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Numerical analysis of the advection-diffusion of a solute in porous

media with uncertainty

Julia Charrier∗

September 17, 2013

Abstract

We consider the problem of numerically approximating the solution of the coupling of the flow equa-
tion in a porous medium, with the advection-diffusion equation in the presence of uncertainty on the
permeability of the medium. Random coefficients are classically used in the flow equation to modelize un-
certainty. More precisely, we propose the numerical analysis of a method developed to compute the mean
value of the spread of a solute introduced at the initial time, and the mean value of the macro-dispersion,
defined as the temporal derivative of the spread. We consider a Monte-Carlo method to deal with the
uncertainty, i.e. with the randomness of the permeability field. The flow equation is solved using a finite
element method. The advection-diffusion equation is seen as a Fokker-Planck equation, and its solution
is hence approximated thanks to a probabilistic particular method. The spread is indeed the expected
value of a function of the solution of the corresponding stochastic differential equation, and is computed
using an Euler scheme for the stochastic differential equation and a Monte-Carlo method. Error estimates
on quantities generalizing the mean spread and the mean macro-dispersion are established, under some
assumptions including the case of random fields of lognormal type (i.e. neither uniformly bounded from
above nor below with respect to the random parameter) with low regularity, which is pertinent on an
application point of view and rises several mathematical diffculties.

Keywords: uncertainty quantification, elliptic PDE with random coefficients, advection-diffusion equation,
probabilistic interpretation of PDE, Monte-Carlo method, Euler scheme for SDE.

1 Introduction

Numerical modeling is an important key for the management and remediation of groundwater resources.
The heterogeneity of natural geological formations has a major impact in the contamination of groundwater
by migration of pollutants. In order to account for the limited knowledge of the geological characteristics
and for the natural heterogeneity, stochastic models have been developed, see e.g. [7],[8]. The permeability
of the porous media is then a random field. Our aim is then to study the migration of a contaminant in
steady flow. The flow velocity is computed by solving an elliptic partial differential equation with random
coefficients. The solute concentration is then the solution of an advection-diffusion equation, where the flow
velocity, which is a random field, appears as a coefficient. The quantities we are interested in are finally the
mean value of the spread of the solute, that is to say the mean value of the spatial variance of the solute,
and the mean value of the dispersion, which is defined as the derivative of the spread with respect to the
time. The determination of the large-scale dispersion coefficients has been widely debated in the last twenty
five years, see e.g [3], [5], [9], [13], [25], [28] and [27].

Here we are interested in the case of a lognormal permeability field, which is a widely used model. More-
over we consider the case, physically pertinent, where the correlation length is small and the uncertainty
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important. Therefore methods based on the approximation of the coefficients in a finite dimensional stochas-
tic space, such as stochastic galerkin methods and stochastic collocation method would be highly expensive,
and hence do not seem to be suitable to deal with such cases. Neither seem perturbation methods, since
we suppose the uncertainty to be important. As regards the advection-diffusion equation, we focus on the
advection-dominated model. Therefore it was chosen not to consider an Eulerian method, in order to avoid
numerical diffusion. The method described and analyzed below is, up to a few modifications, the method pro-
posed and implemented by A.Beaudoin, J.R. de Dreuzy and J.Erhel to compute the mean macro-dispersion
in 2D, their numerical results can be found e.g. in [6]. A Monte-Carlo method is used to deal with the
uncertainty. The solution of the steady flow equation is computed by using a finite element approximation.
The solution of the advection-diffusion equation is approximated using a probabilistic method. We consider
the stochastic differential equation associated to this Fokker Planck equation and its solution is approxi-
mated with an Euler scheme. A Monte-Carlo method provides finally an approximation of the solution of
the Fokker Planck equation. All these steps together lead to an approximation of the mean spread. The
mean macro-dispersion is then approximated by the same way (after applying Itô formula).

The aim of this paper is to provide the numerical analysis of the above described method, in particular
this works completes the paper [6] which proposes detailed numerical results. therefore we do not propose
numerical experiments in this work, which would be redundant with [6], but rather give a theoritical jus-
tification for the use of this method, and more important, study the speed of convergence with respect to
each discretization parameter in order to guide the choice of these parameters and hence to be able to use
efficiently this method.

More precisely we furnish a priori error estimates for the approximations of quantities generalizing the
mean spread and the mean macro-dispersion, the spread and the macro-dispersion being the lead because
of their physical interest. A specificity of this work is to address the coupling of the flow equation with
the advection-diffusion equation, whereas most of the existing numerical analysis of methods for uncertainty
quantification are limited to the flow equation, see e.g [1], [2]. A particularity of this work is also the use of
numerical analysis tools from two differents areas: finite element method and weak error analysis for SDEs.
More importantly, we emphasize that in this work we deal with random permeability fields which are neither
uniformly bounded from above nor below (with respect to the random parameter), moreover we suppose
only low spacial regularity (Hölder regularity), whereas most of the works proposing analysis of numerical
methods for flow equation in porous media with uncertainty suppose the permeability field to be smooth and
uniformly bounded from above and below, which simplifies drastically the numerical analysis. Therefore the
numerical analysis proposed here cannot be obtain by simply combining classical results. More precisely the
first main difficulty remains in getting sharp explicit dependence on the random parameter ω (modelizing
uncertainty) at each step, to take into account the fact that we cannot have uniform estimates with respect
to the random parameter ω. The second main difficulty is to deal with the discretization of SDE with non
lipschitz drift and to include the error of spatial discretization in the wear error of time discretization.

After presenting the physical model in section 2, we describe in detail in section 3 the numerical method
mentioned above. Section 4 is devoted to the numerical analysis of this method with slightly modified
assumptions. More precisely we consider the case of a random permeability field, supposed to be almost
surely periodic, with some integrability properties with respect to the random parameter and under regularity
assumptions (Hölder continuous with respect to the spatial variable). We first give preliminary results. The
first one is a bound of the finite element error in W 1,∞ norm in the low regularity case. The bound has to be
explicit with respect to ω in order to be integrated later with respect to ω. The second one is a weak error
result for the Euler scheme on a stochastic differential equation with additive noise and a C0,α or C1,α drift,
which also takes into account the spatial disctretization. Once again we need to track the dependance on ω
sharply. After these preliminary results, we give the two main results of this paper, namely error results on
the mean generalized spread and on its time derivative, the mean generalized macro-dispersion.

2 Physical model

We recall here, up to some minor modifications, the physical model studied in [6].
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2.1 Steady flow equation

We consider an isotropic porous medium, we suppose the porosity to be constant, equal to 1. The domain
O is a box included in R

d, with d = 1, 2, or 3. The heterogeneity of the natural geological formations and
the lack of data lead us to use a stochastic model, see e.g. [7],[8]. A classical case is to take an homogeneous
lognormal field to modelize the permeability field:

a(ω, x) = eg(ω,x), x ∈ O, ω ∈ Ω,

where g is a gaussian field characterized by its mean m and its covariance function, we suppose that the
covariance function is of the form:

cov[g](x, y) = σ2exp

(

−‖x− y‖δ
ℓ

)

, (2.1)

for some δ > 0. The random parameter is denoted by ω. The case of an exponential covariance function
corresponds to δ = 1, and furnishes a model which is a reasonably good fit to some field data , see e.g [12]
and [16].

The variance of the log hydraulic conductivity σ2 is typically in the interval [1, 10], the correlation length
ℓ typically ranges between 0.1m and 100m, whereas the size of the domain has to be at least hundred times
the correlation length l. Classical laws governing the steady flow in porous media without source are mass
conservation div(v) = 0 and Darcy law v = −a∇p, where v is the Darcy velocity and p the hydraulic head.
Finally, the hydraulic head is the solution of the following elliptic PDE with a random coefficient : for almost
all ω

div(a(ω, x)∇p(ω, x)) = 0 , x ∈ O. (2.2)

This equation has to been subjected to boundary conditions (mixed boundary conditions for example), and
the boundary condition is then imposed for almost all ω ∈ Ω.
Here, ω is then the parameter describing the randomness of the media. We recall that the Darcy velocity is
then defined by

v(ω, x) = −a(ω, x)∇p(ω, x).

2.2 Advection-diffusion equation

An inert solute is injected in the porous medium and transported by advection and diffusion. Here we
consider only molecular diffusion, assumed to be homogeneous and isotropic. This type of solute migration
is described by the advection-diffusion equation:

∂c(ω, x, t)

∂t
+ v(ω, x).∇xc(ω, x, t)−D∆xc(ω, x, t) = 0, (2.3)

where D > 0 is the molecular diffusion coefficient, v the Darcy velocity defined previously and c the solute
concentration. We consider the case of advection-dominated model, i.e. the case where the Peclet number

Pe = ℓ‖v‖mean

D
is large (typically ≥ 100). The initial condition at t = 0 is the injection of the solute, i.e.

for example c(t = 0) = 1R

|R| where R is a box included in O (of volume |R|). Equation (2.3) has to be

supplemented with boundary conditions on ∂O.

2.3 Spread and macro-dispersion

We now define the two quantities we want to compute.
First we introduce the center of mass of the solute distribution :

G(ω, t) =

∫

O

c(ω, x, t)xdx.
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Our aim is then to compute S(t) the mean spread of mass around G, and the mean macro-dispersion D(t),
defined as its time derivative, i.e.

S(ω, t) =

∫

O

c(ω, x, t)(x−G(ω, t))(x−G(ω, t))tdx, S(t) = Eω[S(ω, t)]

and

D(ω, t) =
1

2

dS(ω, t)

dt
, D(t) = Eω[D(ω, t)].

Remark 2.1. Note that the real quantities of interest are the mean spread or macro-dispersion in each
direction, which are scalar quantities: for i = 1, ..., d

Si(ω, t) =

∫

O

c(ω, x, t)(xi −Gi(ω, t))
2dx, Si(t) = Eω[Si(ω, t)]

and

Di(ω, t) =
1

2

dSi(ω, t)

dt
, Di(t) = Eω[Di(ω, t)],

where

Gi(ω, t) =

∫

O

c(ω, x, t)xidx,

for example the transversal and longitudinal spread and macro-dispersion in the case d = 2. But these
quantities correspond to the diagonal coefficients of the matrices S and D defined above, that is why for
simplicity we will consider the matricial definitions of the spread and macro-dispersion S and D given above.

3 Description of the numerical method

3.1 A Monte-Carlo method to deal with uncertainty

As precised above, we suppose the uncertainty to be large, typically σ2 ∈ [1, 10], therefore perturbation type
methods [3], [9], [13], [24], [25], [26], [27] do not seem to be suitable. Moreover, since we suppose ℓ to be
small, σ2 to be large and cov[g] to be only lipschitz, stochastic galerkin and stochastic collocation methods
(see e.g. [1], [2], [14], [10] and the references therein) do not seam to be adapted. Indeed, in such cases, the
permeability field a cannot be approximated correctly with a reasonable number of random variables. In
particular, the eigenvalues of the Karhunen-Loève development are explicit in this case if we choose the 1-
norm (see [11]), and we know that the number of term in the truncated Karhunen-Loève development should
be much bigger than 100 (see [4] for example), which is not possible on a practical point of view. Therefore
we choose to use a Monte-Carlo method to deal with uncertainty. More precisely, we consider N independent
realizations of the permeability field a(x, ω1), ...a(x, ωN ). For each i from 1 to N , we compute approximations
of the spread Si(t) and of the macro-dispersion Di(t) corresponding to the permeability field ai as specified

below, and we approximate the mean spread S(t) by 1
N

∑N
i=1 S

i(t) and the mean macro-dispersion D(t) by
1
N

∑N
i=1 Di(t). For simplicity, the index i as well as the random variable ω will be omitted in the remainder

of this section, which is devoted to the description of the numerical method used to compute the solution of
a deterministic problem: the computation of spread and dispersion.

3.2 Approximation of the flow velocity

The hydraulic head is defined as the solution of the following elliptic partial differential equation:

div(a(x)∇p(x)) = 0, x ∈ O,

submitted to boundary conditions.
We define then an approximation ph of p in a finite elements space of continuous piecewise linear functions,
with maximum space mesh h. The velocity v is then approximated by vh(x) = −a(x)∇ph(x).

4



3.3 A probabilistic particular method

The solute concentration is defined as the solution of (2.3). The domain O is chosen such that a very small
amount of the solute reaches the boundary. Therefore, in practice, it is harmless to replace (2.3) by :

{

∂c

∂t
(x, t) + v(x).∇c(x, t)−D∆c(x, t) = 0, x ∈ R

d and t ∈ [0, T ]

c(x, 0) = c0(x), x ∈ R
d,

where v is extended to R
d in some way (see Section 4 for more details). Since div(v) = 0, this is a

Fokker-Planck equation. A probabilistic particular method was chosen to approximate the solution of this
Fokker-Planck equation. This is motivated among others to avoid numerical diffusion, since we focus of the
advection dominated case. We then define the associated stochastic differential equation:

{

dX(t) = v(X(t))dt+
√
2DdW (t)

X(0) = X0,

where X0 is a random variable with density c0 with respect to the Lebesgue measure. It is classical that
X(t) admits then c(x, t)dx as density. The law of X can be approximated by a Monte-Carlo method. We
take M independent realizations of approximations of X using an Euler scheme and the approximated flow
velocity vh: X1

n,h, ...X
M
n,h.

{

Xj
n,h(tk+1) = Xj

n,h(tk+1) + vh(X
j
n,h(tk))∆t+

√
2D∆tN j

k for t ∈ [tk, tk+1],

Xj
n,h(0) = Xj

0 ,

where T = n∆t, tk = k∆t and the N j
k are independent d-dimensional mean-free gaussian random vector

with identity as covariance. Finally we approximate the mass center G(t) by GM
n,h(t) =

1
M

∑M
j=1X

j
n,h(t), the

spread S(t) by

SM
n,h(t) =

1

M

M
∑

j=1

(Xj
n,h(t)−GM

n,h(t))(X
j
n,h(t)−GM

n,h(t))
t.

Indeed we have G(t) = E[X(t)], S(t) = E[(X(t) − G(t))(X(t) − G(t))t]. Moreover the macro-dispersion is
defined by D(t) = 1

2
d
dt
S(t), which thanks to Itô formula, is equal to

1

2
E[(X(t)−G(t))(v(X(t))− V (t))t + (v(X(t))− V (t))(X(t)−G(t))t] +DId,

where we have used the notation V (t) = E[v(X(t))]. We approximate hence the macro-dispersion D(t) by

DId+
1

2M

M
∑

j=1

(Xj
n,h(t)−GM

n,h(t))(v(X
j
n,h(t))− VM

n,h(t))
t + (v(Xj

n,h(t))− VM
n,h(t))(X

j
n,h(t)−GM

n,h(t))
t,

where we have defined VM
n,h(t) =

1
M

∑M
j=1 v(X

j
n,h(t)).

For more details on a possible numerical implementation, see [6]. Note however that in this case, the
numerical method used to compute the mean value of the macro-dispersion is slightly different. The derivative
is computed using the increase corresponding to a small time step. See section 4 for more details concerning
the difference of the convergence rates obtained for each method.

4 Numerical analysis of the method

4.1 Notations and assumptions

We consider O a box of Rd, and (Ω,F ,P) a probability space. For k ∈ N and 0 < α ≤ 1, we denote by Ck
b

the space of functions which are k times differentiable with bounded derivatives and Ck,α
b the space of Ck

b
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functions such that any k-th derivative is α-hölder continuous. For f ∈ Ck,α
b we introduce the associated

norm:
‖f‖Ck,α

b

= max{‖f‖∞, ‖f ′‖∞, ..., ‖f (k)‖∞, |f (k)|C0,α}, where the semi-norm of an α-Hölder continuous func-

tion g is defined by

|g|C0,α = max
x 6=y

|g(x)− g(y)|
|x− y|α .

The numerical analysis of the above algorithm requires the solution of (2.2) to be sufficiently regular
with respect to x ∈ O. Unfortunately, this is not the case with the above described model. Indeed we are
dealing with an elliptic equation on a rectangular domain with mixed boundary conditions. This limitates
the smoothness of the solution. Also, note that the advection-diffusion equation is set on the full space R

d

and it is not clear how to extend the velocity field on O to R
d. We consider that this is a technical problem

and avoid it by replacing the mixed boundary conditions in (2.2) by periodic boundary conditions, so that
the solutions have the smoothness naturally associated to the smoothness of the permeability field, and the
extension to R

d is trivial. Another way could be to truncate the velocity field close to the boundary of O and
to then extend it smoothly by zero on R

d. The final solution would not be very different, since in practice
the domain O is chosen very large with respect to the box R and a very small amount of the solute reaches
the boundary. The solution of (2.2) with mixed boundary conditions being smooth inside the domain, the
same analysis as below would give a similar result. We chose the periodic boundary conditions to simplify
the presentation. We consider then the flow equation: for almost all ω







div(a(ω, x)∇p(ω, x)) = f(x) on R
d,

∫

O

p(ω, x)dx = 0,
(4.1)

and p is O-periodic (O being a box). The right hand side f takes into account non homogeneous boundary
conditions and is supposed to be O-periodic and such that

∫

O
f(x)dx = 0 (compatibility condition).

Remark 4.1. We could also consider a random second member f , which would provide similar results
through a straightforward extension of the proofs below.

We now introduce two different sets of assumptions on the random coeffcient a and the second member
f . The second assumption requires more spatial regularity than the first one. These two assumptions lead
to different orders of convergence in the error estimate for the generalized spread. The error estimate for the
generalized macro-dispersion will only be obtained under the strongest assumption 4.3.

Assumption 4.2. The permeability field is such that for some 0 < α < 1, we have for any finite q ≥ 1,
a ∈ Lq(Ω, C0,α

b (Rd)) and 1
amin

∈ Lq(Ω), where we have defined for almost all ω, amin(ω) = min
x∈O

a(ω, x). We

also suppose that for almost all ω, a(ω, .) is O-periodic. Moreover we suppose that f ∈ Lr
loc(R

d) for some
r > d such that α < 1− d

r
and is also O-periodic.

Assumption 4.3. The permeability field is such that for some 0 < α < 1, we have for any finite q ≥ 1,
a ∈ Lq(Ω, C1,α

b (Rd)) and 1
amin

∈ Lq(Ω), where we have defined for almost all ω, amin(ω) = min
x∈O

a(ω, x). We

also suppose that for almost all ω, a(ω, .) is O-periodic. Moreover we suppose that f ∈ W 1,r
loc (R

d) for some
r > d such that α < 1− d

r
and is also O-periodic.

Let us comment shortly the spatial regularity obtained for the realizations of the permeability field a in
the important example of an homogeneous lognormal field, that is to say a = eg with cov[g](x, y) = k(x−y),
where k only depend of the norm of its argument. If the function k is lipschitz continuous, then Assumption
4.2 is fullfiled for any α < 1/2 (except of course the periodicity property, which is on a pratical point of view
quite artificial). And assumption 4.3 is fullfiled (except the periodicity property once again) if k belong to
C2,2α with α < 1/2 or belong to C3,2α−1 with α ≥ 1/2 . For a proof in the case where k is supposed to be
Lipschitz, see [18]. The extension to the case where k belongs to any Hölder space is straightforward.
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4.2 Solution of the flow equation and its approximation using finite elements

Proposition 4.4. Equation (4.1) admits a unique solution p.

1. If Assumption 4.2 holds for some 0 < α < 1, then p ∈ Lq(Ω, C1,α
b (Rd)) for any finite q ≥ 1.

2. If Assumption 4.3 holds for some 0 < α < 1, then p ∈ Lq(Ω, C2,α
b (Rd)) for any finite q ≥ 1.

Proof. 1. The result is a consequence of an extension to the case of periodic boundary conditions of
Theorem 3.1 of [19]: if f, g, a are O-periodic such that f belongs to Lr

loc(R
d) for some r > d such that

α < 1− d
r
, g belongs to C0,α

b (Rd,Rd) and a belongs to C0,α
b (Rd) for some 0 < α < 1, with for any x in

R
d a(x) ≥ amin > 0, we have then that the O-periodic solution u of :







div(a∇u) = f + div g on R
d,

∫

O

u(x)dx = 0,
(4.2)

which is classically unique in the space H1
per of locally H1 functions which are O-periodic, also belongs

to C1,α
b (Rd) with

‖u‖C1,α
b

(Rd) ≤ P1(amin, ‖a‖C0,α
b

(Rd))(‖f‖Lr(O) + ‖g‖C0,α
b

(Rd)),

where P1 is a polynomial function, whose coefficients do not depend on a, f and g. This result can
be obtained by adapting the proof of Theorem 3.1 of [19] to the case where the spatial domain is the
torus associated to the box O. We then apply this inequality (with g = 0) for almost all ω to p(ω, ·),
where p is the solution of (4.1), which yields that for almost all ω we have

‖p(ω, ·)‖C1,α
b

(Rd) ≤ P1(amin(ω), ‖a(ω)‖C0,α
b

(Rd))‖f‖Lr(O).

The first part of the Proposition follows then from this inequality, Assumption 4.2 and Hölder inequality.

2. From the previous regularity result on the solution of (4.2), we also deduce a similar C2,α regularity
result under additionnal regularity assumptions on a, f and g. More precisely, if we suppose moreover
that f belongs to W 1,r

loc (R
d) and a belongs to C1,α

b (Rd), then for any 1 ≤ i ≤ d, if u is the solution of

(4.2) (with g = 0) then ∂u
∂xi

solves the equation (4.2) with ∂f
∂xi

instead of f and g = −div
(

∂a
∂xi

∇u
)

.

We can therefore deduce that the solution u belongs to C2,α
b (Rd) with

‖u‖C2,α
b

(Rd) ≤ P1(amin, ‖a‖C1,α
b

(Rd))(‖f‖W 1,r(O) + ‖u‖C1,α
b

(Rd)‖a‖C0,α
b

(Rd))

≤ P2(amin, ‖a‖C1,α
b

(Rd))(1 + ‖f‖W 1,r(O)),

where P2 is a polynomial function, whose coefficients do not depend on a and f .
It remains to apply this result to p(ω, ·), where p is the solution of (4.1) and where we have fixed ω,
which yields that for almost all ω we have

‖p(ω, ·)‖C2,α
b

(Rd) ≤ P2(amin(ω), ‖a(ω)‖C1,α
b

(Rd))(1 + ‖f‖W 1,r(O)).

We conclude thanks to Hölder inequality and Assumption 4.3.

Let Vh be a finite element space of O-periodic, continuous, piecewise linear functions, whose integral
on the the domain O is equal to 0, associated to a shape-regular family of simplical triangulations of O,
parametrized by its mesh width h. We consider for almost any ω the finite element approximation ph(ω, ·)
of p(ω, ·) in the finite element space Vh.

We define then for almost any ω the Darcy velocity: v(ω, x) = −a(ω, x)∇p(ω, x) and its approximation
vh(ω, x) = −a(ω, x)∇ph(ω, x). Note that the obtained velocity vh is discontinuous.
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Proposition 4.5. 1. Let Assumption 4.2 hold for some 0 < α < 1, then v ∈ Lq(Ω, C0,α
b (Rd)) for any

finite q ≥ 1.

2. Let Assumption 4.3 hold for some 0 < α < 1, then v ∈ Lq(Ω, C1,α
b (Rd)) for any finite q ≥ 1.

3. In both cases (i.e. if Assumption 4.2 holds) we have vh ∈ Lq(Ω, L∞(Rd)) for any finite q ≥ 1.

Proof. The first two results follow easily from Hölder inequality and Proposition 4.4 together with Assump-
tions 4.2 and 4.3. In order to prove the third result, we first notice that for any h and almost every ω we
have

‖∇ph(ω)‖L2(O) ≤
√

amax(ω)

amin(ω)
‖∇p‖L2(O)

≤
√

amax(ω)

amin(ω)

√

|O|‖p‖C1
b
(Rd).

Moreover Vh is a finite dimensional space, and therefore the norm ‖∇ · ‖L∞(O) is equivalent to the
‖∇ · ‖L2(O) norm on Vh which implies, using the previous bound, that there exists a constant Ch such that
for almost all ω we have

‖∇ph(ω)‖L∞(Rd) ≤ Ch‖p(ω)‖C1
b
(Rd).

It remains then to apply Proposition 4.4, Assumption 4.2 and Hölder inequality.

We have then the following error bound for the computation of the Darcy velocity.

Proposition 4.6. 1. Let Assumption 4.2 hold for some 0 < α < 1, then for any 1 ≤ q < +∞, there
exists a constant C1(q, α) such that for any h > 0 we have

‖v − vh‖Lq(Ω,L∞(Rd)) ≤ C1(q, α)h
α| ln(h)|.

2. Let Assumption 4.3 hold for some 0 < α < 1, then for any 1 ≤ q < +∞, there exists a constant C̃1(q)
such that for any h > 0 we have

‖v − vh‖Lq(Ω,L∞(Rd)) ≤ C̃1(q)h| ln(h)|.

Proof. We notice that Theorem 4 of [29] can be adapted to the case of periodic boundary conditions. It
implies then that if assumption 4.2 holds, then for almost all ω we have

‖(p− ph)(ω)‖W 1,∞(Rd) ≤
‖a(ω)‖C0

b
(Rd)

amin(ω)
hα| lnh|‖p(ω)‖C1,α

b
(Rd).

And if Assumption 4.3 holds, then for almost all ω we have

‖(p− ph)(ω)‖W 1,∞(Rd) ≤
‖a(ω)‖C0

b
(Rd)

amin(ω)
h| lnh|‖p(ω)‖C2

b
(Rd).

The results follows then from these bounds, Hölder inequality and assumptions 4.2 and 4.3 respectively.

In the next two subsections, the variable ω modelizing uncertainty will be fixed. Therefore, for the sake
of readibility the variable ω will be ommited. However, we will give explicit bounds, which will enable us to
track the dependance on ω and to integrate with respect to ω in the final step.
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4.3 The advection-diffusion equation

We consider an initial condition c0 ∈ L1(Rd), with
∫

Rd c0(x)dx = 1, c0(x) ≥ 0 for any x ∈ R
d and take

v ∈ C0,α
b (Rd,Rd) for some 0 < α < 1. We consider then the following advection-diffusion equation:

{

∂c
∂t
(x, t) + v(x).∇c(x, t)−D∆c(x, t) = 0, x ∈ R

d and t ∈ [0, T ]
c(x, 0) = c0(x), x ∈ R

d.
(4.3)

We consider also the stochastic differential equation associated to this Fokker-Planck equation:

{

dX(t) = v(X(t))dt+
√
2DdW (t),

X(0) = X0,
(4.4)

We suppose that X0 admits c0(x)dx as density. The SDE (4.4) admits a unique strong solution (it is very
classical if v is lipschitz continuous, and it follows for example from [21] otherwise). We recall the following
well known result (see [20] e.g. for the link with the SDE and [22] e.g. for the regularity result).

Proposition 4.7. The equation (4.3) admits a unique solution c ∈ C0(]0, T ], C2(Rd))
⋂ C0([0, T ], L2(Rd))

and X(t) admits c(x, t)dx as density.

4.4 Time discretization

We consider (Ω′,F ′,P′) an another probability space, whose generic variable is denoted by ξ. Here we give
bounds of the weak error resulting both from the time discretization of a stochastic differential equation
(with an additive noise and a C0,α or C1,α drift) and from the spatial approximation of the drift. Let
v ∈ C0,α

b (Rd,Rd) for some 0 < α < 1. We denote by Xx the solution of the following stochastic differential
equation:

{

dXx(t) = v(Xx(t))dt+
√
2DdW (t),

Xx(0) = x.
(4.5)

For the same reasons as seen in the case of equation (4.4), the SDE (4.5) admits a unique strong solution.
We denote by Xx

n the numerical approximation of Xx using an Euler scheme (as in section 3), where the
mesh of the time discretization is ∆t = T

n
, and tk = k∆t for 0 ≤ k ≤ n. We extend Xx

n to a function defined
for all t ≥ 0 by:

{

dXx
n(t) = v(Xx

n(tk))dt+
√
2DdW (t), for tk ≤ t ≤ tk+1,

Xx
n(0) = x.

(4.6)

We also define the Euler scheme with an approximated velocity ṽ, where ṽ ∈ L∞(Rd):

{

dX̃x
n(t) = ṽ(X̃x

n(tk))dt+
√
2DdW (t), for tk ≤ t ≤ tk+1,

X̃n(0) = x.
(4.7)

The next subsection will be devoted to the estimation of the error committed when we approximate the law
of X by the law of X̃n.

4.5 Weak error for both time and space discretizations

We denote by C1;2
b ([0, T ] × R

d) the space of functions of (t, x) which admit one derivative with respect to
t and two derivatives with respect to x, all these derivatives being continuous and bounded on [0, T ] × R

d.
For u ∈ C1;2

b ([0, T ]× R
d), we introduce the natural norm

‖u‖C1;2
b

([0,T ]×Rd) = max

{

‖u‖C0
b
([0,T ]×Rd),

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

C0
b
([0,T ]×Rd)

,

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

C0
b
([0,T ]×Rd)

,

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

C0
b
([0,T ]×Rd)

}

.
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We introduce the following Kolmogorov equation associated to the previous SDE (4.4):
{

∂u
∂t
(t, x) = D∆u(t, x) + v(x).∇u(t, x)

u(0, x) = ϕ(x).
(4.8)

Proposition 4.8. Let 0 < α < 1, ϕ ∈ C1,α
b (Rd) and v ∈ C0,α

b (Rd), then the Kolmogorov equation (4.8)
admits a unique solution u and for any T > 0 there exists a constant C2(α, T ) such that we get

sup
t∈[0,T ]

‖u(t)‖C1,α
b

(Rd) ≤ C2(α, T )(‖ϕ‖C1,α
b

(Rd) + ‖ϕ‖C0
b
(Rd)‖v‖1+α

C0
b
(Rd)

). (4.9)

Proof. To begin with, we recall a classical result whose proof can be found in [22] page 184 : for 0 < α < 1,
if v ∈ C0,α

b (Rd) and ϕ ∈ C2,α
b (Rd) the equation (4.8) admits a unique solution u ∈ C1;2+α

b ([0, T ] × R
d).

However this result does not enables us to conclude : we have a weaker regularity assumption on ϕ and,
more importantly, we need an explicit bound for u (for a weaker norm). In a first step we suppose that
ϕ ∈ C2,α

b (Rd) and will weaken this assumption later by regularization. We can then consider the unique

solution u of the equation (4.8). It follows from [22] that u ∈ C1;2+α
b ([0, T ] × R

d). We denote by S(t) the
heat semi-group on R

d, and using it we get that

u(t) = S(t)ϕ+

∫ t

0

S(t− s)(v.∇u)(s)ds.

It is classical that there exists a constant C such that for any t ∈]0, T ], S(t) is both a continuous operator

from C1,α
b (Rd) to itself with norm C, and a continuous operator from C0

b (R
d) to C1,α

b (Rd) with norm Ct−
1+α
2 .

We deduce that for any t ∈ [0, T ]

‖u(t)‖C1,α
b

(Rd) ≤ C‖ϕ‖C1,α
b

(Rd) + C‖v‖C0
b
(Rd) sup

t∈[0,T ]

‖∇u(t)‖C0
b
(Rd)

∫ t

0

(t− s)−
1+α
2 ds

≤ C‖ϕ‖C1,α
b

(Rd) + C‖v‖C0
b
(Rd) sup

t∈[0,T ]

‖∇u(t)‖C0
b
(Rd)T

1−α
2 .

We now use a classical interpolation inequality : for any h ∈ C1,α
b (Rd) we have

‖∇h‖C0
b
(Rd) ≤ 3‖h‖

α
1+α

C0
b
(Rd)

‖∇h‖
1

1+α

C0,α
b

(Rd)

We deduce then from this interpolation inequality combined with Young inequality that there exists a
constant c such that for any h ∈ C1,α

b (Rd) and ε > 0 we have

‖∇h‖C0
b
(Rd) ≤ ε‖∇h‖C0,α

b
(Rd) +

c

εα
‖h‖C0

b
(Rd). (4.10)

Using this inequality we get :

sup
t∈[0,T ]

‖u(t)‖C1,α
b

(Rd) ≤ C‖ϕ‖C1,α
b

(Rd) + CT
1−α
2 ‖v‖C0

b
(Rd)

(

ε sup
t∈[0,T ]

‖∇u(t)‖C0,α
b

(Rd) +
c

εα
sup

t∈[0,T ]

‖u(t)‖C0
b
(Rd)

)

.

It remains to take ε = 1

2CT
1−α
2 ‖v‖

C0
b
(Rd)

and we finally get

sup
t∈[0,T ]

‖u(t)‖C1,α
b

(Rd) ≤ 2C‖ϕ‖C1,α
b

(Rd) + c(2CT
1−α
2 ‖v‖C0

b
(Rd))

1+α sup
t∈[0,T ]

‖u(t)‖C0
b
(Rd) (4.11)

Moreover we have classically u(t, x) = E[ϕ(Xx(t))] for any t ∈ [0, T ] and any x ∈ R
d (it follows from Itô

formula applied for t ∈ [ε, T ] for any ε > 0) therefore

sup
t∈[0,T ]

‖u(t)‖C0
b
(Rd) ≤ ‖ϕ‖C0

b
(Rd).
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Note that more generally,we deduce from Itô formula that for any t ≤ s ∈ [0, T ] and x ∈ R
d,

E[u(T − t, x)] = E[u(T − s,Xx(s− t)], (4.12)

which will be used below. We deduce from (4.11) together with this inequality that there exists a constant
C2(α, T ) such that

sup
t∈[0,T ]

‖u(t)‖C1,α
b

(Rd) ≤ C2(α, T )(‖ϕ‖C1,α
b

(Rd) + ‖ϕ‖C0
b
(Rd)‖v‖1+α

C0
b
(Rd)

).

Using a regularization argument on ϕ and the previous inequality, it can easily be seen that if we suppose
ϕ to belong only to C1,α(Rd), we have then u(t) ∈ C1,α

b (Rd) for any t ∈ [0, T ] and the inequality (4.9) still
holds.

Proposition 4.9. 1. Let 0 < α < 1, then for any x ∈ R
d, ϕ ∈ C1,α

b (Rd), v ∈ C0,α
b (Rd), and ṽ ∈ L∞(Rd),

then recalling that Xx and X̃x
n are respectively the solutions of (4.5) and (4.7), we have

|E[ϕ(Xx(T ))− ϕ(X̃x
n(T ))]| ≤ P3(‖v‖C0,α

b
(Rd), ‖ϕ‖C1,α

b
(Rd))((∆t)

α
2 + ‖v − ṽ‖L∞(Rd)),

where P3 is a polynomial function of ‖ϕ‖C1,α(Rd) and ‖v‖C0,α
b

(Rd), whose coefficients only depend on α

and T .

2. Let 0 < α < 1, then for any x ∈ R
d, ϕ ∈ C1,α

b (Rd), v ∈ C1,α
b (Rd) and ṽ ∈ L∞(Rd), recalling that Xx

and X̃x
n are respectively the solutions of (4.5) and (4.7), we have

|E[ϕ(Xx(T ))− ϕ(X̃x
n(T ))]| ≤ P̃3(‖v‖C1,α

b
(Rd), ‖ϕ‖C1,α

b
(Rd))((∆t)

1+α
2 + ‖v − ṽ‖L∞(Rd) + ‖v − ṽ‖1+α

L∞(Rd)
),

where P̃3 is a polynomial function of ‖ϕ‖C1,α(Rd) and ‖v‖C1,α
b

(Rd), whose coefficients only depend on α

and T .

Remark 4.10. We note that the particular case v = ṽ corresponds to the classical case of the weak error
of the Euler scheme on a SDE with a drift having less than C2 regularity This has been studied in [23],
nevertheless, we give a simple proof in the case of an additive noise, which moreover yields for a C1,α drift a
better weak convergence order in our case (namely 1+α

2 ) than the general result of [23] (namely 1
2−α

. More
importantly, we need to get an explicit dependance of the constant on v and ϕ, which cannot be found in
classical litterature such as [23]. Moreover we also include the spatial discretization in the weak error, which
is not classical up to our knowledge.

Proof. 1. Let 0 < α < 1, x ∈ R
d, ϕ ∈ C1,α

b (Rd), v ∈ C0,α
b (Rd) and ṽ ∈ L∞(Rd), then using (4.12), the

total weak error can be classically (see [15] for example) expressed as

E = E[ϕ(Xx(T ))]− E[ϕ(X̃x
n(T ))]

= u(T, x)− E[u(0, X̃x
n(T ))],

and can hence be split into E =
∑n−1

i=0 Ei, where:

Ei = E[u(T − ti, X̃
x
n(ti))]− E[u(T − ti+1, X̃

x
n(ti+1))]

= E[u(T − ti+1, X
X̃x

n(ti)(∆t))]− E[u(T − ti+1, X̃
X̃x

n(ti)
n (∆t))]

= E[E[u(T − ti+1, X
X̃x

n(ti)(∆t))− u(T − ti+1, X̃
X̃x

n(ti)
n (∆t))|X̃x

n(ti)]]

= E[ei(X̃
x
n(ti))],

where ei(y) = E[u(T − ti+1, X
y(∆t)) − u(T − ti+1, X̃

y
n(∆t))], by using the Markov property of the

solution X and of the discretized solution X̃n as well as (4.12).
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In order to bound the term ei, we first notice that we have for any s ∈]0,∆t]:

‖Xy(s)− y‖ =

∥

∥

∥

∥

∫ s

0

v(Xy(t))dt+
√
2DW (s)

∥

∥

∥

∥

≤ ‖v‖C0
b
(Rd)s+

√
2D|W (s)|,

which implies that

E[‖Xy(s)− y‖α] ≤ E

[(

‖v‖C0
b
(Rd)∆t+

√
2D∆t

|W (s)|√
s

)α]

≤ (∆t)
α
2 (‖v‖αC0

b
(Rd)T

α
2 + (2D)

α
2 E [|Y |α]),

≤ (∆t)
α
2 (‖v‖αC0

b
(Rd)T

α
2 + 2(2D)

α
2 ), (4.13)

where Y is a standard normal deviate. Using this bound together with the equality

Xy(∆t)− X̃y
n(∆t) =

∫ ∆t

0

v(Xy(s))− v(y)ds+∆t(v(y)− ṽ(y)),

we deduce the following bound for ei:

|ei(y)| ≤ ‖u(T − ti+1)‖C1
b
(Rd)E

[

‖Xy(∆t)− X̃y
n(∆t)‖

]

≤ sup
t∈[0,T ]

‖u(t)‖C1
b
(Rd)

(

‖v‖C0,α
b

(Rd)

∫ ∆t

0

E[‖Xy(s)− y‖α]ds+∆t‖v − ṽ‖L∞(Rd)

)

≤ ∆tC2(α, T )(‖ϕ‖C1,α
b

(Rd) + ‖ϕ‖C0
b
(Rd)‖v‖1+α

C0
b
(Rd)

)

× (‖v‖C0,α
b

(Rd)(∆t)
α
2 (‖v‖αC0

b
(Rd)T

α
2 + 2(2D)

α
2 ) + ‖v − ṽ‖L∞(Rd))

≤ ∆tP3(‖v‖C0,α
b

(Rd), ‖ϕ‖C1,α
b

(Rd))((∆t)
α
2 + ‖v − ṽ‖L∞(Rd)). (4.14)

where we have used Proposition 4.8 and where P3 is a polynomial function of ‖v‖C0,α
b

(Rd) and ‖ϕ‖C1,α
b

(Rd)

whose coefficients only depend on α and T . It remains to take the sum over i to get the bound for the
total error E.

2. Let now make the additionnal assumption that v ∈ C1,α
b (Rd).

Using a Taylor expansion with integral remainder of u at order one with respect to x, we get:

ei(y) = E

[∫ 1

0

Dxu(T − ti+1, X
y(∆t) + θ(X̃y

n(∆t)−Xy(∆t))).(Xy(∆t)− X̃y
n(∆t))dθ

]

= E

[

Dxu(T − ti+1, y).(X
y − X̃y

n)
]

+ E

[∫ 1

0

(Dxu(T − ti+1, X
y + θ(X̃y

n −Xy))−Dxu(T − ti+1, y)).(X
y − X̃y

n)dθ

]

= Dxu(T − ti+1, y).E
[

Xy − X̃y
n

]

+ E

[∫ 1

0

(Dxu(T − ti+1, X
y + θ(X̃y

n −Xy))−Dxu(T − ti+1, y)).(X
y − X̃y

n)dθ

]

,

where in the last equality we have denoted Xy(∆t) by Xy and X̃y
n(∆t) by X̃y

n for the sake of readibility.
These shorter notations will be also used in the remainder of the proof, when there is no ambiguity.
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We have then

|ei(y)| ≤ sup
t∈[0,T ]

‖u(t)‖C1
b
(Rd)‖E[Xy(∆t)− X̃y

n(∆t)]‖

+ sup
t∈[0,T ]

‖Dxu(t)‖C0,α
b

(Rd)E

[

‖Xy(∆t)− y‖α‖X̃y
n(∆t)−Xy(∆t)‖

]

+ sup
t∈[0,T ]

‖Dxu(t)‖C0,α
b

(Rd)E

[

‖X̃y
n(∆t)−Xy(∆t)‖1+α

]

In order to bound these terms, we need to bound Xy(∆t)− X̃y
n(∆t):

Xy(∆t)− X̃y
n(∆t) =

∫ ∆t

0

v(Xy(s))− v(y)ds+∆t(v(y)− ṽ(y))

=

∫ ∆t

0

Dv(y).(Xy(s)− y)ds+∆t(v(y)− ṽ(y)) (4.15)

+

∫ ∆t

0

∫ 1

0

(Dv(y + θ(Xy(s)− y))−Dv(y)).(Xy(s)− y)dsdθ.

We deduce first that

‖E[Xy(∆t)− X̃y
n(∆t)]‖ ≤ ‖v‖C1

b
(Rd)

∫ ∆t

0

‖E[Xy(s)− y]‖ds+∆t‖v − ṽ‖L∞(Rd)

+ ‖Dv‖C0,α
b

(Rd)

∫ ∆t

0

E[‖Xy(s)− y‖1+α]ds

≤ ‖v‖C1
b
(Rd)∆t

2‖v‖C0
b
(Rd) +∆t‖v − ṽ‖L∞(Rd)

+ ‖Dv‖C0,α
b

(Rd)

∫ ∆t

0

E[‖Xy(s)− y‖1+α]ds, (4.16)

where we have used that

Xy(s)− y =

∫ s

0

v(Xy(t))dt+
√
2DW (s),

which implies that

‖E[Xy(s)− y]‖ =

∥

∥

∥

∥

∫ s

0

E[v(Xy(t))]dt

∥

∥

∥

∥

≤ ∆t‖v‖C0
b
(Rd).

In order to bound the second term of (4.16), we first recall that

‖Xy(s)− y‖ =

∣

∣

∣

∣

∫ s

0

v(Xy(t))dt+
√
2DW (t)

∣

∣

∣

∣

≤ ‖v‖C0
b
(Rd)s+

√
2D|W (s)|,

which implies that for any s ∈]0,∆t] we have

E[‖Xy(s)− y‖1+α] ≤ E

[

(

‖v‖C0
b
(Rd)∆t+

√
2D∆t

|W (s)|√
s

)1+α
]

≤ 2(∆t)
1+α
2 (‖v‖1+α

C0
b
(Rd)

T
1+α
2 + 2(2D)

1+α
2 ). (4.17)
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This inequality finally enables us to bound ‖E[Xy(∆t)− X̃y
n(∆t)]‖:

∥

∥

∥E

[

Xy(∆t)− X̃y
n(∆t)

]∥

∥

∥ ≤ ‖v‖C1
b
(Rd)∆t

2‖v‖C0
b
(Rd) +∆t‖v − ṽ‖L∞(Rd)

+ 2‖Dv‖C0,α
b

(Rd)(∆t)
1+ 1+α

2 (‖v‖1+α

C0
b
(Rd)

T
1+α
2 + 2(2D)

1+α
2 )

≤ ∆t‖v − ṽ‖L∞(Rd) + ‖v‖C1,α
b

(Rd)(∆t)
1+ 1+α

2

× (‖v‖C1,α
b

(Rd)T
1−α
2 + 2T

1+α
2 ‖v‖1+α

C1,α
b

(Rd)
+ 4(2D)

1+α
2 ). (4.18)

We now use (4.15) together with (4.17) and Hölder inequality to get a bound for E[‖Xy(∆t) −
X̃y

n(∆t)‖1+α]:

E[‖Xy(∆t)− X̃y
n(∆t)‖1+α] ≤ 2(∆t)αE

[

∫ ∆t

0

‖v(Xy(s))− v(y)‖1+αds

]

+ 2(∆t)1+α‖v − ṽ‖1+α
L∞(Rd)

≤ 2‖Dv‖1+α

C0
b
(Rd)

(∆t)αE

[

∫ ∆t

0

‖Xy(s)− y‖1+αds

]

+ 2(∆t)1+α‖v − ṽ‖1+α
L∞(Rd)

≤ 4‖v‖1+α

C1
b
(Rd)

(∆t)3
(1+α)

2 (‖v‖1+α

C0
b
(Rd)

T
1+α
2 + 2(2D)

1+α
2 )

+ 2(∆t)1+α‖v − ṽ‖1+α
L∞(Rd)

. (4.19)

It remains to bound E

[

‖Xy(∆t)− y‖α‖X̃y
n(∆t)−Xy(∆t)‖

]

to get a bound for ei. To get such a

result, we use bounds similar to the one used to get inequalities (4.19) and (4.13),

E

[

‖Xy(∆t)− y‖α‖X̃y
n(∆t)−Xy(∆t)‖

]

≤ E

[

∫ ∆t

0

‖Xy(∆t)− y‖α‖ṽ(y)− v(Xy(s))‖ds
]

≤ E

[

‖Xy(∆t)− y‖α
(

(‖Dv‖C0
b
(Rd)

∫ ∆t

0

‖Xy(s)− y‖ds+∆t‖v − ṽ‖L∞(Rd))

)]

≤ 2‖v‖C1
b
(Rd)(∆t)

1+ 1+α
2 (‖v‖1+α

C0
b
(Rd)

T
1+α
2 + 2(2D)

1+α
2 )

+ ∆tT
α
2 (‖v‖αC0

b
(Rd)T

α
2 + 2(2D)

α
2 )‖v − ṽ‖L∞(Rd) (4.20)

The estimates (4.18),(4.19),(4.20) lead to the following bound for ei:

|ei(y)| ≤ ∆t sup
t∈[0,T ]

‖u(t)‖C1
b
(Rd)[‖v − ṽ‖L∞(Rd)

+ ‖v‖C1,α
b

(Rd)(∆t)
1+α
2 (‖v‖C1,α

b
(Rd)T

1−α
2 + 2T

1+α
2 ‖v‖1+α

C1,α
b

(Rd)
+ 4(2D)

1+α
2 )]

+ ∆t sup
t∈[0,T ]

‖Dxu(t)‖C0,α
b

(Rd)[2‖v‖C1
b
(Rd)(∆t)

1+α
2 (‖v‖1+α

C0
b
(Rd)

T
1+α
2 + (2D)

1+α
2 )

+ T
α
2 (‖v‖αC0

b
(Rd)T

α
2 + 2(2D)

α
2 )‖v − ṽ‖L∞(Rd)]

+ ∆t sup
t∈[0,T ]

‖Dxu(t)‖C0,α
b

(Rd)[4‖v‖1+α

C1
b
(Rd)

(∆t)
(1+α)

2 Tα(‖v‖1+α

C0
b
(Rd)

T
1+α
2 + 2(2D)

1+α
2 )

+ 2Tα‖v − ṽ‖1+α
L∞(Rd)

]
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The final result on the weak error follows by taking the sum over i of these inequalities, recalling that
n∆t = T and using Proposition 4.8:

|E| ≤ P̃3(‖v‖C1,α
b

(Rd), ‖ϕ‖C1,α
b

(Rd))[(∆t)
1+α
2 + ‖v − ṽ‖L∞(Rd) + ‖v − ṽ‖1+α

L∞(Rd)
],

where P̃3 is a polynomial function of ‖ϕ‖C1,α
b

(Rd) and ‖v‖C1,α
b

(Rd) whose coefficients only depend on α

and T .

4.6 Total error on the generalized spread

We recall that (Ω,F ,P) and (Ω′,F ′,P′) are two probability spaces, with generic variables ω ∈ Ω and ξ ∈ Ω′.
We define the stochastic process X(ω, ξ, t) as the solution for almost all ω ∈ Ω of the following stochastic
differential equation:

{

dX(ω, ξ, t) = v(ω,X(ω, ξ, t))dt+
√
2DdW (ξ, t), x ∈ R

d, t ≥ 0,

X(ω, ξ, 0) = X0(ξ),
(4.21)

where v is defined as in subsection 4.2, W is a d-dimensionnal brownian motion on (Ω′,F ′,P′) and X0 admits
c0 as density, as defined in section 4.3. Then we define for any 1 ≤ i ≤ N , 1 ≤ j ≤ M and almost all ω the
approximations Xi,j

n,h(ω, ξ, t) by:

{

dXi,j
n,h(ω, ξ, t) = vih(ω,X

i,j
n,h(ω, ξ, tk))dt+

√
2DdW j(ξ, t), for t ∈ [tk, tk+1]

Xi,j
n,h(ω, ξ, 0) = Xi,j

0 (ξ),
(4.22)

where vih is the finite element approximation of vi as defined in subsection 4.2, the W j are independent

d-dimensionnal brownian motion with unit covariance and the Xi,j
0 are independent random variables of

density c0. We define the following quantity of interest, which is a generalization of the spread defined is
section 1 by: Eω[ψ(Eξ[ϕ(X(ω, ξ, T ))])], for some vector-valued functions ϕ and ψ.

Definition 4.11. We define the total error on the generalized spread by:

Er(ω, ξ) = Eω[ψ(Eξ[ϕ(X(ω, ξ, T ))])]− 1

N

N
∑

i=1

ψ





1

M

M
∑

j=1

ϕ(Xi,j
n,h(ω, ξ, T ))



 .

Theorem 4.12. Let ϕ ∈ C1,α
b (Rd,Rd′

) and ψ ∈ C1
b (R

d′

,Rd′′

) for some d′, d′′ ∈ N and 0 < α < 1.

1. Let assumption 4.2 hold with the same α as above, then there exists a constant C independent of
h,M,N, and ∆t such that

‖Er‖L2
Ω×Ω′

≤ C

(

(∆t)
α
2 + hα| ln(h)|+ 1√

M
+

1√
N

)

.

2. Let assumption 4.3 hold with the same α as above, then there exists a constant C independent of
h,M,N, and ∆t such that

‖Er‖L2
Ω×Ω′

≤ C

(

(∆t)
1+α
2 + h| ln(h)|+ 1√

M
+

1√
N

)

.

Remark 4.13. An estimate of the error on the spread as defined in Section 1 follows from the cases where
ϕ(x) = xxt, ψ(x) = x and ϕ(x) = x, ψ(x) = xxt. For simplicity, we treat only the case where ϕ and ψ are
bounded with bounded derivatives. The extension to the case where ψ has polynomial growth is straightfor-
ward.
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Proof. 1. Let Assumption 4.2 hold. We split the error into three terms:

Er(ω, ξ) = Er1 + Er2(ω) + Er3(ω, ξ),

where we define:

Er1 = Eω[ψ(Eξ[ϕ(X(ω, ξ, T ))])]− Eω[ψ(Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))])]

Er2(ω) = Eω[ψ(Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))])]−

1

N

N
∑

i=1

ψ(Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))])

Er3(ω, ξ) =
1

N

N
∑

i=1



ψ(Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))])− ψ





1

M

M
∑

j=1

ϕ(Xi,j
n,h(ξ, T ))







 .

The first error term Er1 takes account for both the space discretization and the time discretization.
For almost all ω and for any 1 ≥ i ≥ N , we have,

‖Eξ[ϕ(X
i(ω, ξ, T ))]− Eξ[ϕ(X

i
n,h(ω, ξ, T ))]‖ ≤ P3(‖vi(ω)‖C0,α

b
(Rd), ‖ϕ‖C1,α

b
(Rd))

× [(∆t)
α
2 + ‖(vi − vih)(ω)‖L∞(Rd)]

where we have used a straightforward extension of Proposition 4.9 to the case of a test function ϕ with
vectorial values. This inequality holds for almost all ω, then by taking the expected value of the image
by ψ and by using Proposition 4.6 with ṽ = vh, we obtain thanks to Hölder inequality the existence of
a constant C4 such that :

‖Er1‖ ≤ Eω[‖Dψ‖C0
b
(Rd′ ,L(Rd′ ,Rd′′ ))P3(‖vi(ω)‖C0,α

b
(Rd), ‖ϕ‖C1,α

b
(Rd))((∆t)

α
2 + ‖(vi − vih)(ω)‖L∞(Rd))]

≤ ‖Dψ‖C0
b
(Rd′ ,L(Rd′ ,Rd′′ ))‖P3(‖vi(ω)‖C0,α

b
(Rd), ‖ϕ‖C1,α

b
(Rd))‖L2

ω
((∆t)

α
2 + C1(2)h

α| lnh|)
≤ C4((∆t)

α
2 + C1(2)h

α| lnh|),

where we have used the fact that P3 is a polynomial function, together with the fact that ‖v‖C0,α
b

(Rd)

belongs to Lq(Ω) for any 1 ≤ q < +∞ (see Assumption 4.2 and Proposition 4.5). The random variables
(Yi)1≤i≤N defined by Yi(ω) = ψ(Eξ[ϕ(X

i,j
n,h(ω, ξ, T ))]) being independent, identically distributed and

belonging to L2(Ω), we have:

‖Er2(ω)‖L2
ω
≤

‖Yi − E[Yi]‖L2
ω√

N

≤
2‖Yi‖L2

ω√
N

≤
‖ψ‖C0

b
(Rd′ ,Rd′′ )√
N

.

Indeed, for almost all ω, we have |Yi(ω)| ≤ ‖ψ‖C0
b
(Rd′ ,Rd′′ ).

Analogously, for any 1 ≤ i ≤ N and almost all ω, the random variables (Zj)1≤j≤M defined by Zj(ξ) =

16



Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))] are independent, identically distributed L2(Ω′) random variables, therefore we get:

∥

∥

∥

∥

∥

∥

E[Zj ]−
1

M

M
∑

j=1

Zj(ξ)

∥

∥

∥

∥

∥

∥

L2
ξ

≤
‖Zj − E[Zj ]‖L2

ξ√
M

≤
2‖Zj‖L2

ξ√
M

≤
2‖ϕ‖C0

b
(Rd,Rd′ )√
M

.

For all 1 ≤ i ≤ N and almost all ω,
∥

∥

∥

∥

∥

∥

ψ(Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))])− ψ





1

M

M
∑

j=1

ϕ(Xi,j
n,h(ω, ξ, T ))





∥

∥

∥

∥

∥

∥

≤ ‖Dψ‖C0
b
(Rd′ ,L(Rd′ ,Rd′′ ))

∥

∥

∥

∥

∥

∥

Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))]−

1

M

M
∑

j=1

ϕ(Xi,j
n,h(ω, ξ, T ))

∥

∥

∥

∥

∥

∥

,

thus
∥

∥

∥

∥

∥

∥

ψ(Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))])− ψ





1

M

M
∑

j=1

ϕ(Xi,j
n,h(ω, ξ, T ))





∥

∥

∥

∥

∥

∥

L2
ξ

≤
2‖ψ‖C1

b
(Rd′ ,Rd′′ )‖ϕ‖C0

b
(Rd,Rd′ )√

M
.

This bound holds for any 1 ≤ i ≤ N and almost all ω, therefore taking the sum over i and the L2
ω

norm yields finally the following bound for Er3:

‖Er3(ω, ξ)‖L2
ωL2

ξ
≤

2‖ψ‖C1
b
(Rd′ ,Rd′′ )‖ϕ‖C0

b
(Rd,Rp)√

M
.

2. The case where Assumption 4.3 holds is totally similar, except the fact that we use the second parts
of Propositions 4.9 and 4.6 instead of their first parts.

4.7 Total error on the generalized macro-dispersion

The stochastic processX(ω, ξ, t) and its approximationsXi,j
n,h(ω, ξ, t) are defined as previously by respectively

(4.21) and (4.22). Here we first define for ϕ̄ : Rd 7→ R
d′

and ψ̄ : Rd′ 7→ R
d′′

a quantity of interest which
generalizes the macro-dispersion, namely the quantity

d

dt
Eω[ψ̄(Eξ[ϕ̄(X(ω, ξ, T ))])],

which is the time derivative of the quantity of interest considered in the previous section (which we called the
generalized spread). If we suppose that the test functions ϕ and ψ are smooth with bounded derivatives, an
application of Itô lemma yields the following equality : for almost all ω we have that t 7→ Eξ[ϕ̄(X(ω, ξ, T ))]
is continuously differentiable, its differential being

t 7→ Eξ[Dϕ̄(X(ω, ξ, T )).v(X(ω, ξ, T )) +D∆ϕ̄(X(ω, ξ, T ))].

Thus for almost all ω,
t 7→ ψ̄(Eξ[ϕ̄(X(ω, ξ, T ))])
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is continuously differentiable and its differential

t 7→ Dψ̄(Eξ[ϕ̄(X(ω, ξ, T ))]).Eξ[Dϕ̄(X(ω, ξ, T )).v(X(ω, ξ, T )) +D∆ϕ̄(X(ω, ξ, T ))]

can be bounded, uniformly with respect to t, by

‖ψ̄‖C1
b
(Rd′ ,L(Rd′ ,Rd′′ )(‖ϕ̄‖C1

b
(Rd,L(Rd,Rd′ )‖v(ω)‖C0

b
(Rd) +D‖ϕ̄‖C2

b
(Rd),B(Rd×Rd,Rd′ )),

which belongs to L1(Ω). Therefore we deduce that

d

dt
Eω[ψ̄(Eξ[ϕ̄(X(ω, ξ, T ))])] =

Eω[Dψ̄(Eξ[ϕ̄(X(ω, ξ, T ))]).Eξ[Dϕ̄(X(ω, ξ, T )).v(X(ω, ξ, T )) +D∆ϕ̄(X(ω, ξ, T ))]],

which leads naturally to the following approximation, using the same ideas as in the approximation of the
generalized spread (see the previous subsection) :

1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 .





1

M

M
∑

j=1

(Dϕ̄(X̃i,j
n (T ))).vih(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T ))







 ,

where here and below we have ommited the dependance on ω and ξ for the sake of readibility. Note that
∆ϕ̄ denotes the vector whose coordinate (∆ϕ̄)i is the Laplacian of the coordinate ϕ̄i of ϕ̄.
In this subsection we give a bound for the error between the quantity and its approximation defined above.

Definition 4.14. The error is then defined by

Ēr(ω, ξ) =
d

dt
Eω[ψ̄(Eξ[ϕ̄(X(T ))])]

− 1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 .
1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))).v

i
h(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,n(T )))





= Eω[Dψ̄(Eξ[ϕ̄(X(T ))]) · Eξ[Dϕ̄(X(T )).v(X(T )) +D∆ϕ̄(X(T ))]

− 1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))).v

i
h(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T )))



 .

We have then the following bound for this error on the generalized macro-dispersion.

Theorem 4.15. Let ϕ̄ ∈ C3,α
b (Rd,Rd′

) and ψ̄ ∈ C2
b (R

d′

,Rd′′

) for some d′, d′′ ∈ N and 0 < α < 1 such that
Assumption 4.3 holds. There exists a constant c independant of h,M,N and ∆t such that

‖Ēr(ω, ξ)‖L2
ω
≤ C

(

(∆t)
1+α
2 + h|ln(h)|+ 1√

M
+

1√
N

)
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Proof. We split the error Ēr into two terms.

Ēr(ω, ξ) = Eω[Dψ̄(Eξ[ϕ̄(X(T ))]) · Eξ[Dϕ̄(X(T )) · v(X(T )) +D∆ϕ̄(X(T ))]]

− 1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · vih(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T )))





= Eω[Dψ̄(Eξ[ϕ̄(X(T ))]) · Eξ[Dϕ̄(X(T )).v(X(T )) +D∆ϕ̄(X(T ))]]

− 1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · vi(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T )))





+
1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · vi(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T )))





− 1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · vih(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T )))





The difference between the first two terms can be bounded thanks to a variant of the second part of Theorem
4.12 by taking ϕ and ψ defined respectively by ϕ(v, x) = (ϕ1(x) := ϕ̄(x), ϕ2(v, x) := Dϕ̄(x) ·v(x)+D∆ϕ̄(x))
and ψ(x, y) = Dψ̄(x) · y. However we have to adapt the proof of the second point of Theorem 4.12 to
bound the difference between the first two terms since ϕ also depend on v (and moreover ψ and Dψ are not
bounded).

∥

∥

∥

∥

Eω

[

Dψ̄(Eξ[ϕ̄(X(T ))]) · Eξ[Dϕ̄(X(T )).v(X(T )) +D∆ϕ̄(X(T ))]
]

(4.23)

− 1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · vi(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T )))





∥

∥

∥

∥

L2
ω,ξ

=

∥

∥

∥

∥

Eω[ψ(Eξ[ϕ(v
i, Xi(T ))])]− 1

N

N
∑

i=1

ψ





1

M

M
∑

j=1

ϕ(vi, Xi,j
n,h(T ))





∥

∥

∥

∥

L2
ω,ξ

In order to bound this term, we follow the proof of Theorem 4.12. First we split the error (4.23) into three
terms :

∥

∥

∥

∥

Eω[ψ(Eξ[ϕ(v
i, Xi(T ))])]− 1

N

N
∑

i=1

ψ





1

M

M
∑

j=1

ϕ(vi, Xi,j
n,h(T ))





∥

∥

∥

∥

L2
ω,ξ

= Ēr1 + Ēr2(ω) + Ēr3(ω, ξ),

where we define

Ēr1 = Eω[ψ(Eξ[ϕ(v(ω), X(ω, ξ, T ))])]− Eω[ψ(Eξ[ϕ(v
i(ω), Xi,j

n,h(ω, ξ, T ))])]

Ēr2(ω) = Eω[ψ(Eξ[ϕ(v
i(ω), Xi,j

n,h(ω, ξ, T ))])]−
1

N

N
∑

i=1

ψ(Eξ[ϕ(v
i(ω), Xi,j

n,h(ω, ξ, T ))])

Ēr3(ω, ξ) =
1

N

N
∑

i=1



ψ(Eξ[ϕ(v
i(ω), Xi,j

n,h(ω, ξ, T ))])− ψ





1

M

M
∑

j=1

ϕ(vi(ω), Xi,j
n,h(ξ, T ))







 .
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In order to bound Ēr1 we first notice that for any 1 ≤ i ≤ N and almost all ω we have

‖Eξ[ϕ(v
i(ω), Xi(ω, ξ, T )]− Eξ[ϕ(v

i(ω), Xi
n,h(ω, ξ, T ))]‖ ≤ P̃3(‖vi(ω)‖C1,α

b
(Rd), ‖ϕ(vi(ω), ·)‖C1,α

b
(Rd)) (4.24)

× [(∆t)
1+α
2 + ‖(vi − vih)(ω)‖L∞(Rd) + ‖(vi − vih)(ω)‖1+α

L∞(Rd)
],

where we have used Theorem 4.9. We note that there exists a constant C5 such that we have for almost all
ω

‖ϕ(vi(ω), ·)‖C1,α
b

(Rd) ≤ C5(1 + ‖vi(ω)‖C1,α
b

(Rd))‖ϕ̄‖C3,α
b

(Rd), (4.25)

which implies that P̃3(‖vi(ω)‖C1,α
b

(Rd), ‖ϕ(vi(ω), ·)‖C1,α
b

(Rd)) belongs to Lq(Ω) for any finite q ≥ 1. Besides

this, we note that for any (x, y) ∈ R
d′ × R

d′′

we have

‖Dψ(x, y)‖L(Rd′×Rd′′ ,Rd′′ ) ≤ ‖ψ̄‖C2
b
(Rd′ ,B(Rd′×Rd′ ,Rd′′ ))(1 + ‖y‖). (4.26)

We deduce from this and (4.24),(4.26) and (4.24) and Proposition 4.5 that

‖Ēr1‖ ≤ Eω[ sup
t∈[0,1]

‖Dψ‖L(Rd′ ,Rd′′ )(tϕ(v(ω), X(ω, ξ, T )) + (1− t)ϕ(vi(ω), Xi,j
n,h(ω, ξ, T )))

× P̃3(‖vi(ω)‖C1,α
b

(Rd), ‖ϕ(vi(ω), ·)‖C1,α
b

(Rd))

× [(∆t)
1+α
2 + ‖(vi − vih)(ω)‖L∞(Rd) + ‖(vi − vih)(ω)‖1+α

L∞(Rd)
]]

≤ Eω[‖ψ̄‖C2
b
(Rd′ ,B(Rd′×Rd′ ,Rd′′ ))(1 + ‖ϕ2(v(ω), X(ω, ξ, T ))‖+ ‖ϕ2(v

i(ω), Xi,j
n,h(ω, ξ, T ))‖)

× P̃3(‖vi(ω)‖C1,α
b

(Rd), ‖ϕ(vi(ω), ·)‖C1,α
b

(Rd))

× [(∆t)
1+α
2 + ‖(vi − vih)(ω)‖L∞(Rd) + ‖(vi − vih)(ω)‖1+α

L∞(Rd)
]]

≤ Eω[‖ψ̄‖C2
b
(Rd′ ,B(Rd′×Rd′ ,Rd′′ ))(1 + 2‖ϕ̄‖C2

b
(Rd,Rd′ )(‖vi(ω)‖C0

b
(Rd) +D))

× P̃3(‖vi(ω)‖C1,α
b

(Rd), ‖ϕ(vi(ω), ·)‖C1,α
b

(Rd))

× [(∆t)
1+α
2 + ‖(vi − vih)(ω)‖L∞(Rd) + ‖(vi − vih)(ω)‖1+α

L∞(Rd)
]]

≤ C6((∆t)
1+α
2 + h| lnh|),

where C6 is a constant.
In order to bound Ēr2 we introduce for 1 ≤ i ≤ N the random variables Yi(ω) = ψ(Eξ[ϕ(v

i(ω), Xi,j
n,h(ω, ξ, T ))]).

They are independent, identically distributed random variable in L2(Ω), and hence

‖Ēr2(ω)‖L2
ω
≤

‖Yi − E[Yi]‖L2
ω√

N

≤
2‖Yi‖L2

ω√
N

≤
2‖ψ̄‖C1

b
(Rd′ )‖Eξ[Dϕ̄(X

i,j
n,h(ω, ξ, T )).v

i(ω) +D∆ϕ̄(Xi,j
n,h(ω, ξ, T ))]‖L2

ω√
N

≤
2‖ψ̄‖C1

b
(Rd′ )‖(‖ϕ̄‖C1

b
(Rd)‖vi(ω)‖C0

b
(Rd) +D‖ϕ̄‖C2

b
(Rd))‖L2

ω√
N

≤ C7√
N
,
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for some constant C7. And finally we bound Ēr3 by adapting the proof of Theorem 4.12 similary to what
preceeds : for any 1 ≤ i ≤ N and almost all ω, the random variables (Zj)1≤j≤M defined by Zj(ξ) =

Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))] are independent, identically distributed L2(Ω′) random variables, therefore we get:

∥

∥

∥

∥

∥

∥

E[Zj ]−
1

M

M
∑

j=1

Zj(ξ)

∥

∥

∥

∥

∥

∥

L2
ξ

≤
2‖ϕ̄‖C2

b
(Rd,Rd′ )(1 + ‖vi(ω)‖C0

b
(Rd) +D)

√
M

For all 1 ≤ i ≤ N and almost all ω,
∥

∥

∥

∥

∥

∥

ψ(Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))])− ψ





1

M

M
∑

j=1

ϕ(Xi,j
n,h(ω, ξ, T ))





∥

∥

∥

∥

∥

∥

≤ ‖ψ̄‖C1
b
(Rd′ )2‖ϕ̄‖C2

b
(Rd,Rd′ )(1 + ‖vi(ω)‖C0

b
(Rd) +D)

∥

∥

∥

∥

∥

∥

Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))]−

1

M

M
∑

j=1

ϕ(Xi,j
n,h(ω, ξ, T ))

∥

∥

∥

∥

∥

∥

,

thus
∥

∥

∥

∥

∥

∥

ψ(Eξ[ϕ(X
i,j
n,h(ω, ξ, T ))])− ψ





1

M

M
∑

j=1

ϕ(Xi,j
n,h(ω, ξ, T ))





∥

∥

∥

∥

∥

∥

L2
ξ

≤
4‖ψ̄‖C1

b
(Rd′ ,Rd′′ )‖ϕ̄‖2C2

b
(Rd,Rd′ )

(1 + ‖vi(ω)‖C0
b
(Rd) +D)2

√
M

.

This bound holds for any 1 ≤ i ≤ N and almost all ω, therefore taking the sum over i and the L2
ω norm and

using Proposition 4.5 we get finally the following bound for Er3:

‖Er3(ω, ξ)‖L2
ωL2

ξ
≤ C8√

M
,

for some constant C8

Moreover we can easily bound the difference between the last two terms appearing in Ēr as follows.

1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · v(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T )))





− 1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · vh(X

i,j
n,h(T )) +D∆ϕ̄(Xi,j

n,h(T )))





=
1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · (v(X

i,j
n,h(T ))− vh(X

i,j
n,h(T ))



 .

And we have, using again Proposition 4.6
∥

∥

∥

∥

∥

∥

1

N

N
∑

i=1



Dψ̄





1

M

M
∑

j=1

ϕ̄(Xi,j
n,h(T ))



 · 1

M

M
∑

j=1

(Dϕ̄(Xi,j
n,h(T ))) · (v(X

i,j
n,h(T ))− vh(X

i,j
n,h(T )))





∥

∥

∥

∥

∥

∥

L2
ω,ξ

≤ ‖Dψ̄‖C0
b
(Rd,L(Rd,Rd′ ))‖Dϕ̄‖C0

b
(Rd′ ,L(Rd′ ,Rd′′ ))C̃1(2)h| lnh|.
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Remark 4.16. We note that a slightly different numerical method was used in [6] to compute the mean
dispersion : the time derivative was computed by using the increase on a small time step ∆s, leading under
additionnal assumptions to an error bound of the form

‖Ēr‖L2(Ω×Ω′) ≤ C

(

∆t+∆s+ h| lnh|+ 1√
N

+
1√
M∆s

)

.

For more details on this error estimate, see [17]. Note that this numerical method requires a condition of
type CFL to get convergence and seems to be less efficient that the numerical studied in this paper. The
numerical comparaison of these two methods will be the subject of a future work.
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