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Abstract

Objective. Surgery is one of the riskiest and most important medical acts that is performed

today. Understanding the ways in which surgeries are similar or different from each other is of

major interest. Desires to improve patient outcomes and surgeon training, and to reduce the costs

of surgery, all motivate a better understanding of surgical practices. To facilitate this, surgeons

have started recording the activities that are performed during surgery. New methods have to be

developed to be able to make the most of this extremely rich and complex data. The objective

of this work is to enable the simultaneous comparison of a set of surgeries, in order to be able to

extract high-level information about surgical practices.

Material and Method. We introduce Non-Linear Temporal Scaling (NLTS): a method to realign

a set of surgeries along their intrinsic timeline. Experiments are carried out on a set of lumbar disc

neurosurgeries. We assess our method both on a highly standardised phase of the surgery (closure)

and on the whole surgery.

Results. Experiments show that NLTS makes it possible to consistently derive standards of sur-

gical practice and to understand differences between groups of surgeries. We take the training of
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surgeons as the common theme for the evaluation of the results and highlight, for example, the

main differences between the practices of junior and senior surgeons in the removal of a lumbar disc

herniation.

Conclusion. NLTS realigns a set of sequences along their intrinsic timeline, which makes it possible

to extract standards of surgical practices.

Supplementary material. The computer code implementing the proposed methods.
Keywords: Surgical Process Modelling, Temporal Analysis, Dynamic Time Warping, Technical

Skills, Surgery

1. Introduction

More than half a million surgeries are performed every day worldwide [1], which makes surgery

one of the most important component of global health care.

Competing demands are motivating a better understanding of surgical processes: surgical proce-

dures are getting more complex [2], residents now have to be trained while performing less procedures

[3], the surgical interventions have to be more and more justified [4] and the procedures have to

cost less money [5], et cætera. A better understanding of surgical practices is the key component

to addressing these issues. Surgical Process Modelling (SPM) is the general process that aims at

understanding surgeries, in order to improve the quality of care and the training/assessment of

surgeons.

Assessing surgical practice is of major interest to ensure a smooth expertise transition between

senior and junior surgeons. This assessment requires a consistent understanding of surgical processes

and has thus strongly supported the modelling of surgical processes. Without loss of generality

with regard to the issues that are addressed by surgical processes modelling, we use the training of

surgeons as the main theme to support our explanations for the development of the article.

Training new surgeons is particularly important for the quality of care and an important issue

from the economical perspective. The training is often provided in a one-on-one scheme between a
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junior surgeon and his or her senior. This process is expensive, time-consuming, and heavily reliant

upon good communication between the junior and his or her senior. Improving and optimising the

training of surgeons requires a better understanding of surgical practices. Let us give an example

about how a better understanding of surgeries can help improve the training of surgeons. Let us

assume that the analysis of senior surgeries tells us that all senior surgeons perform one step of

the surgery in the exact same way. This information could be exploited by directing the training

of junior surgeons towards a standard and stereotyped practice for this step. By contrast, if one

part is very patient-specific, the analysis will highlight that the behaviour of senior surgeons is less

standard. The training can then be directed towards a patient-specific care.

This paper aims at extracting high-level knowledge from recordings of surgical processes. We

consider surgeries as sequences of activities that are performed by the surgeon during the surgery.

Surgical activities are generally represented as a triplet [6] : action, anatomical structure and

instrument. For example, the surgeon can cut the skin using a scalpel. In general, activities that

are performed by both hands are recorded, as well as the use of the microscope. Figure 1 illustrates

an example of such a 9-dimensional set of sequences.

Figure 1 demonstrates the complexity of the data. Surgeries can have very different durations,

they are described along nine dimensions, they can contain more or less pauses, et cætera. Even

in this case, which concerns only one variety of surgery (lumbar disc herniation removal), it is very

difficult to extract high-level information about the surgeries using existing methods, because we

lack a common timeline (i.e., surgeries do not last the same amount of time).

In this article, we unlock this issue and introduce a novel method to provide a consistent common

timeline to a set of surgeries. We enable the comparison of a set of surgeries, in order to make it

possible to extract high-level information. “What is the standard surgery of a given type?”, “What

is the difference between surgical practices of junior and senior surgeons?”, “What makes this

surgery different from the other surgeries?” are the types of questions that can be addressed by the

method that we propose in this article. Our method takes advantage of our recent discoveries for
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fast multiple sequence alignment [7].

This article addresses the issue of being able to compare a set of surgical processes; Section 2

describes this issue. Section 3 introduces a method to realign a set of sequences along their intrinsic

timeline. Section 4 details experiments carried out on neurosurgeries. Section 5 discusses these

results and shows that our method makes it possible to provide high-level knowledge about the

standards of neurosurgeries. We use the example of the training of neurosurgeons to illustrate that

our approach captures interesting knowledge about the surgeries. Section 6 concludes this paper

and presents some future work.

2. Problem statement

History of surgical process modelling. Several initiatives have already been proposed to better un-

derstand surgical practice, mainly focusing on the assessment of surgeries. The first approach was to

assess surgeries with regard to patient outcomes [8]. In addition to requiring a long-term follow-up

with the patient, this method is very dependent upon the patient and the conditions of the surgery.

It consequently cannot be used for an objective assessment of surgeries.

Human grading techniques have been proposed to improve the objectivity of the assessment [9].

Junior surgeons are evaluated by their seniors with regard to a list of surgical skills. These tests

are however subjective depending on the evaluator [10].

Time-motion approaches have been introduced to improve objectivity and to automate the

information acquisition on a surgery [11, 12]. The idea was to use statistical information like the

average duration of the surgery or the number of actions performed by the surgeon. These methods

are very objective and easy to record. However, they do not provide enough information about

the standard practices during the surgery. Assessing junior surgeons on such criteria can also be

misleading. For example, senior surgeons are on average faster than junior surgeons [13]. It is

obviously very undesirable for the junior to try to speed up their surgery without having reached

the dexterity and experience of senior surgeons.
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Recording surgeries has recently gained interest, either using sensor devices, or directly by an

observer in the OR. An universal and adaptable recording scheme has been introduced [14]. It

shows how to decompose a surgical intervention into manual work steps. This data contains a lot

of information, since it is much closer to the reality in the OR than, for instance, a record of only

the number of actions performed during the surgery. An example of recorded surgeries is given in

Figure 1. It is usually assumed that this data is rich enough for the knowledge that scientists want

to extract. Automating the analysis of such a dataset is however very challenging. Surgical Process

Modelling (SPM) is the field that aims at unlocking this issue [15, 16, 17, 14, 18].

Analysing a set of surgeries. In this article, we focus on the understanding of the similarities and

differences that take place in a set of surgeries. We highlighted above that this is challenging because

every surgery is different from another one. Yet senior surgeons successfully train junior surgeons

every year. Surgery is indeed a very standardised practice that can be taught. The problem is that

surgery is standardised at a high-level (phases, steps of each phase, ways of performing each step,

et cætera). The challenge is to be able to recognise these standard practices from the low-level

description of the data, i.e., from the actions that are performed by the surgeon.

From the data analysis perspective, the first step to unlock this issue is to be able to compare

two surgeries in a consistent way. For a measure to be consistent, it has to provide a graduated

evaluation of how similar two surgeries are. Similarity measures for surgeries were first studied in

[19]. Dynamic Time Warping (DTW) is based on the Levenshtein distance and was introduced

for speech recognition in the 1970s [20] We recently demonstrated that Dynamic Time Warping

is sound for surgical processes comparison [6, 21]. DTW operates non-linear distortions on the

time-axis, in order to find the best alignment of the two sequences. DTW optimally realigns (or

stretches) sequences with each other, which makes it possible to compare them along their intrinsic

timeline. Figure 2 illustrates this process on the anatomical structures that are targeted during two

surgeries.
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A lot of information can be retrieved very easily from the DTW-realigned sequences (variability,

transitions, phases, et cætera). Improving the understanding of surgical processes would require a

set of surgeries to be realigned along their intrinsic timeline. DTW is unfortunately able to align

a pair of sequences only. This is exactly the scientific issue that this article unlocks. Next section

will introduce a method that makes it possible to re-align a set of sequences, in order to be able to

provide high-level information about surgical processes.

3. Method: non-linear temporal scaling

In this section, we present our method for the non-linear temporal scaling (NLTS) of surgeries.

We start by giving some notations and presenting our method NLTS. Then, we detail how this set

can be analysed to extract high-level information about the surgeries.

Notations

Let S = {S1, · · · , SN} be the original set of N sequences (surgeries). Let E be the space of

states of sequences in S as:

E =
N⋃

n=1

length(Sn)⋃
`=1

Sn(`) (1)

3.1. NLTS

Optimally aligning a set of sequences under time warping has long been studied in computational

biology. It is known as the multiple sequence alignment of the set, and is often considered the “Holy

Grail” in computational biology [22]. Multiple sequence alignment is NP-complete [23], which

prevents its computation for more than a few short sequences.

In this section, we propose Non-linear temporal scaling (NLTS): a method to align (or scale) a

set of sequences under time warping. Our method is based on compact multiple alignment [7], which

was recently introduced to enable the multiple sequence of a large set of homogeneous sequences.

Compact multiple alignments allow several successive elements of sequences to be part of the same
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column of the alignment. Finding the average sequence under time warping computes the compact

multiple alignment of the set of averaged sequences [7]. In addition, scalable methods exist for the

definition of an average sequence under time warping [24].

Non-linear temporal scaling (NLTS) starts with a set of sequences and performs as follows:

1. Compute the average sequence S̄ of the set of sequences S.

2. Compute the compact multiple alignment of S from S̄.

3. Unpack every column of the compact multiple alignment to its maximum width.

Algorithm 1 details the computation of NLTS; we describe its steps in the following paragraph.

Computation of the average sequence. The first step consists of computing the average sequence S̄

of S (line 1). To this end, we use Dtw Barycenter Averaging [24], but other methods like CO-

MASA [7] could be used depending on time requirements. The computation of the average sequence

is detailed in Algorithm 2. Note that DBA is initialised with the medoid sequence (Algorithm 3).

Computation of the compact multiple alignment. The compact multiple alignment is computed by

aligning the average sequence S̄ to every one of the sequences of S independently. This alignment is

performed by the function assocDTW. This function simply returns, for every element of the first

sequence, the elements of the second sequence that have been linked to it by DTW. In our case,

it consists of finding which elements of the sth sequence have been associated with the `th element

of S̄(line 5). These elements are then stored in elements[s][`]. Moreover, we store in widths[`] the

maximum number of elements that have been associated with every `th element of S̄, i.e., in every

column of the corresponding compact multiple alignment (lines 6–8).

Unpacking the compact multiple alignment. The last part of the algorithm consists of unpacking

the compact multiple alignment. The compact multiple alignment provides a set of sequences that

is consistently aligned. However, the first column can, for example, hold four elements of the first
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sequence, one element of the second sequence, and two elements of the third sequence. As a result,

for every column ` of the alignment, we scale every subsequence elements[s][`] to the maximum

number of elements contained in this column, i.e., widths[`] (line 15). In the latter example, it

would correspond to stretch the single element of the second sequence to four elements and the two

elements of the third sequence to four elements as well.

Result. The algorithm outputes a set of sequences S?, which enables a detailed temporal analysis

of the set of sequences. Note that all the sequences of S? now have the same length.

Algorithm 1 Non-Linear Temporal Scaling
Require: S = {S1, · · · , SN}
Let S? = {S?

1 , · · · , S?
N} be the resulting set of scaled sequences

Let mean(.) return the average sequence of a set for DTW
Let assocDTW(S, T ) return the elements associated mapping built by DTW from S to T
Let scale(S, n) return the uniform scaling [25] of the sub-sequence S to n elements
1: S̄ ← mean(S)
2: L← length(S̄)
3: widths[L]← [0, · · · , 0]
4: for s← 1 to N do
5: elements[s] = assocDTW(S̄, Ss)
6: for `← 1 to L do
7: widths[`]← max(widths[`] , size(elements[s][`]))
8: end for
9: end for
10: for s← 1 to N do
11: S?

s ← 〈〉
12: for `← 1 to L do
13: targetLength← widths[`]
14: for n← 1 to targetLength do
15: S?

s ← S?
s . scale(elements[s][`], targetLength)

16: end for
17: end for
18: end for
19: return S?
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Algorithm 2 mean
Require: S = {S1, · · · , SN}
Let DBA be the averaging sequence method introduced in [24]
Let I be the number of iterations
Let mean be the returned average sequence of S

mean← medoid(S)
for i← 1 to I do

mean← DBA(mean,S)
end for
return mean

Algorithm 3 medoid
Require: S = {S1, · · · , SN}
Let medoid be the returned medoid of S
Let inertia←∞
for S in S do

sqrDist← 0
for T in S do

sqrDist← sqrDist + DTW(S, T )2

end for
if sqrDist < inertia then

inertia← sqrDist
medoid← S

end if
end for
return medoid

3.2. Analysing a set of non-linearly scaled sequences

NLTS makes it possible to realign a set of sequences along the intrinsic time of the surgery. In

this section, we propose different methods that can be used to analyse this aligned set of sequences.

Probability distribution of the states over time. Let S? be the set of sequences scaled with NLTS.

Every element ` of S? is associated to a set of sequence states {S?
1(`), · · · , S?

L(`)}. These sets of

states informs about the distribution of the states over time. The more similar these states are

at `, the more standardised the action ` is. We propose to analyse S? by studying the (discrete)
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probability distribution of these states over time.

Definition 1. S?
p̂ = 〈p̂1, · · · , p̂L〉 is the sequence of probability with maximum likelihood estimates

p̂` over E defined by:
p̂` : E → [0, 1] ⊂ R

e 7→ |{{S?(`)=e | ∀S?∈S?}}|
N

Entropy of the states. Entropy is a measure of uncertainty of a random variable. In our case, the

entropy of every state of S?
p̂ gives information about how diverse the behaviour of surgeons is at

state ` of the surgery. The entropy is null when all the surgeons perform the same action in the

set. The entropy is maximal when every surgeon performs a different action. This can be used as a

measure of the predictability of the action for models of surgeries. This entropy – H(p̂`) – is defined

as:

H(p̂`) = −
E∑
e

p̂`(e) · logb (p̂` (e)) (2)

H(p̂`) makes it possible to locate the states or phases of the surgeries, for which the behaviour of

surgeons is standard or heterogeneous.

Entropy based encoding of S?. Entropy has a direct connection with compression. This is because

encoding an element e with probability p(e) requires − log2(p(e)) bits. The length of the com-

pressed string encoding S? on a state-by-state basis is given by:

LS? =
L∑

`=1

N∑
n=1
− log2 (p̂` (S?

n (`))) (3)

=
L∑

`=1
N ·

(
−

E∑
e

p̂`(e) · logb (p̂` (e))
)

(4)

= N ·
L∑

`=1
H(p̂`) (5)

This length LS? gives information about the general uncertainty on S?. It evaluates the predictability

of the behaviours of surgeons over the whole surgeries.
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4. Experiments

We illustrate our approach on a neurosurgical dataset. We focus in particular on the training

of neurosurgeons, by comparing the surgical practices of junior and senior surgeons. This theme is

actually central in surgical process modelling. The complexities involved in operating on the human

body means that the initial training of a surgeon usually takes more than 10 years, and requires

extensive one-on-one instruction from a senior surgeon. After that initial training, surgeons still

require several further years of experience to themselves reach a senior level. We focus on the

comparison of junior vs senior surgical practices, in order to improve neurosurgeon training.

4.1. Material

We recorded 24 lumbar disc herniation surgeries in the Neurosurgery Department of the Leipzig

University Hospital, Germany. Figure 3 gives an example of how the recording process takes place

in the OR. In our case, a second neurosurgeon (foreground) records the activities of the operating

one (next to the microscope).

The surgeries involved 10 male and 14 female patients, with a median age of 52 years. These

lumbar disc surgeries are divided into three main steps: (1) approach of the disc, (2) discectomy and

(3) closure. The herniated disc is approached via a posterior intermyolamar route. The discectomy

includes the dissection and removal of the disc. A hemostasis step might also be performed before

the closure. The patients were operated on by five junior and five senior surgeons. Senior surgeons

have performed at least a hundred removals of lumbar disc herniation. All the junior surgeons

have passed more than two years of their residency program but have not performed more than a

hundred removals of lumbar disc herniation. We recorded the surgeries so that the dataset contains

equal representation of junior and senior surgeons. Twelve patients were operated upon by a senior

surgeon with the help of his or her junior, and for the other 12 it was the other way around, with

the junior surgeons taking the lead. During all junior recordings, the closure step was performed

by the junior alone.
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4.2. Results

Our results are divided into two main parts. The first aims at understanding our approach on

a simple case: the closure phase of the surgery. The second part illustrates the results of NLTS on

the whole surgery. These results are discussed in the next section.

4.2.1. Closure phase

Figure 4 presents the experiments that have been carried out on twelve surgeries during the

closing phase. These results aim at giving some intuition about how our method helps access

high-level information about the surgery. These twelve surgeries correspond to the ones that were

performed by junior surgeons (with the aid of their seniors). Figure 4 illustrates the sequence of

anatomical structure that were involved in the activities of the surgeon during the surgery. Note that

the scaling process took into account the complete information, i.e., action, anatomical structure

and instrument for both hands and the microscope. These 9-dimensional sequences are then scaled

and Figure 4 presents the sequence of anatomical structure that were involved in the activities

performed with the main operating hand (right hand for right-handed surgeons and conversely).

Figure 4(a) presents the original (non-scaled) data. Figure 4(b) presents the set of sequences that

has been scaled using our NLTS approach. We also compare the results of NLTS to the one of the

Euclidean state-of-the-art method, namely uniform scaling. This method stretches the sequences

uniformly over time. The work by [25] gives more details about this procedure. The results of this

approach are depicted in Figure 4(c).

Figure 5 depicts the comparative study of the evolution of p̂ (Definition 1) over time, for the

anatomical structures that are involved in the surgery. Figure 5(a) depicts this evolution for NLTS

that can be compared to the results obtained with uniform scaling in Figure 5(b). For both cases, the

first chart gives the evolution of the entropy (H(p̂`)), while the second chart gives the distribution

of the anatomical structures that are involved through the surgery. The aim is to inform about how

standard the surgery is at different stages.
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4.2.2. Whole surgery

This results extend the previous ones, but at the level of the complete surgery. The methodology

remains the same: the 9-dimensional sequences are aligned with NLTS, and we present results for

the anatomical structures on which actions of the main hand are performed. We propose to illustrate

the interest of our approach on the comparative analysis senior vs junior.

Figure 6 presents the evolution of the targeted anatomical structures. We compare junior and

senior behaviours scaled with NLTS, respectively in Figures 6(a) and 6(b). Table 1 compares the

length LS? required to encode junior and senior sets of surgeries.

5. Discussion

5.1. Closure phase

The visual analysis of original data depicted in Figure 4(a) is difficult, since they have neither

the same length, nor a common timeline. Figure 4(b) depicts the results of our NLTS approach,

which aims at unlocking this issue. NLTS makes it possible to scale the sequences on their intrinsic

timeline. This allows us to consistently assess the way in which the anatomical structures are

involved during the surgery.

Comparatively, the state-of-the-art uniform scaling approach (Figure 4(c))does not take into

account any correspondence between the sequences. The timeline corresponds to the percentage of

time spent in the surgery, and the results provides only poor information about the surgeries.

Figure 5 presents how to use this information to extract knowledge about the standards of

surgery.

Figure 5(a) presents the results of NLTS. The information about the sequencing of actions is

directly accessible. From the chart, we can for example observe a sequence of anatomical structures

that are involved during the closure phase: muscle → fascia → skin. This is typical of the

closure phase: the surgical route is closed layer by layer. The corresponding entropy trend gives

also interesting information about the variability of this phase. We can directly identify that the
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variability of surgical practices is located at the start of the closure phase. The start of the closure

phase is indeed often influenced by patient-specific information like his or her anatomy. We can

also observe that once the fascia is targeted, the surgery is then much more stereotyped, because

the targeted anatomy is less variable.

Comparatively, Figure 5(b) shows that the uniformly scaled set of sequences provides little

information. This information is moreover often misleading the interpretation, because the different

anatomical structures are mixed. As a result, it is impossible to use uniform scaling to deduce the

standard sequencing of actions of surgeries. The corresponding entropy suggests that the closure

phase is very variable/uncertain, while this phase is the most standardised phase of the surgery.

The different anatomical structures have indeed to be closed in a specific order.

5.2. Whole surgery

Figure 6 illustrates the sequence of anatomical structures for the entire surgery. We compare

the surgeries performed by senior vs junior surgeons using NLTS.

We can directly observe in Figures 6(a) and 6(b) the sequence skin → fascia → muscle →

vertebra at the start of the surgery. This sequence is present both for junior surgeons and for senior

surgeons, which demonstrates that this practice is highly standardised.

NLTS can also be used as a tool to evaluate the differences between junior and senior about

their surgical practice. First, we can observe that senior behaviour is more homogeneous than

the behavior of junior surgeons. Over time, the anatomical structures that are targeted by senior

surgeons are almost always the same, i.e., the majority of surgeons perform the same action at the

same time of the surgery (Figure 6(b)). To the contrary, Figure 6(a) shows that junior-operated

surgeries exhibit a strong heterogeneity. This heterogeneity can be explain by their lack of experience

and dexterity. This visual observation is confirmed by the lengths of the compressed scaled sets of

sequences. Table 1 shows that encoding the scaled sets of sequences for senior surgeons requires

35 % less space than for junior surgeons: surgeries performed by junior surgeons are much less
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predictable than the set of senior surgeries.

This representation makes it possible to finely compare surgical practices. Let us for example

explain the phase of the removal of the hernial disc, which corresponds to the most characteristic

and riskiest part of the surgery (red dots in Figure 6). We can see that senior surgeons operate on

the herniated disc in one phase only. The actions performed on the disc are more spread out when

junior surgeons are operating. We can actually observe a strong heterogeneity in the way the junior

surgeons perform this phase. Most of junior surgeons operate on the disc in three steps with actions

on the ligament in-between. Junior surgeons actually often start working on the disc and have to

go back to the ligament, in order to better operate the herniated disc. This can be explained by

their lack of experience.

This analysis about the standard sequencing of anatomical structures could also be performed

on other components of the surgeries. For example, we could study the sequence of the surgical

instruments that are used during the surgery. Detecting patterns about surgical instruments would

certainly make it possible to improve the organisation of the OR and the coordination of the surgical

team. The sequencing of actions could be used to detect patterns about surgical practice, in order

to better understand complex surgical behaviours across different populations of surgeons.

6. Conclusion

Modelling and understanding surgical procedures is an important challenge. DTW is consistent

for the comparison of two surgeries but cannot be used to capture the similarities of a whole

set of surgeries. In this paper, we introduced Non-Linear Temporal Scaling (NLTS). NLTS takes

advantage of recent discoveries about scalable multiple alignment methods and makes it possible

to realign a set of sequences along their intrinsic timeline, in the same way as DTW does for two

sequences. We also introduce different methods based of information theory that can be used to

analyse this aligned set of sequences. Our experiments on neurosurgeries (lumbar disc herniation

removal) showed that NLTS makes it possible to identify standards of surgical practice. We used
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the training of neurosurgeons as the common theme for our experiments and showed how NLTS

allows us to identify discriminant differences between the practices of junior and senior surgeons.

We believe this work opens up a number of research directions. We plan to temporally model

surgical processes based on Markov or on Dynamic Bayesian Networks systems. These models

would provide high-level representations of surgical procedures, which would in turn lead to a

better understanding of surgical practice.

Supplementary materials

NLTS package: Java package containing the source code for the proposed method. (Java ARchive

file) – http://www.tiny-clues.eu/Research/NLTS/nlts.jar
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Tables

Table 1: Entropy based encoding of S?

Senior Junior

LS? 5,206 bits 8,051 bits
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Figure Captions

Figure 1. A set of surgeries recorded from the OR by a neurosurgeon. For every surgery, three
sequences of activities are displayed. They represent activities related to the right hand (R), left
hand (L), and microscope (M).

Figure 2. Stretching two sequences with DTW. Each color corresponds to one anatomical structure.
(a) Original sequences. (b) DTW-alignment. (c) DTW-scaled sequences.

Figure 3. Recording of the data in the OR.

Figure 4. Comparative scaling process of a set of surgeries on the closure phase of the surgery. (a)
Original sequences. (b) Sequences scaled using our NLTS approach. (c) Sequences scaled using
uniform scaling. (d) Legend.

Figure 5. Distribution of the states of the re-aligned set of sequences computed on the data presented
in Figure 4. (a) NLTS of the closure phase. (b) Uniform-scaling of the closure phase. (c) Legend.
For both figures, we depict the evolution of the state entropy H(p̂`) over time.

Figure 6. Comparison between junior and senior surgeons on the targeted anatomical structures
over time of the surgery. (a) NLTS on junior surgeries. (b) NLTS on senior surgeries. (c) Legend.
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