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Abstract

Objective. Surgery is one of the riskiest and most important medical acts that is performed today. Understanding the
ways in which surgeries are similar or different from each other is of major interest. Desires to improve patient outcomes
and surgeon training, and to reduce the costs of surgery, all motivate a better understanding of surgical practices. To
facilitate this, surgeons have started recording the activities that are performed during surgery. New methods have to be
developed to be able to make the most of this extremely rich and complex data. The objective of this work is to enable
the simultaneous comparison of a set of surgeries, in order to be able to extract high-level information about surgical
practices.
Material and Method. We introduce non-linear temporal scaling (NLTS): a method that finds a multiple alignment
of a set of surgeries. Experiments are carried out on a set of lumbar disc neurosurgeries. We assess our method both on
a highly standardised phase of the surgery (closure) and on the whole surgery.
Results. Experiments show that NLTS makes it possible to consistently derive standards of surgical practice and to
understand differences between groups of surgeries. We take the training of surgeons as the common theme for the
evaluation of the results and highlight, for example, the main differences between the practices of junior and senior
surgeons in the removal of a lumbar disc herniation.
Conclusions. NLTS is an effective and efficient method to find a multiple alignment of a set of surgeries. NLTS realigns
a set of sequences along their intrinsic timeline, which makes it possible to extract standards of surgical practices.
Supplementary material. The computer code implementing the proposed methods.
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1. Introduction

More than half a million surgeries are performed every
day worldwide [1], which makes surgery one of the most
important component of global health care.

Competing demands are motivating a better under-
standing of surgical processes: surgical procedures are get-
ting more complex [2], residents now have to be trained
while performing less procedures [3], the surgical inter-
ventions have to be more and more justified [4] and the
procedures have to cost less money [5], et cætera. A bet-
ter understanding of surgical practices is the key compo-
nent to addressing these issues. surgical process modelling
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(SPM) is the general process that aims at understanding
surgeries, in order to improve the quality of care and the
training/assessment of surgeons.

This article addresses the issue of analysing sets of
surgeries. Let us consider an example related to the train-
ing of neuro-surgeons. Surgical training is critical to ensure
a smooth expertise transition between senior and junior
surgeons. This training is generally provided in a one-on-
one scheme between a junior surgeon and his or her senior,
which makes this process extremely expensive and time-
consuming. Let us give a brief example showing how a
better understanding of senior surgical practice (i.e., un-
derstanding sets of senior surgeries) can make it possible
to improve and optimise the training of surgeons. Let us
assume that the analysis of a set of senior surgeries tells us
that all senior surgeons perform one step of the surgery in
the exact same way. This information can be exploited by
directing the training of junior surgeons towards a stan-
dard and stereotyped practice for this step. By contrast,
if one part is very patient-specific, the analysis of a the
same set will show that the behaviour of senior surgeons is
less standard. The training can then be directed towards
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Figure 1: Example of the use of NLTS on a set of 12 sequences
representing the successive anatomical structures targeted by the
surgeon during the closure phase. (a) Sequences scaled using our
NLTS approach. (c) Legend of the different anatomical structures.

a patient-specific care.
The idea that a set of observations may leverage more

information than any individual observation is not new.
The most famous example set dates back at least a cen-
tury ago, when Francis Galton noted that the crowd at a
county fair accurately guessed the weight of an ox when
their individual guesses were averaged [6]. Galton real-
ized that the average was closer to the ox’s true weight
than the estimates of most crowd members, and also much
closer than any of the separate estimates made by cattle
experts.

Analysing a set of observations in R has long been stud-
ied and is now very well understood. However, analysing
and simultaneously comparing a set of sequences is much
more challenging, because of the particular properties that
are induced by time (e.g., periodicity, symmetry, auto-
correlation). Computational biologists have long known
that the key to understanding a set of sequences is to
find their multiple alignment. To illustrate this, Figure 1
presents the closure phase of 12 recordings of surgeries,
as well as their multiple alignment (computed using the
method proposed in this article). This example demon-
strates how simultaneously aligning a set of surgeries (i.e.,
computing their multiple alignment) directly highlights
critical elements of the closure phase. We can for exam-
ple observe the closure of the surgical route layer by layer
(muscle → fascia → skin), and also that almost all sur-
geons pause before the final stitches.

Two important issues however prevent from using the
methods developed in computational biology for the mul-
tiple alignment of surgical sequences:

1. Surgeries are very particular sequences: surgeries are
sequences of surgical activities over time, whereas
DNA/RNA sequences encode biological structures
(with no reference to time). This makes surgeries

exhibit very different properties, such as autocorre-
lation: it is likely that a surgeon using a scalpel at
time t will still be using it at time t+1, while observ-
ing the letter A in a DNA sequence does not increase
the likelihood of observing it at the next position in
the sequence. This is why time series dedicated mea-
sure, such as dynamic time warping (DTW)[7], have
proved to be extremely relevant for the analysis of
surgical processes [8, 9]. Multiple alignment methods
that have been developed in computational biology,
are however dedicated to the Levenshtein distance
[10]. New methods have thus to be developed to en-
able multiple alignment dedicated to DTW, in order
to unlock the value of surgical datasets.

2. Multiple sequence alignment is NP-complete [11],
which prevents its computation for more than a few
short sequences. As surgical datasets are rapidly
growing, efficient and effective heuristics have to be
developed to simultaneously analyse sets of record-
ings of surgeries.

This work, capitalising on our recent discoveries for
time series averaging [12, 13], introduces non-linear tem-
poral scaling (NLTS): a multiple alignment method for sur-
gical processes. We show that NLTS effectively supports
the extraction of high-level knowledge, by realigning the
surgeries along their intrinsic timeline, i.e., along the stan-
dard sequencing of actions that occur over the course of
the different surgeries.

We consider surgeries as sequences of activities that
are performed by the surgeon during the surgery. Mehta
et al. [14] proposed to represent surgical activities as as
triplet composed of an action, an anatomical structure and
an instrument. For example, the surgeon can cut the skin
using a scalpel. In this paper, we embrace this representa-
tion and use its formalisation introduced in [8]. In general,
activities that are performed by both hands are recorded,
as well as the use of the microscope. Figure 2 illustrates a
set of 6 surgeries.

Without loss of generality with regard to the issues
that are addressed by surgical processes modelling, we use
the training of surgeons as the main theme to support our
explanations for the development of the article.

This article addresses the issue of being able to com-
pare a set of surgical processes; Section 2 describes this
issue. Section 3 introduces our method NLTS. Section 4
details experiments carried out on neurosurgeries. Sec-
tion 5 discusses these results and shows that our method
makes it possible to support the extraction of high-level
knowledge about the standards of neurosurgeries. We use
the example of the training of neurosurgeons to illustrate
that our approach captures interesting knowledge about
the surgeries. Section 6 concludes this paper and presents
some future work.
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Figure 2: A set of surgeries recorded from the OR by a neurosurgeon. For every surgery, three sequences of activities are displayed. They
represent activities related to the right hand (R), left hand (L), and microscope (M).

2. Problem statement

History of surgical process modelling. Several initiatives
have already been proposed to better understand surgical
practice, mainly focusing on the assessment of surgeries.
The first approach was to assess surgeries with regard to
patient outcomes [15]. In addition to requiring a long-term
follow-up with the patient, this method is very dependent
upon the patient and the conditions of the surgery. It
consequently cannot be used for an objective assessment
of surgeries.

Human grading techniques have been proposed to im-
prove the objectivity of the assessment [16]. Junior sur-
geons are evaluated by their seniors with regard to a list
of surgical skills. These tests are however subjective de-
pending on the evaluator [17].

Time-motion approaches have been introduced to im-
prove objectivity and to automate the information acqui-
sition on a surgery [14, 18]. The idea was to use statistical
information like the average duration of the surgery or the
number of actions performed by the surgeon. These meth-
ods are very objective and easy to record. However, they
do not provide enough information about the standard
practices during the surgery. Assessing junior surgeons on
such criteria can also be misleading. For example, senior
surgeons are on average faster than junior surgeons [19]. It
is obviously very undesirable for the junior to try to speed
up their surgery without having reached the dexterity and
experience of senior surgeons.

Recording surgeries has recently gained interest, either
using sensor devices, or directly by an observer in the op-
erating room (OR). An universal and adaptable recording
scheme has been introduced [20]. It shows how to decom-
pose a surgical intervention into manual work steps. This

data contains a lot of information, since it is much closer
to the reality in the OR than, for instance, a record of
only the number of actions performed during the surgery.
An example of recorded surgeries is given in Figure 2. It
is usually assumed that this data is rich enough for the
knowledge that scientists want to extract. Automating
the analysis of such a dataset is however very challenging.
Surgical process modelling (SPM) is the field that aims at
unlocking this issue [20–26].

Analysing a set of surgeries. In this article, we focus on
the understanding of the similarities and differences that
take place in a set of surgeries. We highlighted above that
this is challenging because every surgery is different from
another one. Yet senior surgeons successfully train junior
surgeons every year. Surgery is indeed a very standardised
practice that can be taught. The problem is that surgery
is standardised at a high-level (phases, steps of each phase,
ways of performing each step, et cætera). The challenge
is to be able to support the recognition of these standard
practices from the low-level description of the data, i.e.,
from the actions that are performed by the surgeon.

From the data analysis perspective, the first step to
unlock this issue is to be able to compare two surgeries
in a consistent way. For a measure to be consistent, it
has to provide a graduated evaluation of how similar two
surgeries are. Similarity measures for surgeries were first
studied in [27]. Dynamic time warping (DTW) is based on
the Levenshtein distance and was introduced for speech
recognition in the 1970s [7]. We recently demonstrated
that DTW is sound for surgical processes comparison [8,
9]. DTW operates non-linear distortions on the time-axis,
in order to find the best alignment of the two sequences.
DTW optimally realigns (or stretches) sequences with each
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Figure 3: Stretching two sequences with DTW. Each color corresponds to one anatomical structure. (a) Original sequences. (b) DTW-
alignment. (c) DTW-scaled sequences.

other, which makes it possible to compare them along their
intrinsic timeline. We use the term intrinsic timeline to
describe the fact that each surgery has its own timeline
that is independent of the ones of other surgeries. Figure 3
illustrates this process on the anatomical structures that
are targeted during two surgeries.

A lot of information can be retrieved very easily
from the DTW-realigned sequences (variability, transi-
tions, phases, et cætera). Improving the understanding
of surgical processes would require a set of surgeries to
be simultaneously realigned. DTW is unfortunately able
to align a pair of sequences only. This is exactly the sci-
entific issue that this article unlocks. Next section will
introduce a method that makes it possible to re-align a
set of sequences, in order to be able to provide high-level
information about surgical processes.

3. Method: non-linear temporal scaling

In this section, we present our method for the non-
linear temporal scaling (NLTS) of surgeries. We start by
giving some notations and presenting our method NLTS.
Then, we detail how this set can be analysed to extract
high-level information about the surgeries.

Notations
Let S = {S1, · · · , SN} be the original set of N se-

quences (surgeries). Let E be the space of states of se-
quences in S as:

E =
N⋃

n=1

length(Sn)⋃
`=1

Sn(`) (1)

3.1. NLTS
Optimally aligning a set of sequences under time warp-

ing has long been studied in computational biology. It is
known as the multiple sequence alignment of the set, and
is often considered the “Holy Grail” in computational biol-
ogy [28]. Multiple sequence alignment is NP-complete [11],
which prevents its computation for more than a few short
sequences.

In this section, we propose Non-linear temporal scaling
(NLTS): a method to align (or scale) a set of sequences un-
der time warping. Our method builds on compact multiple

alignment [13], which was recently introduced to enable
the averaging of large set of homogeneous time series. In
addition, scalable methods exist for the definition of an
average sequence under time warping [12].
Non-linear temporal scaling (NLTS) starts with a set of
sequences and performs as follows:

1. Compute the average sequence S̄ of the set of se-
quences S.

2. Compute the compact multiple alignment of S from
S̄.

3. Unpack every column of the compact multiple align-
ment to its maximum width.

Algorithm 1 details the computation of NLTS; Figure 4
illustrates the approach; we describe its steps in the fol-
lowing paragraph.

Computation of the average sequence. The first step con-
sists of computing the average sequence S̄ of S (line 1).
To this end, we use DTW barycenter averaging (DBA)
[12, 29], but other methods like COMASA [13] could be
used depending on time requirements. The computation
of the average sequence is detailed in Algorithm 2. Note
that DBA is initialised with the medoid sequence (Algo-
rithm 3).

Computation of the compact multiple alignment. The
compact multiple alignment is computed by aligning the
average sequence S̄ to every one of the sequences of S in-
dependently. This alignment is performed by the function
assocDTW. This function simply returns, for every ele-
ment of the first sequence, the elements of the second se-
quence that have been linked to it by DTW. In our case, it
consists of finding which elements of the sth sequence have
been associated with the `th element of S̄(line 5). These
elements are then stored in elements[s][`]. Moreover, we
store in widths[`] the maximum number of elements that
have been associated with every `th element of S̄, i.e., in
every column of the corresponding compact multiple align-
ment (lines 6–8).

Unpacking the compact multiple alignment. The last part
of the algorithm unpacks the compact multiple alignment.

4
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Figure 4: Illustration of the different steps of the NLTS method.

The compact multiple alignment provides a set of se-
quences that is consistently aligned. However, the first
column can, for example, hold four elements of the first se-
quence (e.g. <aaab>), one element of the second sequence
(e.g. <a>), and two elements of the third sequence (e.g.
<ab>). As a result, for every column ` of the alignment,
we scale every subsequence elements[s][`] to the maxi-
mum number of elements contained in this column, i.e.,
widths[`] (line 15). In the latter example, it would corre-
spond to stretch the single element of the second sequence
to four elements (<a> → <aaaa>) and the two elements
of the third sequence to four elements as well (<ab> →
<aabb>). A web application is available here1 which al-
lows the reader to try NTLS easily. Let us note that the
unpacking step uses the maximum width as reference as
it guarantees that the scaling does not lead to any loss
of information, because other functions would lead to a
“contraction” of one of the aligned sub-sequences. Other
functions such as the mean or the median would indeed
lead to two different elements to have to be merged, which
would lose information about the original sequences.

Result. The algorithm outputs a set of sequences S?,
which correspond to a multiple sequence alignment of S.
S? aims at supporting a detailed temporal analysis of the
set of sequences with regard to their sequencing. Note
that the information about the specific time at which the
elements of the sequences is not available from the visual
representation any more. All sequences of S? have the
same length.

3.2. Analysing a set of non-linearly scaled sequences
NLTS makes it possible to realign a set of sequences,

by finding a multiple sequence alignment of the set. In this
section, we propose different methods that can be used to
analyse this aligned set of sequences.

1http://germain-forestier.info/src/aim2014/ (Accessed: 10
October 2014)

Probability distribution of the states over time. Let S? be
the set of sequences scaled with NLTS. We want to study
the distribution of the different states in every position (or
column) of the multiple alignment. To this end, we define
the (discrete) probability distribution of the states over
the sequencing induced by the multiple alignment.

Definition 1. S?
p̂ = 〈p̂1, · · · , p̂L〉 is the sequence of proba-

bility with maximum likelihood estimates p̂` over E defined
by:

p̂` : E → [0, 1] ⊂ R
e 7→ |{{S?(`)=e | ∀S?∈S?}}|

N

For example, to create the set of states for the position
` = 1, we create a set the first states of all sequences in
S?. If we are considering the targeted anatomical struc-
tures of three surgeries, the first states distribution could
be {skin, skin, skin} meaning that the first state "skin" is
identical for all three surgeries. This sequence of proba-
bility S?

p̂ thus informs about the distribution of the states
over time. The more similar these states are at position
`, the more standardised the action ` is. For example, the
set of states {skin, skin, skin} is very standardised (all the
surgeon are targeting the skin at `) but the set of states
{skin, fascia, muscle} is heterogeneous (all the surgeons
are targeting a different structure at `).

Entropy of the states. Entropy is a measure of uncertainty
of a random variable. In our case, the entropy of every
state of S?

p̂ gives information about how diverse the be-
haviour of surgeons is at state ` of the surgery. The entropy
is null when all the surgeons perform the same action in
the set. The entropy is maximal when every surgeon per-
forms a different action. This can be used as a measure
of the predictability of the action for models of surgeries.
This entropy – H(p̂`) – is defined as:

H(p̂`) = −
E∑
e

p̂`(e) · logb (p̂` (e)) (2)

5
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Algorithm 1 Non-linear temporal scaling
Require: S = {S1, · · · , SN}
Let S? = {S?

1 , · · · , S?
N} be the resulting set of scaled sequences

Let mean(.) return the average sequence of a set for DTW
Let assocDTW(S, T ) return the elements associated mapping built by DTW from S to T
Let scale(S, n) return the uniform scaling [30] of the sub-sequence S to n elements
1: S̄ ← mean(S)
2: L← length(S̄)
3: widths[L]← [0, · · · , 0]
4: for s← 1 to N do
5: elements[s] = assocDTW(S̄, Ss)
6: for `← 1 to L do
7: widths[`]← max(widths[`] , size(elements[s][`]))
8: end for
9: end for
10: for s← 1 to N do
11: S?

s ← 〈〉
12: for `← 1 to L do
13: targetLength← widths[`]
14: for n← 1 to targetLength do
15: S?

s ← S?
s . scale(elements[s][`], targetLength)

16: end for
17: end for
18: end for
19: return S?

Algorithm 2 mean
Require: S = {S1, · · · , SN}
Let DBA be the averaging sequence method introduced in [12]
Let I be the number of iterations
Let mean be the returned average sequence of S

mean← medoid(S)
for i← 1 to I do

mean← DBA(mean, S)
end for
return mean

H(p̂`) makes it possible to locate the states or phases of the
surgeries, for which the behaviour of surgeons is standard
or heterogeneous.

Entropy based encoding of S?. Entropy has a direct con-
nection with compression. This is because encoding an el-
ement e with probability p(e) requires − log2(p(e)) bits.
The length of the compressed string encoding S? on a
state-by-state basis is given by:

LS? =
L∑

`=1

N∑
n=1
− log2 (p̂` (S?

n (`))) (3)

=
L∑

`=1
N ·

(
−

E∑
e

p̂`(e) · logb (p̂` (e))
)

(4)

= N ·
L∑

`=1
H(p̂`) (5)

This length LS? gives information about the general un-
certainty on S?. It evaluates the predictability of the be-
haviours of surgeons over the whole surgeries.

4. Experiments

We illustrate our approach on a neurosurgical dataset.
We focus in particular on the training of neurosurgeons,
by comparing the surgical practices of junior and senior
surgeons. This theme is actually central in surgical process
modelling. The complexities involved in operating on the
human body means that the initial training of a surgeon
usually takes more than 10 years, and requires extensive
one-on-one instruction from a senior surgeon. After that
initial training, surgeons still require several further years
of experience to themselves reach a senior level. We focus
on the comparison of junior vs senior surgical practices, in
order to improve neurosurgeon training.

6



Algorithm 3 medoid
Require: S = {S1, · · · , SN}
Let medoid be the returned medoid of S
Let inertia←∞
for S in S do

sqrDist← 0
for T in S do

sqrDist← sqrDist + DTW(S, T )2

end for
if sqrDist < inertia then

inertia← sqrDist
medoid← S

end if
end for
return medoid

Figure 5: Recording of the data in the OR.

4.1. Material
The dataset used in this paper is composed of 24 lum-

bar disc herniation surgeries and was recorded by Laurent
Riffaud (MD) and neuro-surgeon, while he was visiting the
Neurosurgery Department of the Leipzig University Hos-
pital, Germany. Figure 5 gives an example of how the
recording process takes place in the OR. In our case, a
second neurosurgeon (foreground) records the activities of
the operating one (next to the microscope).

We recorded the activities of both hands of the sur-
geon, as well as the use of the microscope. We treat the
microscope as a particular instrument, as it is often used
in combination to other activities. It is a useful informa-
tion that gives some nuance about the performed surgical
task, such as the targeted the anatomical structure (e.g.,
ligament), if the microscope is re-positioned at a particu-
lar time of the surgery, or even if the activity is performed
without the use of the microscope as it is for example the
case at the very end of the surgery.

The surgeries involved 10 male and 14 female patients,
with a median age of 52 years. These lumbar disc surg-
eries are divided into three main steps: (1) approach of the
disc, (2) discectomy and (3) closure. The herniated disc is
approached via a posterior intermyolamar route. The dis-

cectomy includes the dissection and removal of the disc.
A hemostasis step might also be performed before the clo-
sure. The patients were operated on by five junior and five
senior surgeons. Senior surgeons have performed at least
a hundred removals of lumbar disc herniation. All the ju-
nior surgeons have passed more than two years of their
residency program but have not performed more than a
hundred removals of lumbar disc herniation. We recorded
the surgeries so that the dataset contains equal represen-
tation of junior and senior surgeons. Twelve patients were
operated upon by a senior surgeon with the help of his
or her junior, and for the other 12 it was the other way
around, with the junior surgeons taking the lead. In ju-
nior recordings, the assistance of the senior surgeon was
mainly provided verbally. When the senior did take the
lead, it was always to guide the junior through a simple
step, and never for a long series of activities. We observed
that these interventions were however very limited and did
not strongly influence the recordings. During all junior
recordings, the closure step was performed by the junior
alone.

4.2. Results
Our results are divided into two main parts. The first

aims at understanding our approach on a simple case: the
closure phase of the surgery. The second part illustrates
the results of NLTS on the whole surgery. These results
are discussed in the next section.

4.2.1. Closure phase
Figure 6 presents the experiments that have been car-

ried out on twelve surgeries during the closing phase.
These results aim at giving some intuition about how
our method helps access high-level information about the
surgery. These twelve surgeries correspond to the ones
that were performed by junior surgeons (with the aid of
their seniors). Figure 6 illustrates the sequence of anatom-
ical structure that were involved in the activities of the
surgeon during the surgery. Note that the scaling process
took into account the complete information, i.e., action,
anatomical structure and instrument for both hands and
the microscope. These 9-dimensional sequences are then
scaled and Figure 6 presents the sequence of anatomical
structure that were involved in the activities performed
with the main operating hand (right hand for right-handed
surgeons and conversely).

Figure 6(a) presents the original (non-scaled) data.
Figure 6(b) presents the set of sequences that has been
scaled using our NLTS approach. We also compare the re-
sults of NLTS to the one of the Euclidean state-of-the-art
method, namely uniform scaling. This method stretches
the sequences uniformly over time. The work by [30] gives
more details about this procedure. The results of this ap-
proach are depicted in Figure 6(c).

Figure 7 depicts the comparative study of the evolution
of p̂ (Definition 1) over time, for the anatomical structures
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Figure 6: Comparative scaling process of a set of surgeries on the closure phase of the surgery. (a) Original sequences. (b) Sequences scaled
using our NLTS approach. (c) Sequences scaled using uniform scaling. (d) Legend.

that are involved in the surgery. Figure 7(a) depicts this
evolution for NLTS that can be compared to the results
obtained with uniform scaling in Figure 7(b). For both
cases, the first chart gives the evolution of the entropy
(H(p̂`)), while the second chart gives the distribution of
the anatomical structures that are involved through the
surgery. The aim is to inform about how standard the
surgery is at different stages.

4.2.2. Whole surgery
This results extend the previous ones, but at the level of

the complete surgery. The methodology remains the same:
the 9-dimensional sequences are aligned with NLTS, and
we present results for the anatomical structures on which
actions of the main hand are performed. We propose to
illustrate the interest of our approach on the comparative
analysis senior vs junior. Even if the information of the
different surgical phases is present in the dataset for each
surgery, we did no use it for processing the whole surgeries.
This information was not used for the analysis, because our
aim was to stress the ability of the method to work without
supervision. In this experiment, the method is only relying
on the sequence of performed activities to find correspon-
dence between the different surgeries. Figure 8 presents
the evolution of the targeted anatomical structures. We
compare junior and senior behaviours scaled with NLTS,
respectively in Figures 8(a) and 8(b). A similar analysis is
conducted on the other components of the surgical activity,
i.e., surgical instrument (Figure 9) and action performed
(Figure 10). Table 1 compares the length LS? required to
encode junior and senior sets of surgeries.
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Figure 7: Distribution of the states of the re-aligned set of sequences
computed on the data presented in Figure 6. (a) NLTS of the closure
phase. (b) Uniform-scaling of the closure phase. (c) Legend. For
both figures, we depict the evolution of the state entropy H(p̂`) over
time.

Table 1: Entropy based encoding of S?

Senior Junior

LS? 5,206 bits 8,051 bits
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Figure 8: Comparison between junior and senior surgeons on the targeted anatomical structures over time of the surgery. (a) NLTS on junior
surgeries. (b) NLTS on senior surgeries. (c) Legend.
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Figure 9: Comparison between junior and senior surgeons on the surgical instruments used over time of the surgery. (a) NLTS on junior
surgeries. (b) NLTS on senior surgeries. (c) Legend.
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Figure 10: Comparison between junior and senior surgeons on actions performed over time of the surgery. (a) NLTS on junior surgeries. (b)
NLTS on senior surgeries. (c) Legend.

5. Discussion

5.1. Closure phase
The visual analysis of original data depicted in Fig-

ure 6(a) is difficult, since they have neither the same
length, nor a common timeline. Figure 6(b) depicts the
results of our NLTS approach, which aims at unlocking
this issue. NLTS makes it possible to realign the sequences
on their intrinsic timeline. This allows us to consistently
assess the way in which the anatomical structures are in-
volved during the surgery.

Comparatively, the state-of-the-art uniform scaling ap-
proach (Figure 6(c))does not take into account any cor-
respondence between the sequences. The timeline corre-
sponds to the percentage of time spent in the surgery, and
the results provides only poor information about the surg-
eries.

Figure 7 presents the comparative results of NLTS on
the closure phase of the surgery. We can see in Figure 7(a)
that the information about the general sequencing of ac-
tions is directly accessible. From the chart, we can for ex-
ample observe a sequence of anatomical structures that are
involved during the closure phase: muscle → fascia →
skin. This is typical of the closure phase: the surgical
route is closed layer by layer. The corresponding entropy
trend gives also interesting information about the variabil-
ity of this phase. We can directly identify that the vari-
ability of surgical practices is located at the start of the
closure phase. The start of the closure phase is indeed
often influenced by patient-specific information like his or
her anatomy. We can also observe that once the fascia

is targeted, the surgery is then much more stereotyped,
because the targeted anatomy is less variable.

Comparatively, Figure 7(b) shows that the uniformly
scaled set of sequences provides little information. This in-
formation is moreover often misleading the interpretation,
because the different anatomical structures are mixed. As
a result, it is impossible to use uniform scaling to deduce
any standard sequencing of actions of surgeries. The cor-
responding entropy suggests that the closure phase is very
variable/uncertain, while this phase is the most standard-
ised phase of the surgery. The different anatomical struc-
tures have indeed to be closed in a specific order.

5.2. Whole surgery
Figure 8 illustrates the sequence of anatomical struc-

tures for the entire surgery. We compare the surgeries
performed by senior vs junior surgeons using NLTS.

We can directly observe in Figures 8(a) and 8(b) the
sequence skin → fascia → muscle → vertebra at the
start of the surgery. This sequence is present both for ju-
nior surgeons and for senior surgeons, which demonstrates
that this practice is highly standardised.

NLTS can also be used as a tool to evaluate the differ-
ences between junior and senior about their surgical prac-
tice. First, we can observe that senior behaviour is more
homogeneous than the behavior of junior surgeons. Over
time, the anatomical structures that are targeted by senior
surgeons are almost always the same, i.e., the majority of
surgeons perform the same action at the same time of the
surgery (Figure 8(b)). To the contrary, Figure 8(a) shows
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that junior-operated surgeries exhibit a strong heterogene-
ity. This heterogeneity can be explain by their lack of expe-
rience and dexterity. This visual observation is confirmed
by the lengths of the compressed scaled sets of sequences.
Table 1 shows that encoding the scaled sets of sequences
for senior surgeons requires 35 % less space than for ju-
nior surgeons: surgeries performed by junior surgeons are
much less predictable than the set of senior surgeries.

This representation makes it possible to finely compare
surgical practices. Let us for example explain the phase of
the removal of the hernial disc, which corresponds to the
most characteristic and riskiest part of the surgery (red
dots in Figure 8). We can see that senior surgeons oper-
ate on the herniated disc in one phase only. The actions
performed on the disc are more spread out when junior
surgeons are operating. We can actually observe a strong
heterogeneity in the way the junior surgeons perform this
phase. Most of junior surgeons operate on the disc in three
steps with actions on the ligament in-between. Junior sur-
geons actually often start working on the disc and have
to go back to the ligament, in order to better operate the
herniated disc. This can be explained by their lack of ex-
perience.

A similar analysis can be conducted on the other com-
ponents of the surgical activity, i.e., surgical instrument
(Figure 9) and action performed (Figure 10).

Regarding the instrument used during the surgery, we
can observe that the behaviour of junior surgeons (Fig-
ure 9(a)) is very heterogeneous compared to the one of
senior surgeons (Figure 9(b)); this is particularly the case
during the approach to the disk. This observation can
be easily explained by the tendency of junior surgeons to
often switch from one instrument to another, because of
their lower dexterity. Detecting patterns about surgical
instruments would certainly make it possible to improve
the organisation of the OR and the coordination of the
surgical team.

Regarding the sequencing of actions performed by the
surgeon, we can observe that the opening and the clo-
sure phases are similar between junior (Figure 10(a)) and
senior (Figure 10(b)), which echoes the previous observa-
tions during the closure phase. It is indeed standard to cut
and then dissect during the opening phase, and latter to
sew during the closure phase. However, the heterogeneity
of the junior behavior can also be witnessed from this re-
sult, especially in the middle of the intervention (see red
box in Figure 10(a)).

6. Conclusion and general discussion

Modelling and understanding surgical procedures is an
important challenge. DTW is consistent for the compar-
ison of two surgeries but cannot be used to capture the
similarities of a whole set of surgeries. In this paper,
we introduced non-linear temporal scaling (NLTS). NLTS
takes advantage of recent discoveries about scalable time

series averaging and makes it possible to realign a set of se-
quences, in the same way as DTW does for two sequences.

NLTS is unsupervised: given a set of surgeries, it pro-
vides a set of realigned surgeries that maximized the intra-
group similarity. This is a major difference with classi-
cal SPM approaches that are based on graphical models
(e.g., [23]). Graphical model approaches require to define
the structure of graphical model: the number of nodes,
their roles, their connections and possibly their directions.
In addition, once the structure has been defined, learning
the parameters of the model (as well as drawing predic-
tions from it) often requires to automatically recognise in
which state the surgery currently is, as well as when the
surgery is transitioning from one state to another. These
decisions heavily rely on background knowledge and pa-
rameters’ tuning. By contrast, NLTS makes it possible to
realign the sequences in an unsupervised manner.

We also introduce different methods based of informa-
tion theory that can be used to analyse this aligned set
of sequences. Our experiments on neurosurgeries (lum-
bar disc herniation removal) showed that NLTS makes it
possible to support the identification of standards of surgi-
cal practice. We used the training of neurosurgeons as the
common theme for our experiments and showed how NLTS
allows us to identify discriminant differences between the
practices of junior and senior surgeons.

We believe that NLTS constitutes a useful addition to
the SPM toolbox, and that it will support a broad range of
applications, from the direct analysis of sets of surgeries,
to the construction of more elaborated models (such as
dynamic Bayesian networks).

Supplementary materials

NLTS package: Java package containing the source
code for the proposed method. (Java ARchive file) –
http://germain-forestier.info/src/aim2014/
nlts.jar (Accessed: 10 October 2014)
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