the entry and exit of each function
of this application, the resulting trace consists in 7,941,671 events.

Interception method no instrumentation PIN DynInst EZTrace

Execution time (s) 0.45 3.16 3.28 2.26

Overhead (ns / iteration) +0 +341 +413 +227

Table 3. Execution time of a molecular dynamics simulation using 4 OpenMP threads

The execution times of the application are reported in Table 3. While
PIN and DynInst cause an overhead of approximately 350 ns per event,
instrumenting this application with EZTrace only degrades the perfor-
mance by 227 ns per event. This is due to the way EZTrace instruments
the functions: instead of inserting several trampolines, EZTrace only
disrupts the processing flow once.

7 Conclusion

Nowadays, high performance computing (HPC) relies on a high level of
hybrid parallelism. To analyze HPC programs, tracing tools with low
overhead are needed. Performance analysis tools such as EZTrace can
install function hijacks and trace calls to shared library functions us-
ing a LD PRELOAD mechanism. However, this method cannot apply for
statically-linked functions.

In this paper, we described a method that permits to instrument a
statically-linked function using a mechanism similar to LD PRELOAD. Our
mechanism improvements to other techniques are: 1/ all the instrumen-
tation is done in the process initialization and have minor impact on the
process performance, 2/ a clever design of the instrumentation makes our
system easy to use by leveraging C calling mechanism and 3/ the use of



ptrace() to detect library loading and to allocate memory in the target
process makes the amount of machine-depend code really low.

Therefore, our method is much less complex than other methods such
as the ones implemented in DynInst and PIN and has better perfor-
mance. It is also to be noted that DynInst is particularly difficult to
install and relies on non-standard libraries that may be missing in many
systems. Also, PIN is for Intel-based CPU only. Our method is fully inte-
grated into the EZTrace software and we plan to port this mechanism
to other systems (Mac OS X and BSD) as well as other CPUs (ARM).

References

1. Bruening, D., Garnett, T., Amarasinghe, S.: An Infrastructure for Adpative Dy-
namic Optimization. In: International Symposium on Code Generation and Opti-
mization (CGO-03) (2003)

2. Buck, B., Hollingsworth, J.: An API for runtime code patching. International Jour-
nal of High Performance Computing Applications 14(4), 317–329 (2000)

3. Bull, S.: NPTL Stabilization Project. In: Linux Symposium. p. 111 (2011)
4. Caubet, J., Gimenez, J., Labarta, J., DeRose, L., Vetter, J.: A dynamic tracing

mechanism for performance analysis of OpenMP applications. OpenMP Shared
Memory Parallel Programming pp. 53–67 (2001)

5. Danjean, V., Namyst, R., Wacrenier, P.: An efficient multi-level trace toolkit for
multi-threaded applications. Euro-Par 2005 Parallel Processing pp. 622–622 (2005)

6. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J., Jalby, W.,
et al.: Maqao: Modular assembler quality analyzer and optimizer for itanium 2.
In: The 4th Workshop on EPIC architectures and compiler technology, San Jose
(2005)

7. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In: PLDI 2005 (2005)

8. Muller, M., Knupfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.:
Developing scalable applications with Vampir, VampirServer and VampirTrace.
Proceedings of the Minisymposium on Scalability and Usability of HPC Program-
ming Tools at PARCO (2007)

9. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Bi-
nary Instrumentation. In: ACM SIGPLAN 2007 Conference on Programming Lan-
guage Design and Implementation (PLDI 2007) (2007)

10. Reed, D., Roth, P., Aydt, R., Shields, K., Tavera, L., Noe, R., Schwartz, B.: Scal-
able performance analysis: The Pablo performance analysis environment. In: Scal-
able Parallel Libraries Conference, 1993., Proceedings of the. pp. 104–113. IEEE
(2002)

11. Shende, S., Malony, A.: The TAU parallel performance system. International Jour-
nal of High Performance Computing Applications 20(2), 287 (2006)

12. Trahay, F., Rue, F., Namyst, R., Faverge, M.: EZTrace: a generic framework for
performance analysis. In: CCGrid’2011 (2011)

13. Vetter, J., de Supinski, B.: Dynamic software testing of MPI applications with
Umpire. In: Supercomputing, ACM/IEEE 2000 Conference. p. 51. IEEE (2006)


	Runtime function instrumentation with EZTrace

