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Abstract

This paper address the problem of the global stabilization on a total space of a fiber bundle with a compact base space.
We prove that, under mild assumptions (existence of a continuous section and forward unicity of solutions), no equilibrium
of a continuous system defined on such a state space can be globally asymptotically uniformly stabilized using continuous
time-varying feedback.
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1 Introduction

Topological obstruction to stabilization is a long stand-
ing problem of control theory detailed in the introduc-
tion of [1]. There are two main topological obstructions
to continuous stabilization. First, the Brockett obstruc-
tion is a local obstruction related to the structure of the
controlled systems involving the nature of feedback con-
trols [2]. Then, the retraction obstruction is a global ob-
struction related to the structure of the underlying state
space: if the state space of the system has the structure
of a vector bundle over a compact manifold, no continu-
ous static feedback can globally stabilize an equilibrium.
This result has been proved and its consequences stud-
ied in detail in [3].

The Brockett condition, which is necessary in the case
of continuous time-invariant feedback controls, does not
remain necessary for driftless controllable systems with
time-varying feedback. The existence of such feedbacks
has been proved in [4], while [5] gave an explicit de-
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sign under an additional condition on the Control Lie
Algebra (see [5, Assumption 1]). A natural question is,
hence, to wonder whether continuous time-varying feed-
back controls could also avoid the retraction obstruction
as suggested in the introduction of [6].

In [3, Remark 1], the authors mention that their result
also handle the case of dynamic feedback. Indeed a dy-
namic feedback is usually seen as a dynamic extension
where the augmented state is stable. Estimation of pa-
rameters or observer-based control are in this scope. In
that case, the result of [3] is applicable directly, with the
method exposed in their remark. Nevertheless, a time-
varying static feedback is also a dynamic extension us-
ing a timer τ̇ = 1. However in this situation, there is no
convergence to a single equilibrium point, but to a sub-
manifold; the result of [3] is therefore not applicable in
this context, following [3, Remark 1].

The aim of this paper is to prove that, in the second
case, the obstruction still remains: a time-varying feed-
back control which is globally asymptotically uniformly
stabilizing a system defined on a fiber bundle with a
compact manifold as its base space does not exist.

Preprint submitted to Automatica 6 March 2013



2 Retraction obstruction

By a manifold we mean a smooth, positive dimensional,
connected manifold without boundary. The definition of
a fiber bundle is given for instance in [7].

Our purpose is to link the topological property of con-
tractibility of a manifold to the existence of a globally
asymptotically stable equilibrium. Let us introduce the
definitions we will be using and some useful properties.

Definition 1 Let E be a topological space and x0 ∈ E.
A retraction of E on x0 is a continuous mapping h :
[0, 1] × E → E such that for all x ∈ E, h(0, x) = x
and h(1, x) = x0. A topological space E is said to be
contractible if there exists a retraction of E.

Proposition 2 [8, Section 2.4] No compact manifold is
contractible.

Consider a controlled system defined by

ẏ = f0(y, u) y ∈ N , u ∈ U, (1)

with N a manifold and U a set of admissible controls,
and where f0 is a continuous vector field.

We wonder about the global stabilizability of the system
via a time-varying feedback u(y, t). To do that, we will
set τ̇ = 1 and look at the partial asymptotic stability of
the closed-loop system:

ẏ = f0(y, u(y, τ))

τ̇ = 1
. (2)

Hence, let us introduce the definitions of partial stability
we will be using. Those definitions are adapted from [9].

Definition 3 Let M = N × T be a product manifold.
Consider f = (f1, f2) a forward complete continuous
vector field onM with the property of unicity of solutions
in forward time. We denote by Φ the semiflow of f and
p1 the canonical projection on N .

(1) We say that y∞ ∈ N is a partial equilibrium if for
all τ ∈ T , we have f1(y∞, τ) = 0.

(2) A partial equilibrium y∞ ∈ N is said to be partially
stable uniformly in τ if for all U ⊂ N neighborhood
of y∞ there exists V ⊂ N a neighborhood of y∞ such
that for all y ∈ V and for all τ ∈ T , p1◦Φ(t, (y, τ)) ∈
U for all t ≥ 0.

(3) A partial equilibrium y∞ ∈ N is said to be partially
globally asymptotically stable uniformly in τ if it is
partially stable uniformly in τ and if for all (y, τ) ∈
M we have p1 ◦ Φ(t, (y, τ))→ y∞ when t→ +∞.

Remark 4 The last item of definition 3 is slightly dif-
ferent from the more standard ones. Indeed, to prove our
result, we only need the stability to be uniform with re-
spect to τ . The uniformity with respect to τ of the conver-
gence, which is usually required, is not necessary here.

The following definition, inspired by [10, Chapter 12]
about time-varying stabilizability, is here given in the
partial stability context.

Definition 5 The system (1) is said to be globally
asymptotically uniformly stabilizable by means of a con-
tinuous generalized time-varying feedback if there exist
a point y∞ ∈ N , a manifold T , a continuous mapping
f2 : N × T → TT with f2(y, τ) ∈ TτT for all y ∈ N
and all τ ∈ T and a continuous control law u(y, τ) such
that y∞ is a partial equilibrium of the closed loop system
(ẏ, τ̇) = (f0(y, u(y, τ)), f2(y, τ)) and is partially globally
asymptotically stable uniformly in τ .

Remark 6 Let us note that, taking T = R and
f2(y, τ) = 1, this definition boils down to the definition of
global asymptotic stabilization by means of a continuous
time-varying feedback. In the generalized time-varying
setting, the variable τ can be stable or not, scalar or
vector, bounded or not.

In [3, Theorem 1], the authors use Proposition 2 to prove
that if a manifold N admits a structure of fiber bun-
dle over a compact manifold, then no continuous vector
field over N can have an unique globally asymptotically
stable equilibrium. Hence, they conclude that the sys-
tem (1) cannot be globally asymptotically stabilized by
means of a state feedback. Let us prove now that [3,
Theorem 1] can be extended in the following way to the
time-varying setting.

Theorem 7 Assume that N is a manifold with a struc-
ture of fiber bundle over a compact manifold Q. If there
exists a continuous section of the bundle, then the system
(1) is not globally asymptotically uniformly stabilizable
by means of a continuous generalized time-varying feed-
back in such a way that the augmented vector field has
the forward unicity of solutions property.

Proof. Ad absurdum, assume that there exists a contin-
uous dynamic feedback which globally asymptotically
uniformly stabilizes the system (1) in such a way that the
augmented vector field has the forward unicity of solu-
tions. Let us denote by τ the added variable, and τ ∈ T .
We have τ̇ = f2(y, τ), and the system (1) can be rewrit-
ten in an extended form, with f1(y, τ) = f0(y, u(y, τ)):(

ẏ

τ̇

)
=

(
f1(y, τ)

f2(y, τ)

)
. (3)

The equation (3) defines a continuous vector field f on
the manifold M = N × T , with the forward unicity
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of solutions property. Moreover, there exists a partially
globally asymptotically stable equilibrium uniformly in
τ denoted by y∞ ∈ N .
Let us denote π0 : N → Q the fiber bundle projection.
Set p1 : M → N the first canonical projection and set
π = π0 ◦p1. We denote q∞ = π0(y∞). Similarly, fix τ0 in
T and set σ(q) = (σ0(q), τ0) where σ0 : Q → N is a con-
tinuous section of π0. Clearly, σ is a continuous section
of π. We also note that the manifoldM trivially inher-
its a structure of fiber bundle over Q with projection π.
The vector field f is continuous and has the forward unic-
ity of solutions property. Therefore, it admits a semiflow
Φ[11]. Let us denote:

h : [0, 1]×Q → Q

(λ, q) 7→

 π ◦ Φ
(

ln
(

1
1−λ

)
, σ(q)

)
if λ 6= 1

q∞ if λ = 1

Since we clearly have h(0, q) = q and h(1, q) = q∞, let
us prove the continuity of h. This mapping is obviously
continuous on [0, 1)×Q.
Let us show the continuity at (1, q) for q ∈ Q. Let
(λn, qn) ∈ [0, 1)×Q be a sequence of points converging
to (1, q). We set

tn = ln

(
1

1− λn

)
, xn = σ(qn), x = σ(q).

We have tn → +∞ and, by continuity of the section,
xn → x. Let U ⊂ Q be a neighborhood of q∞ and
U0 = π−10 (U) ⊂ N the corresponding neighborhood
of y∞. By partial stability uniformly in τ , there exists
V0 ⊂ N a neighborhood of y∞ such that for all y ∈ V0,
all τ ∈ T and all t ≥ 0, we have p1 ◦ Φ(t, (y, τ)) ⊂ U0.
On the other hand, the partial attractivity of y∞ means
that p1 ◦ Φ(t, x) → y∞ when t → ∞. Thus, there ex-
ists T > 0 such that p1 ◦ Φ(T, x) ∈ V0. By continu-
ity, there exists N1 > 0 such that for all n > N1 we
have p1 ◦ Φ(T, xn) ∈ V0. Therefore, for all t ≥ T , we
have p1 ◦ Φ(t, xn) ∈ U0. But tn → +∞, so there exists
N2 > 0 such that for all n > N2, tn > T . Thus, for all
n > N = max(N1, N2), we have p1 ◦ Φ(tn, xn) ∈ U0.
Hence, for all n > N , h(λn, qn) = π0◦p1◦Φ(tn, xn) ∈ U .
Since U is an arbitrary neighborhood of q∞, the map-
ping h is continuous.
However, the mapping h defines a retraction of the com-
pact manifold Q on q∞, which leads to the expected
contradiction thanks to Proposition 2.

Example 8 Let us consider the following system, de-
fined on the circle:

θ̈ = u, θ ∈ S1. (4)

By using the angular velocity ω = θ̇ we can rewrite the
system as {

θ̇ = ω

ω̇ = u
. (5)

Here the state space is the tangent space of the circle,
denoted by TS1. The tangent space of a manifold has
always a structure of vector bundle over that manifold,
and therefore TS1 has a structure of vector bundle over
the compact manifold S1 with projection π0 given by:

π0(θ, ω) = θ.

Moreover, being a vector bundle, the tangent bundle ad-
mits σ0, the zero section, as a continuous section. One
may wonder if it is possible to design a continuous feed-
back control u(θ, ω, t) globally stabilizing a state (θ0, 0)
such that the closed-loop system has uniqueness of solu-
tion in forward time.

Since S1 is compact, from Theorem 7 the system (5) can-
not be globally asymptotically uniformly stabilized.

Finally, taking into account Theorem 7 and [3, Theorem
1], we have the following result: consider the system (1)
defined on a manifold with a structure of fiber bundle
over a compact manifold. If there exists a continuous
section of the bundle, then no continuous dynamic feed-
back can globally asymptotically uniformly stabilize the
system in such a way that the closed loop system has
the forward unicity of solutions.

3 Conclusion

This paper extends [3, Theorem 1] to the case of time-
varying feedback control. We prove that under mild as-
sumptions, no continuous time-varying feedback control
can avoid the retraction obstruction; that is, no contin-
uous time-varying feedback control can globally asymp-
totically uniformly stabilize an equilibrium on a state
space which has a structure of fiber bundle over a com-
pact manifold.

This topological obstruction on compact manifolds pre-
vents us from having continuous globally asymptoti-
cally uniformly stabilizing feedback (neither static nor
time-varying nor dynamic). Moreover it is proved in
[12] that the obstruction still remains for discontinuous
autonomous vector fields or differential inclusions. Fi-
nally the topological obstruction appears to be a strong
constraint on stabilization, and few possibilities remain.
First, since the uniformity property of the partial sta-
bility is indeed being used in our proof, the possibility
of non-uniform global stabilizability still remains open.
Second, hybrid feedbacks can be considered as suggested
in [12]. Finally, other notions of solutions for discontin-
uous systems exist; some of them might not inherit the
same obstruction to global stabilization.
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Boston, 1983.

[3] S. P. Bhat, D. S. Bernstein, A topological obstruction to
continuous global stabilization of rotational motion and the
unwinding phenomenon, Systems & control letters 39 (1)
(2000) 63–70.

[4] J. M. Coron, Global asymptotic stabilization for controllable
systems without drift, Math. Control Signals Sytems 5 (3)
(1992) 295–312.

[5] J. B. Pomet, Explicit design of time-varying stabilizing
control laws for a class of controllable systems without drift,
System & Control Letters 18 (2) (1992) 147–158.

[6] H. Nakamura, Y. Yamashita, H. Nishitani, Minimum
projection method for nonsmooth control lyapunov function
design on general manifolds, System & Control Letters 58
(2009) 716–723.

[7] R. Abraham, J. E. Marsden, Foundations of Mechanics,
American Mathematical Society, 2008.

[8] V. Guillemin, A. Pollack, Differential topology, American
Mathematical Society, 2010.

[9] W. M. Haddad, V. Chellaboina, Nonlinear dynamical systems
and control - A Lyapunov based approach, Princeton
University Press, 2007.

[10] H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall,
2002.

[11] N. Bhatia, O. Hajek, Local semi-dynamical systems, Lecture
Notes in Mathematics, vol. 90, Springer, 1969.

[12] C. G. Mayhew, A. R. Teel, On the topological structure
of attraction basins for differential inclusions, Systems &
Control Letters 60 (2011) 1045–1050.

4


