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Introduction

Topological obstruction to stabilization is a long standing problem of control theory detailed in the introduction of [START_REF] Moulay | Conley index condition for asymptotic stability[END_REF]. There are two main topological obstructions to continuous stabilization. First, the Brockett obstruction is a local obstruction related to the structure of the controlled systems involving the nature of feedback controls [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF]. Then, the retraction obstruction is a global obstruction related to the structure of the underlying state space: if the state space of the system has the structure of a vector bundle over a compact manifold, no continuous static feedback can globally stabilize an equilibrium. This result has been proved and its consequences studied in detail in [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF].

The Brockett condition, which is necessary in the case of continuous time-invariant feedback controls, does not remain necessary for driftless controllable systems with time-varying feedback. The existence of such feedbacks has been proved in [START_REF] Coron | Global asymptotic stabilization for controllable systems without drift[END_REF], while [START_REF] Pomet | Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift[END_REF] gave an explicit de-Email addresses: emmanuel.bernuau@ec-lille.fr (Emmanuel Bernuau), wilfrid.perruquetti@inria.fr (Wilfrid Perruquetti), emmanuel.moulay@univ-poitiers.fr (Emmanuel Moulay).

sign under an additional condition on the Control Lie Algebra (see [START_REF] Pomet | Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift[END_REF]Assumption 1]). A natural question is, hence, to wonder whether continuous time-varying feedback controls could also avoid the retraction obstruction as suggested in the introduction of [START_REF] Nakamura | Minimum projection method for nonsmooth control lyapunov function design on general manifolds[END_REF].

In [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF]Remark 1], the authors mention that their result also handle the case of dynamic feedback. Indeed a dynamic feedback is usually seen as a dynamic extension where the augmented state is stable. Estimation of parameters or observer-based control are in this scope. In that case, the result of [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF] is applicable directly, with the method exposed in their remark. Nevertheless, a timevarying static feedback is also a dynamic extension using a timer τ = 1. However in this situation, there is no convergence to a single equilibrium point, but to a submanifold; the result of [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF] is therefore not applicable in this context, following [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF]Remark 1].

The aim of this paper is to prove that, in the second case, the obstruction still remains: a time-varying feedback control which is globally asymptotically uniformly stabilizing a system defined on a fiber bundle with a compact manifold as its base space does not exist.

Retraction obstruction

By a manifold we mean a smooth, positive dimensional, connected manifold without boundary. The definition of a fiber bundle is given for instance in [START_REF] Abraham | Foundations of Mechanics[END_REF].

Our purpose is to link the topological property of contractibility of a manifold to the existence of a globally asymptotically stable equilibrium. Let us introduce the definitions we will be using and some useful properties.

Definition 1 Let E be a topological space and x 0 ∈ E. A retraction of E on x 0 is a continuous mapping h : [0, 1] × E → E such that for all x ∈ E, h(0, x) = x and h(1, x) = x 0 . A topological space E is said to be contractible if there exists a retraction of E.

Proposition 2 [8, Section 2.4] No compact manifold is contractible. Consider a controlled system defined by ẏ = f 0 (y, u) y ∈ N , u ∈ U, (1) 
with N a manifold and U a set of admissible controls, and where f 0 is a continuous vector field.

We wonder about the global stabilizability of the system via a time-varying feedback u(y, t). To do that, we will set τ = 1 and look at the partial asymptotic stability of the closed-loop system:

ẏ = f 0 (y, u(y, τ )) τ = 1 . (2) 
Hence, let us introduce the definitions of partial stability we will be using. Those definitions are adapted from [START_REF] Haddad | Nonlinear dynamical systems and control -A Lyapunov based approach[END_REF].

Definition 3 Let M = N × T be a product manifold. Consider f = (f 1 , f 2
) a forward complete continuous vector field on M with the property of unicity of solutions in forward time. We denote by Φ the semiflow of f and p 1 the canonical projection on N .

(1) We say that y ∞ ∈ N is a partial equilibrium if for all τ ∈ T , we have f 1 (y ∞ , τ ) = 0. (2) A partial equilibrium y ∞ ∈ N is said to be partially stable uniformly in τ if for all U ⊂ N neighborhood of y ∞ there exists V ⊂ N a neighborhood of y ∞ such that for all y ∈ V and for all τ ∈ T , p 1 •Φ(t, (y, τ )) ∈ U for all t ≥ 0. (3) A partial equilibrium y ∞ ∈ N is said to be partially globally asymptotically stable uniformly in τ if it is partially stable uniformly in τ and if for all (y, τ ) ∈ M we have p 1 • Φ(t, (y, τ )) → y ∞ when t → +∞.

Remark 4

The last item of definition 3 is slightly different from the more standard ones. Indeed, to prove our result, we only need the stability to be uniform with respect to τ . The uniformity with respect to τ of the convergence, which is usually required, is not necessary here.

The following definition, inspired by [START_REF] Khalil | Nonlinear Systems[END_REF]Chapter 12] about time-varying stabilizability, is here given in the partial stability context.

Definition 5

The system (1) is said to be globally asymptotically uniformly stabilizable by means of a continuous generalized time-varying feedback if there exist a point y ∞ ∈ N , a manifold T , a continuous mapping f 2 : N × T → TT with f 2 (y, τ ) ∈ T τ T for all y ∈ N and all τ ∈ T and a continuous control law u(y, τ ) such that y ∞ is a partial equilibrium of the closed loop system ( ẏ, τ ) = (f 0 (y, u(y, τ )), f 2 (y, τ )) and is partially globally asymptotically stable uniformly in τ .

Remark 6 Let us note that, taking T = R and f 2 (y, τ ) = 1, this definition boils down to the definition of global asymptotic stabilization by means of a continuous time-varying feedback. In the generalized time-varying setting, the variable τ can be stable or not, scalar or vector, bounded or not.

In [3, Theorem 1], the authors use Proposition 2 to prove that if a manifold N admits a structure of fiber bundle over a compact manifold, then no continuous vector field over N can have an unique globally asymptotically stable equilibrium. Hence, they conclude that the system (1) cannot be globally asymptotically stabilized by means of a state feedback. Let us prove now that [3, Theorem 1] can be extended in the following way to the time-varying setting.

Theorem 7 Assume that N is a manifold with a structure of fiber bundle over a compact manifold Q. If there exists a continuous section of the bundle, then the system (1) is not globally asymptotically uniformly stabilizable by means of a continuous generalized time-varying feedback in such a way that the augmented vector field has the forward unicity of solutions property.

Proof. Ad absurdum, assume that there exists a continuous dynamic feedback which globally asymptotically uniformly stabilizes the system (1) in such a way that the augmented vector field has the forward unicity of solutions. Let us denote by τ the added variable, and τ ∈ T .

We have τ = f 2 (y, τ ), and the system (1) can be rewritten in an extended form, with f 1 (y, τ ) = f 0 (y, u(y, τ )):

ẏ τ = f 1 (y, τ ) f 2 (y, τ ) . ( 3 
)
The equation (3) defines a continuous vector field f on the manifold M = N × T , with the forward unicity of solutions property. Moreover, there exists a partially globally asymptotically stable equilibrium uniformly in τ denoted by y ∞ ∈ N . Let us denote π 0 : N → Q the fiber bundle projection. Set p 1 : M → N the first canonical projection and set π = π 0 • p 1 . We denote q ∞ = π 0 (y ∞ ). Similarly, fix τ 0 in T and set σ(q) = (σ 0 (q), τ 0 ) where σ 0 : Q → N is a continuous section of π 0 . Clearly, σ is a continuous section of π. We also note that the manifold M trivially inherits a structure of fiber bundle over Q with projection π.

The vector field f is continuous and has the forward unicity of solutions property. Therefore, it admits a semiflow Φ [START_REF] Bhatia | Local semi-dynamical systems[END_REF]. Let us denote:

h : [0, 1] × Q → Q (λ, q) →    π • Φ ln 1 1-λ , σ(q) if λ = 1 q ∞ if λ = 1
Since we clearly have h(0, q) = q and h(1, q) = q ∞ , let us prove the continuity of h. This mapping is obviously continuous on [0, 1) × Q.

Let us show the continuity at (1, q) for q ∈ Q. Let (λ n , q n ) ∈ [0, 1) × Q be a sequence of points converging to (1, q). We set

t n = ln 1 1 -λ n , x n = σ(q n ), x = σ(q).
We have t n → +∞ and, by continuity of the section, x n → x. Let U ⊂ Q be a neighborhood of q ∞ and U 0 = π -1 0 (U ) ⊂ N the corresponding neighborhood of y ∞ . By partial stability uniformly in τ , there exists V 0 ⊂ N a neighborhood of y ∞ such that for all y ∈ V 0 , all τ ∈ T and all t ≥ 0, we have p 1 • Φ(t, (y, τ )) ⊂ U 0 . On the other hand, the partial attractivity of y ∞ means that p 1 • Φ(t, x) → y ∞ when t → ∞. Thus, there exists T > 0 such that p 1 • Φ(T, x) ∈ V 0 . By continuity, there exists N 1 > 0 such that for all n > N 1 we have p 1 • Φ(T, x n ) ∈ V 0 . Therefore, for all t ≥ T , we have p 1 • Φ(t, x n ) ∈ U 0 . But t n → +∞, so there exists N 2 > 0 such that for all n > N 2 , t n > T . Thus, for all n > N = max(N 1 , N 2 ), we have

p 1 • Φ(t n , x n ) ∈ U 0 . Hence, for all n > N , h(λ n , q n ) = π 0 •p 1 •Φ(t n , x n ) ∈ U .
Since U is an arbitrary neighborhood of q ∞ , the mapping h is continuous. However, the mapping h defines a retraction of the compact manifold Q on q ∞ , which leads to the expected contradiction thanks to Proposition 2.

Example 8 Let us consider the following system, defined on the circle:

θ = u, θ ∈ S 1 . (4) 
By using the angular velocity ω = θ we can rewrite the system as θ = ω ω = u .

(5)

Here the state space is the tangent space of the circle, denoted by TS 1 . The tangent space of a manifold has always a structure of vector bundle over that manifold, and therefore TS 1 has a structure of vector bundle over the compact manifold S 1 with projection π 0 given by:

π 0 (θ, ω) = θ.
Moreover, being a vector bundle, the tangent bundle admits σ 0 , the zero section, as a continuous section. One may wonder if it is possible to design a continuous feedback control u(θ, ω, t) globally stabilizing a state (θ 0 , 0) such that the closed-loop system has uniqueness of solution in forward time.

Since S 1 is compact, from Theorem 7 the system (5) cannot be globally asymptotically uniformly stabilized.

Finally, taking into account Theorem 7 and [3, Theorem 1], we have the following result: consider the system (1) defined on a manifold with a structure of fiber bundle over a compact manifold. If there exists a continuous section of the bundle, then no continuous dynamic feedback can globally asymptotically uniformly stabilize the system in such a way that the closed loop system has the forward unicity of solutions.

Conclusion

This paper extends [3, Theorem 1] to the case of timevarying feedback control. We prove that under mild assumptions, no continuous time-varying feedback control can avoid the retraction obstruction; that is, no continuous time-varying feedback control can globally asymptotically uniformly stabilize an equilibrium on a state space which has a structure of fiber bundle over a compact manifold.

This topological obstruction on compact manifolds prevents us from having continuous globally asymptotically uniformly stabilizing feedback (neither static nor time-varying nor dynamic). Moreover it is proved in [START_REF] Mayhew | On the topological structure of attraction basins for differential inclusions[END_REF] that the obstruction still remains for discontinuous autonomous vector fields or differential inclusions. Finally the topological obstruction appears to be a strong constraint on stabilization, and few possibilities remain. First, since the uniformity property of the partial stability is indeed being used in our proof, the possibility of non-uniform global stabilizability still remains open. Second, hybrid feedbacks can be considered as suggested in [START_REF] Mayhew | On the topological structure of attraction basins for differential inclusions[END_REF]. Finally, other notions of solutions for discontinuous systems exist; some of them might not inherit the same obstruction to global stabilization.
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