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flow models: numerical investigation

G. Costeseque **1, J.P. Lebacque'

March 14, 2014

Abstract

This paper deals with numerical methods providing semi-analytic solutions to a wide
class of macroscopic traffic flow models for piecewise affine initial and boundary conditions.
In a very recent paper, a variational principle has been proved for models of the Generic
Second Order Modeling (GSOM) family, yielding an adequate framework for effective
numerical methods. Any model of the GSOM family can be recast into its Lagrangian
form as a Hamilton-Jacobi equation (HJ) for which the solution is interpreted as the
position of vehicles. This solution can be computed thanks to Lax-Hopf like formulas
and a generalization of the inf-morphism property. The efficiency of this computational
method is illustrated through a numerical example and finally a discussion about future
developments is provided.

Keywords: Traffic flow, Hamilton-Jacobi equation, Lax-Hopf algorithm, Lagrangian data.

1 Introduction

1.1 General background

In order to get a realistic estimation of the real-time traffic states on networks, traffic op-
erators and managers need macroscopic traffic flow models. These models must be simple,
robust, allowing to get solutions at a low computational cost. The main macroscopic models
are based on conservation laws or hyperbolic systems (see [27), [31] for traffic aspects and [20]
for mathematical aspects). The seminal LWR model (for Lighthill- Whitham and Richards)
was proposed in [43] [51] as a single conservation law with unknown the vehicle density. This
model based on a first order Partial Differential Equation (PDE) is very simple and robust but
it fails to recapture some empirical features of traffic. In particular, it does not allow to take
into account non-equilibrium traffic states mainly in congested situation. More sophisticated
models referred to as higher order models were developed to encompass kinematic constraints
of real vehicles or also the wide variety of driver behaviors, even at the macroscopic level. In
this paper we deal with models of the Generic Second Order Modeling (GSOM) family. Even
if these models are more complicated to deal with, they permit to reproduce traffic instabilities
(such as the so-called stop-and-go waves, the hysteresis phenomenon or capacity drop) which
move at the traffic speed and differ from kinematic waves [53] (see also [38] and references
therein).
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Before the wide propagation of internet handsets, traffic monitoring has mainly been built
on dedicated infrastructure which imply quite important installation and maintenance costs.
Traffic flow monitoring and management has been deeply modified with the development of
new technologies in mobile sensing aiming to provide a quite important quantity of floating
car data. Traffic flow models are needed to be well suited such that managers could use
both Eulerian and Lagrangian data for improving traffic state estimation. The term Fule-
rian refers to “classical” fixed equipment giving records of occupancy or flow of vehicles on
a freeway section. This kind of measurements come from e.g. fixed inductive loop detectors,
Radio Frequency Identification (RFID) transponders, radars or video cameras. By opposite,
the term Lagrangian is used to characterize data coming from sensors which move within the
measured field of interest. Lagrangian data are provided by on board mobile sensors such as
Global Positioning Systems (GPS) or GPS-enabled smartphones.

While the idea of monitoring traffic using mobile sensors appeared less than ten years ago
with the popularization of the mobile internet devices, there exists a fast growing literature
about how to integrate Lagrangian data into classical macroscopic traffic low models. The
process of incorporating Eulerian and Lagrangian data into a mathematical model to improve
the modeling is called data estimation or equivalently inverse modeling. According to the
major UC Berkeley field experiment named Mobile Century and then Mobile Millennium
[55] investigating Lagrangian sensing, it has been shown that even a 2% to 5% penetration
rate of probe vehicles into the driver population provides sufficient and accurate data for
estimating traffic velocity or density on highways [23] 24, [52]. Nevertheless, it has been
demonstrated in [49] that the quality of estimation for higher-order traffic quantities including
vehicle acceleration/deceleration, emission and fuel consumption rates is dramatically affected
when the penetration rate of probe vehicles or the sampling frequency of the current mobile
sensors decrease. However on board devices propose a real breakthrough in traffic monitoring
by providing a very cheap and efficient way to collect traffic data.

1.2 Motivation

In order to improve traffic states estimation from Lagrangian data, we propose to deal with
macroscopic traffic flow models of the GSOM family. As these models combine the simplicity
of the LWR model with the dynamics of driver specific attributes, we are able to recapture
more specific phenomenon with a higher accuracy. While methods of data assimilation have
been only developed for first order models up to now, this work presents a new algorithm
to reconstruct traffic states from both Eulerian and Lagrangian data. We take advantage of
a very recent article [36] in which a variational principle has been proved for models of the
GSOM family.

1.3 Organization of the paper

The rest of this paper is structured as follows. Section [2] presents more in detail the GSOM
models and sheds a specific light on the LWR model which is widely used in traffic engineering.
The variational principles for the GSOM models including LWR model are briefly recalled in
Section Bl Section Mlis devoted to the presentation of the main elements of our computational
method. Finally, Section Bl proposes a numerical example of our method.

2 GSOM traffic flow models

2.1 Formulation of GSOM models

In [37, 38|, the authors introduce a general class of macroscopic traffic flow models called the
Generic Second Order Models (GSOM) family. Any model of the GSOM family can be stated



in conservation form as follows

Op + 0z (pv) =0 Conservation of vehicles,
O(pI) + 0z (pvI) = pe(I) Dynamics of the driver attribute I, (2.1)
v=7(p,I) Fundamental diagram,

where p stands for the density of vehicles, v for the flow speed (equal to the mean spatial
velocity of vehicles), x and t for position and time. The variable I is a specific driver attribute
which can represent for example the driver aggressiveness, the driver destination or the vehicle
class. The flow-density fundamental diagram (FD) is defined by

§:(p, 1) = p3(p, I).

Notice moreover that it was shown in [38] that the notions of Supply and Demand functions
defined in [33] for the classical LWR model could be extended to the GSOM family. The
GSOM models admit two kinds of waves:

e Kinematic waves or 1-waves as in the seminal LWR model: a wave propagates density
variations at speed v = 0,J(p, I) while the driver attribute I is continuous across such
a wave.

e Contact discontinuities or 2-waves: a wave propagates variations of driver attribute I at
speed v = J(p, I) while the flow speed is constant across such a wave.

2.2 Examples

The GSOM family recovers a wide range of existing models:
e The LWR model [43] [51] itself is simply a GSOM model with no specific driver attribute,
expressed as follows

{atp + 0z (pv) =0 Conservation of vehicles, (29)

v=7T(p,x) Fundamental diagram.

The fundamental diagram (FD) for the LWR model states that traffic flow is always at
an equilibrium state. It is commonly assumed that the flow is an increasing function
of density between zero (corresponding to an empty section) and a critical density and
then the flow decreases until the maximal density (corresponding to a bumper-to-bumper
situation). However the FD shape is always a subject of debates (see for instance [18])
and there exists a wide variety in the literature encompassing concave and triangular
flow functions (see Figure [[] and also Chapter 3 of [20] for additional examples).

Flow,§ Flow,§ Flow,§
A A A

Density, p Density, p Density, p

> > .

0 Prmaa 0 Pmax 0 Pmax

Figure 1: Illustrations of some flow functions § for the LWR model: Greenshields (left),
triangular (center) and exponential (right).



e The LWR model with bounded acceleration proposed in [34] 35, 41] is also a GSOM
model in which the propagated driver attribute is simply the speed of vehicles.

e The ARZ model (standing for Aw, Rascle [I] and Zhang [53]) for which the driver
attribute is taken as I = v — V.(p) that is J(p,I) = I + Ve(p).

e The Generalized ARZ model proposed in [19] that can be also seen as a particular case of
the model described in [54]. These models introduce an interaction mechanism between
two different FDs for distinguish equilibrium and non-equilibrium states.

e Multi-commodity models (multi-class, multi-lanes) of Jin and Zhang [28], Bagnerini and
Rascle [4] or Herty, Kirchner, Moutari and Rascle [25]. It encompasses also the model
of Klar, Greenberg and Rascle [29].

e The Colombo 1-phase model deduced in [38] from the 2-phase model of Colombo [§]. In
this case, the driver attribute I is a scalar which is non-trivial in congested situation. In
fluid area, the model follows the classical LWR model.

e The stochastic GSOM model of Khoshyaran and Lebacque [30]. The driver attribute I
is a random variable depending on the vehicle index N and on the random event w such
that I = I(N,t,w). The random perturbations do not affect the vehicle dynamics but
affect the driver perception and its behavior.

The interested reader is referred to [36] and references therein for more details on examples.

3 Variational principles in traffic low modeling

In traffic flow literature, the variational formulation was first conjectured by Newell in [48] for
the LWR first-order traffic flow model. It was then properly established and generalized by
Daganzo in [12], 13} 15, [14]. In this section, we first present the variational formulation of the
GSOM family lead by the ideas developed for the LWR model. Then the numerical methods
for solving these variational formulations are introduced.

3.1 Variational formulation of the GSOM family

Guided by the ideas developed for the LWR model, variational formulations have been recently
developed and proved for models of the GSOM family in both Eulerian [42] and Lagrangian
frameworks [36].

3.1.1 Lagrangian setting

In [36], the authors prove the existence of a variational principle for the GSOM models family
expressed under its Lagrangian form, introducing r := 1/p the spacing and N the vehicle label

or +0nyv =0 Conservation of vehicles,
ol = o(N,I,t) Dynamics of the driver attribute I, (3.3)
v=V(r,I)=3(1/r,I) Fundamental diagram.

Remark 3.1 (Vehicle labeling) Note that vehicles are labeled in the classical traffic sense,
according to their passing time through a reference spatial point. Thus, the label axis is in the
opposite sense that the spatial axis.

t
Considering the position X' (N,t) = / v(N, T)dr, we obviously have that

—00

v=0X and r=-0nX. (3.4)



Hence the system (B.3]) could be written as a Hamilton-Jacobi equation satisfied by X":
X —W(N,—-0nX,t) =0, (3.5)

where W denotes the speed-spacing fundamental diagram of vehicle N at time ¢. It is defined
such that
WN, 7,1) == V(r, I(N, 1)) = 3(1/r, I(N, 1),

where the driver attribute I(V,t) solves the following nonlinear first order ODE

atI(N’t):SD(NaI,t)’
I(N,0) =ig(N), for any N.

By classical results on optimal control problems i.e. dynamic programming on Hamilton-
Jacobi-Bellman equations, we can check that:

T
X(NTaT) = min M(N?u’t)dt+£(NOat0),
u7(N0,t0) to
N=u (3.6)
N(to) = No, N(T)= Nr
(No,to) € J

where M is the Legendre-Fenchel transform of W according to its second variable (see Figure
for an illustration of the Legendre-Fenchel transform), defined such that

M(Nvuvt) = sup {W(N7 T, t) - UT}. (3.7)
reR

W(N,7,t) o
P

W(N, g t) Feemmmmmamaanaees
p

M(N,p,t) —]
27BN il :
l q r

Figure 2: Legendre transform M of function W.

Notice that the variational formulation of GSOM models (B3.6]) is only available if and only
if  — W(N,r,t) is concave such that the Legendre-Fenchel transform of M gives back the
function W.

In the previous formulation ([B.6), J is the locus of initial and boundary conditions and
&(Np, tg) is the initial data of the position of vehicle Ny at time to for any (Ny,ty) € J.

The optimal trajectories are given by the characteristics (Eulerian and Lagrangian character-
istics are equal) described by the following coupled ODEs

{ N = 9, W(N,r,t), (3.8)

= —3NW(N, r, t),

where u = N is the command of the optimal control problem (B6). The system [BX) is a
simple system of ODEs in the (N,r) plane.



3.1.2 Eulerian setting

In [42], the authors prove the existence of a variational formulation of a class of models from
the GSOM family. Unlike the paper of Lebacque and Khoshyaran [36], these models are
expressed from the Eulerian viewpoint as a system of two conservation laws

{@p +0:f(p,s) =0 Conservation of vehicles, (3.9)

Os + 0z9(p,s) =0 Dynamics around the equilibrium.

The first conservation law is obviously satisfied by the vehicle density p and the corresponding
flux f is the product of density times speed f(p,v) = pv. The second conservation law is
satisfied by a variable s (a non-equilibrium measure) which can be replaced by s = pI yielding
the GSOM family without source terms ¢(I) = 0. The corresponding flux g needs to satisfy
some specific conditions to ensure that the wave speed is less or equal to traffic speed.

The paper [42] highlights that taking ¢(I) = 0 is equivalent to say that the driver attribute
I is invariant along vehicle trajectories which seems to be corroborated for instance by the
work of Duret et al. [16] on the NGSIM I-80 trajectories data-set (in congested situation).
For the models (3.9)), the authors show in [42] a variational formulation based on Lax-Hopf
like formulas for both N, and N defined as the cumulative quantity of respectively p and s.
When taking into account a non trivial relaxation term (¢(I) # 0), the authors assume that
the problem reduces to solving a LWR model in large time because the relaxation term induces
an exponential decay in time of the difference between ([3.9) and a regular LWR model (2.2]).

Remark 3.2 (Variational formulations of the LWR model) The variational theory for
the LWR relies on the three dimensional representation of traffic flow or the so-called Moskowitz
function [47, [45] yielding Hamilton-Jacobi formulations in Fulerian and Lagrangian coordi-
nates (see also [32] and references therein).

Under suitable assumptions, the solutions to the HJ equations could be determined thanks
to a variational formulation, known as Laz-Hopf formula in the mathematics literature [17].
There exist different methods to obtain the variational formulation of these problems, including
calculus of variations, dynamic programming [12, [13] and viability theory [6, [21).

Notice that from a mathematical point of view it was rigorously established in [21)] that the
(viscosity) solutions of HJ equations in Eulerian and Lagrangian coordinates are strictly equiv-
alent.

3.2 Computational methods for GSOM models
Lax-Hopf algorithms in LWR case

Up to our best knowledge, existing numerical procedures for data assimilation use the seminal
paper [6] which proposes a semi-explicit form of the solution to Hamilton-Jacobi equations with
concave flow-density fundamental diagrams and with any piecewise affine (PWA) initial and
boundary conditions. They introduce a generalized Lax-Hopf formula and the inf-morphism
property [2, 3] to compute the solution by taking the infimum of all solutions associated with
simpler partial problems. It follows computational methods that are commonly referenced as
“orid free” schemes [7, [46]. Unlike dynamic programming methods [12], Lax-Hopf algorithms
have been proved to be exact in general cases of concave flow-density fundamental diagrams
(i.e. for convex Hamiltonians) [6]. Some elements of comparison are given in [46] between
dynamic programming, Lax-Hopf algorithm and more classical methods such as Godunov
scheme [I1], B3] and wave tracking algorithm [22] 26].

The Lax-Hopf algorithm has been extended to the Lagrangian version of the LWR problem in
[21] for a triangular flow-density FD and for piecewise affine initial and boundary conditions.



Review of computational methods for GSOM models

There already exists some works on computational methods for models of the GSOM family
[40, [42), 50]. However these existing methods are developed in the Eulerian framework which
does not seem to be the best one to deal with Lagrangian data. Moreover the paper [50] deals
with the LWR model with bounded acceleration which is a very specific GSOM model. The
algorithm is very similar to the ones developed in [7, 46] but it is not applicable to general
models of the GSOM family.

In [42] the authors present a numerical scheme that is based on a discretization of Eulerian
time and space domain. The idea of the scheme (close to dynamic programming) is then to
update the cumulative quantities

+00 +o0
N, ;:/ p(y,t)dy and Nj ::/ s(y,t)dy,

on the vertexes of a mesh (whatever its shape if this mesh is dense enough) following the
optimal paths in an iterative way because of the coupling of the equations to solve. The
values of p (resp. s) are deduced from a first order approximation of the derivative of N,
(resp. Nj). Notice that this computational method is not exact in general.

A finite difference scheme

A numerical scheme based on a uniform grid of the Lagrangian domain with steps At and
An, was presented in [36].
We define for any n, ¢t > 0

X! = X(nAn,t6t).
As usual with finite difference scheme, we need to introduce a Courant-Friedrichs-Lewy (CFL)
condition to ensure the scheme to be monotone and convergent

An
il N .
A7 _Jsv?rlft |0-W (N, 7,t)|

Then we consider the classical first order finite difference scheme as follows

Xt _ Xt
XH =Xt - At W (nAn, =L T At (3.10)
n n An

By construction the above scheme can be interpreted as the seminal Godunov (finite volume)
scheme (3.I1)) for the Lagrangian formulation of the GSOM model (see [10])

t
1
=t e e =Wl (3.11)
where we have defined the discrete spacing and respectively the numerical speed as follows
rto— Xrtzfl - Xrtz
" An

WE =W (nAn,rk, tAt) .

The upstream and downstream boundary conditions for the finite difference scheme (B.I0]) are
fully described in [36]. They match the Bardos-LeRoux-Nédélec or Dubois-LeFloch boundary
conditions and it was already shown that such conditions are equivalent to prescribe supply
and demand conditions (see [36] and references therein).

Up to our best knowledge, there is no other existing work on computational methods for
models of the GSOM family in the Lagrangian framework. The method of finite differences
does not enjoy the semi-analytical expression of the solution of the HJ equation (B.5]) thanks
to Lax-Hopf formula (£12)). In the next section, we provide a semi-analytical algorithm to
compute the solution based on that representation formula.



4 A “grid free” scheme

We are now interested in numerical methods to efficiently recover the solution of the Hamilton-
Jacobi problem (B.5]). The computation of numerical solutions of the HJ equation has already
attracted an important interest in the mathematical community. The majority of numerical
schemes which were proposed to solve HJ equations are based on finite difference methods,
Semi-Lagrangian schemes and discontinuous Galerkin methods (the interested reader is re-
ferred to [7, [10] and references therein).

4.1 Computational strategy

The idea to compute the solution of the Eulerian GSOM model ([B.9)]) is to recast it under its
Lagrangian form (3.3]). As it was shown in the previous section, the position X of vehicle
N at time ¢ solves the Hamilton-Jacobi equation (B.5]). As explained in [36], the Initial and
Boundary Value Problem (3.5) admits a quite simple representation formula (3.6]), very similar
to the Hopf-Lax formula presented for the LWR model.

The Hopf-Lax formula (3.6]) can be simplified because it is well-known from optimal control
theory, that the optimal trajectories for which the minimum is attained are the characteristics
(B8). Hence we have to solve the following system of coupled ODEs (B.8]). Then the generalized
Hopf-Lax formulation (3.6]) can be recast as follows

T
X(Np,T) = min M(N, 0, W(N,r,t),t)dt + £(No, to),
(Nosrosto) Jitg
N(t) = 0,W(N,r,1t) (4.12)

f“(t) = —3NW(N, r, t)
N(to) = No, 7(to) =m0, N(T)= Nr
(N07T07t0) € K

where K is the set of initial/boundary values obtained by combining the initial values of J
with the initial/boundary value r¢ deduced from the initial values (N, o).

According to the principle of inf-morphism property [2] B, 6, [7], if the initial/boundary condi-
tion data £ are located on a union (non necessarily disjoint) of sets

K=K,
l

it suffices to solve partial problems on each set K; and to compute the minimum of the solutions
to these sub-problems

X(Np,T) = mlin X|(Np,T), (4.13)
with .
/Yl(NT, T) = min M(Nl, &»W(Nl, Ty, t), t)dt + §(N0, to).
(Nosroto) Jig
Ni(t) = O, W(Ny, i, t) (4.14)

7nl(t) = _aNW(Nl,Tl’t)
Ni(to) = No, mi(to) =m0, Ni(T) = Nr
(NO,TOatO) € ,Cl

In the remaining of this article, we will apply the inf-morphism property by considering initial
and boundary conditions which are piecewise affine (PWA). Thus we will calculate the solution
generated by each piece using (414 and then apply (£I3]) in order to obtain the solution of

B4).



4.2 Algorithm for piecewise affine value conditions

Hereafter, we study separately the different elements which contribute to the value of the
solution of (B.5]) in its Lagrangian setting. We distinguish

e the initial condition at time ¢ = ¢y describing the initial position of vehicles (N, () for
any considered N,

e the “upstream” boundary condition that is the trajectory of the first vehicle N = Ny
traveling on the section &(Ny,t) for any considered ¢,

e and internal boundary conditions given for instance by cumulative vehicle counts at fixed
location X = zg.

Note that Lagrangian data which are individual vehicle trajectories are considered as a par-
ticular case of “upstream” boundary condition for a given N > Ny (see Remark [£.1]).

While the Lax-Hopf algorithm can handle infinite horizon problems either in the Eulerian or
in the Lagrangian framework, we restrict ourselves to finite values for a convenient numerical
implementation. Without loss of generality, we assume that N € [Ny, Nyaz] with Npper < 400
and similarly ¢ € [to, tmaz] With tye. < +00.

We recall that according to Remark [B.1], in all the following figures, the N-axis and z-axis are
increasing in opposite directions. Hence, the highest labels actually match vehicles that are
located further upstream.

4.2.1 Initial conditions

In this case, at t = ty, the positions £(n,tg) of vehicles n are given. We have that
ro(N) = —ONE(N,tp), for any N.

The initial conditions for the characteristics are the couples (N, r(N)).

First, we need to discretize the set of vehicle labels into intervals [np, n,41] of length An, for
p=1,..., P, in such a way that the dynamics ¢ of the driver attribute I can be approximated
by ¢p in the interval [n,, npq1]

©(N,I,t) = pp(I,t), forany N € [np,nyi1].

If the discrete step An is small enough, we could also assume that for any N € [np, n,y1] the
initial data are piecewise constant

I(N’ tO) = IOJ”
’I“(N, t()) = TO,p-

We will now first define properly the initial condition and then we calculate the solution
generated by the p* component (p = 1, ..., P).

Definition 4.1 (PWA initial condition)
Let tg > 0 be fized. Then the pt" component of the initial condition (p=1,...,P) is given by

XN, tg) = rop (N —np) +ap, forany N € [ny,nyi1].
To ensure continuity of the initial data X on [Ny, Npmaz|, we require that

p—1

ap = ZTO,IATL, forany p=1,...,P.
=1



In a first step, we want to compute the characteristics generated by the initial conditions
(I(N,tog) = ipp and r(N,tyg) = o, given on the interval [n,,n,,1] at time ¢p). In the general
case, we would have

I(N,t) = I,(t) forany N € [ny, np1].

In the following, we consider a characteristic denoted by N(t) for ¢ € [tg, timaez] and we distin-
guish two cases according to the location of this characteristic.

On the interval N €]np, np1].

Consider , := {t | N(t) €]ny, np41[} for any p =1, ..., P. We then have to solve the following
nonlinear first order ODE

{fp(t) = pp(Ip(t)), for tey,
I, (to) = Ipp.

On the interval |n,,n,y1[, we have that I(N,t) = I,(t) is independent of N i.e. dyI = 0.
Then from (B.8]), we deduce

= —aNW(N, T t)
= —9;V(N,I(N,t)) OyI(N,t)
=0.

Thus 7(N,t) on any characteristic in §,. Hence it simply suffices to solve the second ODE in

B:8)) that is .
N = 0, W(N,r,t)

to get the equation of the characteristic on the interval |n,,n,y1[. We finally get
t
N(t) = / OW(N,r,7)dr + N(u), for any ¢ ,ue€ Q,. (4.15)
u

To considerably simplify the presentation, we will restrict ourselves to the case of systems
with no relaxation that is the dynamics of driver attributes ¢,(I,t) = 0 at any time ¢t > tg
and for any interval [ny,ny41] with p =1,..., P.

If we assume that the dynamics is null, then it obviously follows that fp = 0 which leads to

I,(t) =1y, forany teQ,. (4.16)
In traffic modeling, this choice is relevant if the driver attribute I represents for example some
origin-destination (OD) information or if it characterizes the vehicle kind. The driver attribute
is conserved at any time and along any characteristic inside each “strip” [np, npy11] X [to, tmaaz]
of width An.

By the way, the simplification (4.16]) allows to consider characteristics which are straight lines
while there are not in the general case.

At the edge N = n,.

The edge N = n, separates two different traffic states that exhibit two different speed-spacing
fundamental diagrams. We need to take care of the kinematic waves that can appear at this
locus. As illustrated on Figure [3, we set the characteristic speed related to the spacing 7 as
follows

Vp = &»V (T'QJ,, IQJ,) s

and we also define the speed of the “refracted” characteristic wave through the discontinuity
of I such that
vy =0V (15, lop) - (4.17)

10



This characteristic speed is related to a new spacing value g, defined as follows

VY (rop-1,dop-1) . lop) i V(rop-1,lop-1) <supV (r,Ioy),
TE]k,p — reR (418)
+00 else.

]0717
To,p—1 To,p

Figure 3: Schematic view of what happens for the characteristic wave generated from the edge
N = n, and passing through a discontinuity of I.

Remark 4.2 (Transported spacing value along a characteristic)
We extend the idea of what happens at each discontinuity of I by introducing a function

7 (rop @) = 1, (4.19)

that maps a given (initial) spacing oy to its projection 7“871) (which is the spacing value trans-
ported along the corresponding characteristic) in a strip [ng,ng+1] X [to, tmaz), with any ¢ > p
and p € {1,..., P}. The transported value can be computed thanks to a recursive composition
of function T on consecutive strips

ré”q =7(rop,q) =7(t(...7(rop,p+1),...,q0—1),q),

where rg}tl = 7 (rop,p+1) = r5,1 can be easily computed according to ({.1§), for any
p € {1,..., P}. Indeed, the speed is conserved through a discontinuity of I i.e.

% (7"871),107,1) =V <r8;1, Io,q+1) , forany q>p.
Obuiously we also have that r§ , := 7 (ro,p,p) = T0p-

Regarding the values of the initial spacing rg, and 79 ,_1, we can distinguish two cases that
could occur starting to an edge N = n,:

e cither v, > 14, and in this case there will be a shock wave. The characteristics carrying
respectively the initial states rg,—1 and 7o, will cross each other, offering a partial
superposition of both characteristics domains (see (a) on Figured]). The solution is then
simply computed thanks to the inf-morphism property. Hence we only consider the two
characteristics (indicated as @) and @) on Figures[ [land [) that encompass the domain
of influence generated by the initial spacing 7 .

e or v, < 1, and in this case there will be a rarefaction fan. The characteristics waves
carrying the initial states 79,1 and rq, diverge (see (b) on Figure @]). The solution on
the area between both extreme characteristics may not be computed and even the inf-
morphism property will not be able to recover it. That is why we need to consider the first
two characteristics (as above) and a third wave corresponding to the first characteristic
matching with the initial state rg,_1 (labeled ©) on Figures [l [ and @).

11



T0,p—1

To,p To,p—1 To,p

(a) Case of a shock wave (b) Case of a rarefaction fan

Figure 4: Characteristics through a discontinuity of I of 7.

Notice that by convention, for a given p = 1,..., P, we add the rarefaction wave () separating
the two states at N = n,, (if any) to the solution generated by the initial condition on [np, n,41].

Remark 4.3 (Degenerate case for characteristics through a discontinuity of I)
When passing through a discontinuity of I (assume (a) and (b) the states on both sides of the
discontinuity as illustrated on Figure[3), the characteristics speed may be changed. Neverthe-
less it is well known (Rankine-Hugoniot jump condition) that through such a discontinuity,
the traffic speed should be unmodified

(@ = P(r@ | @)y Z p(p®) [0y ;B
(b)

In case of v\ > vy == sup V(r, I(b)), it is obvious that the equality between these two speeds
reR

cannot be complied. In an Eulerian setting, it means that the group of upstream vehicles (b)
cannot accelerate enough (even increasing their speeds to v,(,’;im ) to catch up with the down-
stream wvehicles (a). This induces the apparition of a vacuum area between both groups of
vehicles. There is a rarefaction wave as vehicles (b) accelerate to attain their top speed and a
shock wave following the last vehicle of type (a).

Notice that the vacuum states (aoo) and (boo) defined on Figure [3 coincide for r = +oo (or
equivalently at p = 0). It is noteworthy that the vacuum area is not visible in Lagrangian
viewpoint (see Figure[d (b)) while it matches the rarefaction fan and characteristics of type
(a) in Eulerian viewpoint (see the area delimited by characteristic with speed v%x and dash-
dotted characteristic with speed v*) on Figure[d (d)).

The contribution &), of the initial condition defined on [np, n,41] % {to} for any p € {1,..., P}
is then computed as follows:

(i) Initialize the partial solution X}, at 400 on the whole computational domain [Ny, Npaz] X
[th tmam] .

(ii) Determine the number of characteristics to compute (two or three) according to what
could occur at the edge N = n,,.

(iii) Compute the equation N(t) of each characteristic while ¢ < 4, and N < Npqz.

(iv) Calculate the (exact) solution A}, all along each computed characteristic generated by the
interval [ny, np41] X {to}, namely characteristics (D) and @), and @) whenever it appears

12



(@
(b)

Umaz

o®

N
N <

(a) Speed-spacing fundamental diagram (b) Some characteristics in Lagrangian viewpoint
§ t
A Az . T(,?zl ) A

l'(‘l) B '!.'i' / (b)

>p

(100) = (b)

(c) Flow-density fundamental diagram (d) Some characteristics in Eulerian viewpoint

Figure 5: Critical “vacuum” case appearing from special condition values.

(see Figure[6]). To this aim, we use the generalized Lax-Hopf formula (£.14]) which gives
that . .
X,(t) = M <N(t), N(t), t) .

The interested reader is referred to [5, @, [44] for additional information about the
Legendre-Fenchel transform and fast algorithms for its numerical computation.

(v) Compute the exact value at any point within the characteristics strip (delimited by
characteristics D) and @) on Figure[f]) using the fact that for any point (N, ¢) belonging to
the characteristic strip, the position at this point can be deduced by a simple translation
of the position on characteristic D (see Figure[@). Indeed we have for any N € [ng, ng41]

with ¢ > p and any ¢ € [t%), tg\lf)}

t
(N, 1) = &, (N,40)) + Y (N T), (N 7)) dr
N

=2, (M) 4V (o o) (1= 1)

where we recall that ¢,(I,t) = 0 for any couple (I,t) and 7§ , is computed according to

(#I9). The time t%), i = 1,2 corresponds to the time when the characteristic @) crosses
the line {N} X [to, tmaz]-

(4.20)

(vi) In the case of a rarefaction fan, evaluate the value of X}, at each point within the influence
domain of the considered initial condition (illustrated on Figure [f) by an interpolation
technique based on triangular meshes (the value at each triangle vertex is exact).
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Algorithm 1 Pseudo-code for the computation of &, on the computational domain
[No, Niaz] X [to, tmaz), under the initial condition X%

Require: Ny, Nz, to, tmaz, AN, N, and 1o, {Input label domain, time domain and
initial condition}
1 &) ¢ +oo {Initialization of the position function to infinity}
2: Compute py and rg,, according to (EIT)-(E.IS)
3: if py, > py then {Determination of the number of characteristic curves to compute}
4: Necharac = 2
5: else
6: Neharac = 3
7: end if
8: for j =1 to Neparac do {Iteration on the characteristics}
9: for t =ty to tyee do {Iteration on time}
10: Compute N (t) using [@I5) {Computation of the characteristic equation}
11 Compute X,(NU)(t),t) using (&I {Computation of the position along the
characteristic}
12: end for
13: end for
14: for N = N, to Nyq, do {Iteration on greater labels}
15: for t = t%) to tg\l,) do {Iteration on time}
16: Compute X (N, t) using (£.20) {Computation of the position within the
characteristics strip}
17: end for
18: end for
19: if nepgrae = 3 then {Case of the rarefaction fan}
20: for N = N, to Nyq, do {Iteration on greater labels}
21: for t = tg\lf) to tg\?) do {Iteration on time}
22: Compute X(N,t) using interpolation on the three closest exact values
{Computation of the position within the rarefaction fan}
23: end for
24: end for
25: end if

Ensure: X,(.,.) over [Ny, Npmaz] X [t0, tmaz]
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tma:z:

No Ny Npt1 Nmax

Figure 6: Domain of influence of the initial data [np,n,11] x {to}.

4.2.2 “Upstream” boundary conditions

In the Lagrangian setting, boundary conditions describe floating vehicle conditions in Eulerian
setting. Indeed such a condition is equivalent to consider the trajectory t — &£(Ny,t) of a given
vehicle Ny. Then we have that

vo(t) := 0§ (No, t) = V(ro(No, 1), I(No,t)), for any t > to,
which can be solved and yields a unique solution (because V is strictly increasing)
ro(t) = V1 (vo(t), I(No,t)), for any t > to.
The initial conditions for the characteristics are the couples (Ny, ro(t)).

As for initial condition, we introduce a discrete time step At and we consider a full discretiza-
tion of the time domain [tg, tmaee] into segments [t,,tq41] of length At with ¢ = 1,...,Q. We
still consider that I(N,t) is piecewise constant w.r.t. N and constant w.r.t. time ¢ (¢ = 0)
such that I(No,t) = Ipp=1. If At is small enough, we can consider that for any ¢ € {1,...,Q},

we have
{Uo(t) =: Uo7q,

for any t € [ty, tgt1]-
ro(t) =V~ (vo,g, lop=1) =t 104 v

Definition 4.4 (PWA upstream boundary condition)
Let Ng € Z be fized. Then the ¢'" component of the upstream boundary condition (q =1, ...,Q)
s given by

XYP(No,t) =voq(t —tq) + By, for any t € [ty ter1].

To ensure continuity of the upstream boundary data X™ on [to, tmaz], we require that
q—1

By = ZvoJAt, forany q=1,...,Q.

=1

The contributions of upstream boundary conditions are computed in a similar way than those
of initial condition described in the previous subsection. The domain of influence of upstream
boundary conditions is simply separated into what happens on each interval |t,, ;1 1[ and at
the edge t, for any ¢ € {1,...,Q} (see Figure[7).
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It is worth noting that we have a rarefaction wave at ¢t = t, for any ¢ € {1,...,Q} if and only
if vo,g—1 < voq (or equivalently 79,1 < 794). Note that in this case, the rarefaction wave
denoted () separating the two states at ¢ = ¢, (see Figure [7) is added by convention, to the
solution computed from the boundary condition on [tg, tg41].

» N

NO Nma:v

Figure 7: Domain of influence of the upstream boundary data {N = Ny} X [tg, tg+1].

Remark 4.5 (Extension to any individual trajectory condition) Any Lagrangian data
giving the trajectory of a vehicle N* with N* € [Ng, Nypae| will strictly generate the same type
of calculations than the ones described for the upstream boundary condition. It is then easy to
deal with data coming from mobile sensors moving within the traffic stream.

4.2.3 Internal boundary conditions

Note that internal boundary condition is here understood in the Lagrangian framework. It
does not correspond to internal vehicle trajectories which can also be incorporated in the algo-
rithm (see the previous subsection and Remark [L.5]). Notice that internal boundary condition
is called mized condition in [36] to avoid any misunderstanding.

We assume that the data comes from vehicles N(¢) located at a point £(N(¢),t) at time t.

Thus we get
d

dt
As not all data are compatible (in the sense that they need to comply to the traffic dynamics
laws), we need to introduce compatibility conditions. From Legendre-Fenchel transform, we
have

(N(t),t) = =N (t)ro(t) + W(N(t),0(t), t). (4.21)

sup {—N(t)r +W(N(t),, t)} = M(N(t),N(t),t),
reR

hence the equation yielding r(¢) (£2I) admits a solution only if

% (N(t),t) < M(N(t),N(t),1). (4.22)
Let us describe the specific situation of £(t) = 0 and N(t) > 0 for any time ¢. This case
occurs when the data originates at a fixed measurement point x( like a fixed detector data
that is {(N(t),t) = xo for all time ¢t. Then N (t) represents the cumulative flow at point .
In this case the above compatibility condition ([£22]) is satisfied if moreover we assume that
N < Fmaz(I). It is quite natural to impose such a condition because N(t) is equal to the
instantaneous traffic flow which is evidently bounded by §pa.(I) (see Figure [{). Moreover
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Algorithm 2 Pseudo-code for the computation of A, on the computational domain
[No, Nmaz] X [to, tmaz], under the upstream boundary condition X,

Require: Ny, Nz, to, tmaz, At, tq and ro, {Input label domain, time domain and initial

H
e

11:
12:
13:
14:
15:

16:
17:
18:
19:

20:
21:

22:
23:
24:

condition }
Xy — o0 {Initialization of the position function to infinity}
if 79 4—1 > 104 then {Determination of the number of characteristic curves to compute}
Necharac = 2
else
Ncharac = 3
end if
for 7 =1 to nepgrac do {Iteration on the characteristics}
for t =ty to tyes do {Iteration on time}
Compute N (t) using [@EIH) {Computation of the characteristic equation}
Compute X,(NU)(t),t) using (EI4) {Computation of the position along the
characteristic}
end for
end for
for N = N, to Nyq, do {Iteration on greater labels}
for t = t§\1[) to t%) do {Iteration on time}
Compute X (N, t) using ([4.20]) {Computation of the position within the
characteristics strip}
end for
end for
if nepgrae = 3 then {Case of the rarefaction fan}
for N = N, to Ny, do {Iteration on greater labels}
for t = tg\of) to tg\l,) do {Iteration on time}
Compute X (N,t) using interpolation on the three closest exact values
{Computation of the position within the rarefaction fan}
end for
end for
end if

Ensure: X,(.,.) over [Ny, Nyaz] X [to, tmaz]
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such a condition ensures that the Lagrangian stays non-negative which is coherent with its
interpretation as a instantaneous speed cost.

As illustrated on figure [§ there are two solutions (except in the very particular case of N =
Smaz), one under-critical and the other over-critical according to classical traffic definitions.
Recall that the speed-spacing fundamental diagram YW depends on the vehicle N.

If we propagate both pairs of characteristics, then the inf-morphism property will automat-
ically select a single solution which matches the over-critical situation (because the speed
is lower than in the under-critical situation). It may happen that the congested solution is
not the good one. Then to avoid any mistake, we assume that the fixed detector gives the
cumulative flow and also the traffic flow speed. In this way, we can select one traffic state
only.

W(Nu r, t) Flow,%’
“ - “

under N >0
Smam /\
N

14
1

overny

1% : I/'un,(/(tr l/m;«,v:
r : : Density, p
v v > Y >
[ rguer ryer Uy g P
(a) Speed-spacing fundamental diagram (b) Flow-density fundamental diagram

Figure 8: Existence of two solutions corresponding to a condition £(t) = 0 and N(t) > 0.

In our case, we are interested in including some Eulerian data coming from classical fixed
sensors like inductive loop detectors. To achieve this aim, Fulerian data become internal
boundary condition into the Lagrangian framework. We assume that a Fulerian sensor lo-
cated at a fixed position zy gives us the incremental cumulative vehicle count which is then
interpolated in a piecewise affine function N(t) for ¢t € [tg,t;mqez]. We then define by o, the
value of N(t) for any t € [tp,t,11] and we set f, the time such that N(f,) = N, for any
pe{l,.., P}

Definition 4.6 (PWA internal boundary condition)
Let 2 > 0 be fized. Then the p* component of the internal boundary condition (p =1, ..., P)
s given by

XM (n,t) =wo, for n=fop (t—1p) +p and tE [ty il

where we define fp for any p as the time such that n = n,. To ensure continuity of the
trajectory t — n(t) on which the internal boundary data X™ is prescribed, we require that

p—1
Yp = Zfo,z (tie1 — 1), forany p=1,..,P.
=1

We assume that N is piecewise affine on each discrete segments [ny, n,.1] that is equivalent
to say that N is piecewise constant (i.e. constant in each strip [n,,7,11] X [to, tmaz] for
p=1,...,P). It is easy to deal with this case in the algorithm because the computational
steps are similar to both previous cases for initial and upstream boundary conditions.

The only difference resides in the fact that we have a characteristic strip that matches either
the under-critical or the over-critical traffic state. It is simple to verify that in the first (under-
critical) case, the p'" component generates characteristics which are emitted with speeds
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vunder ~ N while it is the inverse in the other case (see Figure [0). From a traffic point
of view, it is relevant with observations stating that a deceleration wave spreads over vehicles
located further upstream at a slower speed than an acceleration wave.

Hence, from a computational viewpoint, if we are in the under-critical (resp. over-critical)
case, then we will use the same strategy than Algorithm [I] (resp. Algorithm [2)).

t

A

t

A

tmax tmam

©
©

tO . . . . . . . > N t() . . . . . . . > N
NO Ny MNpy1 Nmax NO Ny MNpy1 Nmaw
(a) Generation by the over-critical solution (b) Generation by the under-critical solution

Figure 9: Domain of influence of an internal boundary data (in red).

4.3 Recapitulation of the overall algorithm

The different elements of the computations for piecewise affine value conditions are recapitu-
lated in the following pseudo-code (see Algorithm [3]).

Remark 4.7 This pseudo-code underlines the property of the Lax-Hopf algorithm to treat in a
parallel way the different value conditions (initial, upstream boundary and internal boundary).

5 Numerical example

5.1 Instantiation

In order to simplify the computations and to ease the presentation of the following example,
we consider that the driver attribute I is piecewise constant with respect to N at initial
time ¢ = tg. It means that there exist some platoons of vehicles which share the same driver
attribute. It could be for example some vehicles of the same kind (cars and trucks), or vehicles
that go to the same destination, or vehicles that have the same desired maximal speeds.
Actually, in this numerical example, we have considered AN = 1 so the attribute I is constant
for each vehicle. As ¢ = 0, this attribute is conserved at any time t > to (see Figure [[1] (left)).
We consider for this numerical example a Colombo 1-phase model [38] given by

V — é it r>rea(l),

r
1
(I + qr) (1 — E) else,

where 8, ¢q., V and R are given parameters of the model. More precisely, g, stands for the
theoretical maximal flow, while V' and R describe respectively the maximal speed and density.
The critical spacing r..;+(I) separating the free and congested cases is computed as the inverse

of the critical density
g« g« 2 I
V+—=-1- V+=—-1) —4q. | B— =
TR \/ < TR ) a (5 R>

W(r,N,t) =

perit(I) == 2<51]_;>
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Algorithm 3 Pseudo-code implementation for the Lax-Hopf based computation of the posi-
tion function X on the computational domain [Ny, Nyaz]| X [to, tmaz] prescribed by the user.

Require: Ny, Npae, to and tae {Input label domain, time domain}
1: X+ 400 {Initialization of the position function to infinity}
2: for p=1to P do {Iteration on the initial conditions}
3: for T =ty to tyes do {Iteration on time}
4: for Ny = N, to Nyye, do {Iteration on greater labels}
5: compute Xlﬁm(NT, T) using Algorithm [I]  {Component induced by the initial

condition rop}
6: if X!"(Np,T) < X then
T X X(N7,T) {Update the position function}
8: end if
9: end for

10: end for

11: end for

12: for ¢ =1 to @ do {Iteration on upstream boundary conditions}

13: for T' = t; to t;q, do {Iteration on greater times}

14: for Ny = Ny to Nyyee do {Iteration on labels}

15: compute X;”(Np,T) using Algorithm 2] { Component induced by the upstream

boundary condition X Ny, t,}

16: if X;”(Np,T) < X then

17: X +— X/P(Np,T) {Update the position function}

18: end if

19: end for

20: end for

21: end for

22: for p=1to P do {Iteration on internal boundary conditions}

23: for T' = t, to tpe, do {Iteration on greater times}

24: for Ny = N, to Nyye, do {Iteration on greater labels}

25: compute X;”t(NT, T) {Component induced by the internal boundary

condition XNy, t,}

26: if X" (Np,T) < X then

27: X « X" (Np,T) {Update the position function}

28: end if

29: end for

30: end for

31: end for

Ensure: X(.,.) over [No, Npaz] X [to, timaz]
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The numerical values considered in this example are given below

V =25 m.s ! N
V =22 m.s 1 = v _ v =90 m2.s71
R=1/5veh.m™! and R

- ) ¢+« = 1 veh.s 1

R =1/30 veh.m™!

The flow-density and speed-spacing fundamental diagrams are given on Figure [0l Notice
that these numerical values are satisfactory for a two-lanes road section. The driver attribute
I varies between 0 and I,,q, = 5 which is designed such that the flow-density fundamental
diagram §(p, I) stays concave with respect to p.

Fundamental diagram W(N,r.t) Fundamental diagram F(p.|)
2571 3500

3000
2500

2000

Speed W (m/s)
Flow F (veh/h)

1500

1000

500(

0 10 20 30 40 50 60 70 80 % 100 80 00 120
Spacing r (m) Density p (veh/km)

Figure 10: Speed-spacing fundamental diagram V(r,I) (left) and flow-density fundamental
diagram §(p, I) (right).

The Lagrangian function M is given by

M(u, I(N,t)) :=sup{ sup  g1(r,u,I), sup gz(nu,f)}

rzrc'rit(l) Tmingrgrcrit(l)
with
g1(ryu,I) =V — é — ru,
1
g2(ryu, I) = (I—|—qr <1—E>—TU.
Some simple algebra leads to
g1 (Tcmt if A/ ﬁ < Tcmt

sup g1 = 3
r>7erit(1) g1 (1 /—> else
p
(
g2 (rmzn) if q* <p and M p q < Tmin,

sup g2 1= g2 (rerit(L if ¢">p orif ¢*<p and \/:*>7a.[7
Tomin <r<rerit(I) ( erit )) R(p—q ) cmt( )

ﬁ) . [ I
g - if ¢ <p and Tpinp < - < Terit(L)-
\ ? <\/; R(p —4q ) t( )

The Lagrangian M is then computed for our numerical instantiation, as illustrated on Figure

M (right).

and
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Lagrangian M(N,u,t)

Initial conditions I(N,to)

Driver attribute I0
Cost (m/s?)

. . . . ~ .
25 30 35 40 45 50 155 1 15
Label N u (1s)

Figure 11: Initial values of driver attribute I(N,tg) (left) and Lagrangian function M (N, u,t)
(right).

We consider piecewise affine initial conditions that is we prescribe each vehicle position X (,n)
at time t = tg for n € [Ny, Nppaz| according to a normal distribution of spacing between
Tmin = D m and a 50 m “maximal” spacing. The initial condition for this numerical test are
plotted on Figure

Initial conditions r(N,tO) Initial positions X(N,to)
T T T o T T T T
50
-200[
45
aor -400F
© 20f x %
j=2] c
5 25 :g
@ @ -800[
& ol I
15F -1000 -
il -1200
sk
) ; l‘D 1‘5 2‘0 2‘5 1;0 3‘5 4‘0 4‘5 50 0 f‘r 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50
Label N Label N
(a) Initial spacing r(N,tg) (b) Initial positions of vehicles X' (N, )

Figure 12: Initial conditions for the GSOM PDE at t = t.

Moreover we prescribe piecewise affine upstream boundary condition that is the trajectory
X(t,n) of the first vehicle N = Ny for t € [to,tmaz]. This upstream boundary condition is
illustrated on Figure [[3

We also have included two (fictive) vehicle trajectories for N = 25 and N = 46 as Lagrangian
internal boundary conditions. They are plotted on Figure [I[4l For these trajectories, we have
considered randomly distributed speed values that are piecewise constant. Note that the speed
distribution is chosen such that the mean value is equal to 18 m.s~! in a first time and then
to 10 m.s~!. In that way, one can verify the trajectories are piecewise affine and averaging on
time, vehicles are globally decelerating.

5.2 Numerical result and interpretation

The solution is thus given by applying the computation algorithm described in Algorithm Bl
The simulations deal with 50 vehicles on a 2 minutes run. We also compare the solution with
initial and upstream boundary conditions and the solution with initial, upstream and internal
boundary conditions. The numerical solutions X are respectively plotted on Figures (a)
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Speed v(NO,t)

24}

22|

20

Speed A (m.s‘l)

L L L L El
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60
Time t (s)

(a) Boundary speed v(Ny, t)

Position X(NU,t)

2000

1500

1000

Position Xo (m)

500

L L L
0 20 80 100 120

60
Time t(s)

(b) First vehicle trajectory X' (Ny,t)

Figure 13: Boundary conditions for the GSOM PDE at N = Nj.

Speed v(N=25,t)

Speed A (m.s‘l)

. . . , . . . . . , .
10 20 30 40 50 60 70 80 90 100 110
Time t (s)

(a) Speed profile v(N = 25,¢)

Speed v(N=46,t)

Speed A (m.s‘l)

20 30 40 50 60 70 80 90 100
Time t (s)

(c) Speed profile v(N = 46,t)

Figure 14: Lagrangian internal boundary conditions for the GSOM PDE at N = 25 and

N = 46.

and (b).

Position X(N=25,t)

0

Position X_ (m)

L L L
0 20 80 100 120

Timgat (s)
(b) Vehicle trajectory X (N = 25,t)

Position X(N=46,t)

200

-200F

-400

Position ><(J (m)

-600|-

-800|

-1000

-1

10 20 30 40 50 70 80 9 100 110

60
Time t (s)

(d) Vehicle trajectory X (N = 46,t)

In Figures [I3] (¢) and (d), we have also plotted the speeds of vehicles which are computed as
the discrete gradient of the solution X'(N,t) according to time ¢ and for any vehicle N. One
can observe the shock and rarefaction waves generated from initial and boundary conditions.
Note that the internal boundary conditions are not necessarily defined for every t € [to, tymaz]-
It is the reason why there is an area up to N = 46 and ¢t = 110 that matches a high speed
rarefaction fan since the solution is no more constrained by the internal boundary condition.
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Position (m)
Position (m)

o .
Time (s) P Vehicle label Time (s) P Vehicle label
(a) Moskowitz surface X (t,n) (b) Solution with Lagrangian data assimilation
Speeds (m/s) Speeds (m/s)

15

Time (s)

0 5 10 15 20

30 35 40 45 50 0 5 10 15 20 30 35 40 45 50

25 25
Label Label

(c) Speeds (d) Speeds with Lagrangian data assimilation

Figure 15: Numerical solution for GSOM PDE obtained on the computation domain
[N()meax] X [thtmaaz]'

Vehicles trajectories Vehicles trajectories
2500 2500

2000
1500

1000 -

Location (m)
Location (m)

L L ,
80 100 120

L L
20 40

L L ,
80 100 120

L L
20 40

60 60
Time (s) Time (s)

Figure 16: Vehicle trajectories obtained for integers of the GSOM numerical solution X (¢, n).

One can note that the integration of two slower vehicles (N = 25 and N = 46) in the traffic
flow implies the modification of the solution. The values of X for NV > 25 and then N > 46 are
notably decreased. Indeed slower vehicles impose lower speeds to the following vehicles as it
could be noticed on vehicle trajectories plotted on Figure Thus, data assimilation allows
to modify the previous over-estimation we made by considering only initial and upstream
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boundary conditions.

Speeds (m/s)

=
—

Time (s)

Position (m)

N 0 5 10 15 20 25
Time (s) Vehicle label Label

30 35 40 45 50

(a) Moskowitz surface X (t,n) (b) Speeds

Figure 17: Numerical solution for GSOM PDE obtained on the computation domain
[No, Nimaz] X [to, tmaz] with Lagrangian and Eulerian data assimilation.

We also include a fictitious Eulerian data, i.e. Cumulative Vehicle Counts N(¢), coming
from a fixed location g = 0. The numerical solution is plotted on Figure [I7 (a) and the
corresponding speed locus are given on Figure [I7 (b). One can see that according to the
traffic speed, the domain of influence is either above (under-critical case) or below (over-
critical case) the Eulerian curve. As it is clearly visible for the speeds (see Figure [ITl (b)) in
comparison to the “basic” case (see Figure (d)), the propagation of under-critical values
(resp. over-critical values) matches with high speeds (resp. low speeds). Vehicle trajectories
are also corrected according to the position values deduced from the Eulerian data.

In the numerical example above, we do not consider real data assimilation. The next step for
numerical results should be the assimilation of real data in a model of the GSOM family. As
it was described in the previous section, vehicle trajectories and fixed detector measurements
can be easily incorporated in the algorithm. However we need to identify a driver attribute I
and to know how it evolves on the computational domain. That is the tough point because
it is hard to measure or to evaluate. Notice that an example of speed data assimilation with
the ARZ model which is a model of the GSOM family can be found in [40].

Concerning the identification of I, a method could be deduced from [19], exploiting data-fitted
fundamental diagrams. In the case of a scalar attribute I, we can use for instance speed and
spacing measurements to evaluate the value of I.

6 Discussion and conclusion

In this paper, we are interested in the assimilation of different kinds of data into a generic
class of macroscopic traffic flow models for improving traffic state estimation. The data come
from mixed sources including Lagrangian vehicle trajectories and Eulerian cumulative vehicle
counts obtained from fixed detectors. We then consider macroscopic traffic flow models of
the Generic Second Order Modeling (GSOM) family in the Lagrangian system of coordinates
which seems to be the most adapted framework for dealing with such data. We describe a
computational method providing solutions to these models under piecewise affine initial and
boundary conditions. The numerical method is based on the variational theory which has
been extended to the GSOM family very recently [36]. Solution can be computed thanks to
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Lax-Hopf like formula and a generalization of the inf-morphism property [6]. It is possible to
considerably reduce the number of integral curves by following only the characteristics which
are the optimal trajectories. Another computational trick is to solve separately many partial
problems (by discretizing initial and boundary conditions) instead of the general problem.

Extensions of this work could include more general assumptions on the dynamics ¢ # 0
of driver attributes, always with the assumption of piecewise affine value conditions. The
computational benefits of the variational method over the finite difference method which is
also presented in the paper need to be illustrated on several comparisons. We expect that
the variational method has a lower computational cost (due to parallel computing e.g.) and a
globally higher accuracy compared with the other method.

A still open but interesting question is the application of the algorithm to data assimilation on
road networks. The challenging point is to deal with fundamental diagrams which will depend
on the drivers attribute but also on the spatial position. To our best knowledge Lax-Hopf
formula seems not to be so tractable in that framework because the formula does not simplify
so much for space dependent Hamiltonians. One considered possibility is to use the extended
concepts of supply and demand functions to models of the GSOM family [39]. This subject is
being currently investigated by the authors.
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