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Abstract

The dictionary learning problem aims at finding a dictionary of atoms that best represents an image

according to a given objective. The most usual objective consists of representing an image or a class of

images sparsely. Most algorithms performing dictionary learning iteratively estimate the dictionary and

a sparse representation of images using this dictionary. Dictionary learning has led to many state of the

art algorithms in image processing. However, its numerical complexity restricts its use to atoms with a

small support since the computations using the constructed dictionaries require too much resources to

be deployed for large scale applications.

In order to alleviate these issues, this paper introduces a new strategy to learn dictionaries composed

of atoms obtained as a composition of K convolutions with S-sparse kernels. The dictionary update

step associated with this strategy is a non-convex optimization problem. We reformulate the problem

in order to reduce the number of its irrelevant stationary points and introduce a Gauss-Seidel type

algorithm, referred to as Alternative Least Square Algorithm, for its resolution. The search space of

the considered optimization problem is of dimension KS, which is typically smaller than the size of the

target atom and is much smaller than the size of the image. The complexity of the algorithm is linear

with regard to the size of the image.

Our experiments show that we are able to approximate with a very high accuracy many atoms such

as modified DCT, curvelets, sinc functions or cosines when K is large (say K = 10). We also argue

empirically that, maybe surprisingly, the algorithm generally converges to a global minimum for large

values of K and S.

1 Introduction

1.1 Problem Formulation

We consider d ∈ N and a d-dimensional signal living in a domain P ⊂ Z
d (i.e., d = 1 for 1D signals,

d = 2 for 2D images,...). Typically, P = {1, . . . ,N}d , where N ∈N is the number of ”pixels” along each

axis. We assume that we have observed u ∈ R
P constructed by weighted translations of a target atom

H ∈R
P contaminated by additive noise. More precisely, we are interested in measurements defined by

u = α∗H +b, (1)

∗Olivier Chabiron is funded by the CIMI Excellence Laboratory.
†This work was performed during the Thematic Trimester on image processing of the CIMI Excellence Laboratory which was

held in Toulouse, France, during the period May-June-July 2013.
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where α ∈ R
P is a code of known coefficients (the knowledge of α will be motivated more carefully

later), b ∈R
P is a random noise and ∗ stands for the circular discrete convolution1 in dimension d. The

typical frameworks we have in mind include situations where α is a sparse code, and where α contains

coefficients that have been estimated by strategies such as those described in Section 1.2. Note that

we do not need any constraint about the code vector α even though the performance of the proposed

algorithm will of course depend on the conditioning of the convolution with respect to the value of α.

The problem addressed in this paper consists of estimating the unknown atom H and to express it

as a composition of convolutions with sparse kernels. As an example, we mention the decomposition

of a curvelet atom H that will receive a specific attention in our experiments (see Section 4.3.1). More

precisely, we consider an integer K ≥ 2 and K convolutions with sparse kernels (hk)1≤k≤K ∈ (RP )K .

We assume that all these kernels have less than a fixed number S of non-zero elements, i.e., that they are

at most S-sparse. Furthermore, we assume that the locations of the non-zero elements in P are known

or pre-set. In order to manipulate the supports of these kernels, we define, for all k ∈ {1, . . . ,K}, an

injective mapping

Sk : {1, . . . ,S} −→ P ,

denoted Sk ∈ P S, indicating which elements of hk can differ from zero. More precisely, by denoting as

supp
(

hk
)

the support of the kth kernel (i.e., the locations of the non zero elements of hk), we assume

the following constraint

supp
(

hk
)

⊂ rg
(

Sk
)

∀k ∈ {1, . . . ,K} (2)

where rg
(

Sk
)

= {Sk(1), . . . ,Sk(S)} contains all the possible locations of the non-zero elements of hk.

Examples of simple mappings include Sk(s) = ks, ∀s ∈ {1, . . . ,S}, for 1D signals. A similar support is

displayed in Fig. 1 for 2D images. In addition to the support constraint (2), the convolution of the K

kernels h = (hk)1≤k≤K ∈ (RP )K , should approximate the target atom H, i.e.,

h1 ∗ · · · ∗hK ≈ H.

Therefore, we propose to solve the following optimization problem

(P0) :

{

argminh∈(RP )K ‖α∗h1 ∗ · · · ∗hK − u‖2
2,

∣

∣ supp
(

hk
)

⊂ rg
(

Sk
)

,∀k ∈ {1, . . . ,K}

where ‖.‖2 stands for the usual Euclidean2 norm in R
P .

The problem (P0) is non convex. Thus, depending on the values of K ≥ 2, (Sk)1≤k≤K ∈ (P S)K ,

α ∈ R
P and u ∈ R

P , it might be difficult or impossible to find a good approximation of a global

minimizer of (P0). The main objective of this paper is to study if such a problem bends itself to

global optimization. Another important objective is to assess empirically if the computed compositions

of convolutions provide good approximations of interesting atoms. The current paper contains the

description of an algorithm for solving (P0) and the analysis of its performance. However, before

describing the proposed algorithm, we mention some links between the optimization problem (P0) and

some known issues in sparse representation.

1.2 Motivations

Our primary motivation for considering the observation model (1) comes from dictionary learning (DL).

DL was pioneered by [10, 16] and has received a growing attention during the last ten years. It can be

viewed as a way of representing data using a sparse representation. We invite the reader to consult [4]

for more details about sparse representations and DL. Given a set of L images3 (ul)1≤l≤L ∈ (RP )L, the

1All the elements of RP are extended over Zd by periodization.
2
R

P and R
S are endowed with the usual scalar product denoted 〈., .〉 and the usual Euclidean norm denoted ‖ · ‖2. We use the

same notation whatever the vector space. We expect that the notation will not be ambiguous, once in context.
3Usually, DL is applied to small images such as patches extracted from large images.
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archetype of the DL strategy is to look for a dictionary as the solution of the following optimization

problem

argminH,(αl)1≤l≤L

L

∑
l=1

‖Hαl −ul‖2
2 +λ‖αl‖s,

where H is a matrix whose columns are the atoms of the dictionary, λ ≥ 0 is a parameter and ‖.‖s

is a sparsity-inducing norm such as the counting function (or ℓ0 pseudo-norm) or the usual ℓ1 norm.

The DL optimization problem is sometimes formulated by imposing a constraint on ‖αl‖s. The re-

sulting non-convex problem can be solved (or approximatively solved) by many methods including

the “method of optimal direction” (MOD) [5] and, in a different manner, by K-SVD [1]. To better

reflect the distribution of images, it can also be useful to increase the number of images and to use an

online strategy [13]. Finally, note that an alternative model has been presented for task driven DL in

[12]. Algorithmically, all these approaches rely on alternatively updating the codes (αl)1≤l≤L and the

dictionary H.

The problem considered in the current paper mimics an update step of the dictionary. In this con-

text, α is fixed and the target atom H is a column of the dictionary H. The dictionary H is made of

translations of the target atom H. Notice that there is a straightforward way to apply the proposed

update, iteratively with the correct entries, in order to learn several atoms. The main novelty of the

proposed approach is to impose the learned atoms to be a composition of convolutions with sparse ker-

nels. The interest for such a constraint is that it provides numerically effective dictionaries and permits

to consider larger atoms. Indeed, the reconstruction operator

R
P −→ R

P

α 7−→ α∗h1 ∗ . . .∗hK

and its adjoint can be computed by K convolutions with kernels of size S. As a consequence, the com-

putation of the reconstruction operator and its adjoint have a computational complexity of O(KS#P ),
where #P denotes the cardinality of the set P . Depending on the support mappings (Sk)1≤k≤K , this

complexity can be much smaller than a convolution with a kernel filling in the “reachable support”

S =

{

p ∈ P ,∃(pk)1≤k≤K ∈ rg(S1)×·· ·× rg
(

Sk
)

,
K

∑
k=1

pk = p

}

. (3)

In the latter case, the computational complexity is indeed equal to O(#S#P ) or O(#P log(#P )) if the

convolutions are computed using a Fast Fourier Transform (FFT). Moreover, when several atoms are

considered, the convolutions with sparse kernels can be arranged according to a tree structure to save

even more computing resources. The typical example of an existing dictionary having a similar struc-

ture is the dictionary made of undecimated wavelets [22]. Note that the fast FFT algorithm of Cooley-

Tukey has also a related structure [2] (although it involves an up-sampling step that has not been in-

cluded in the proposed model).

To conclude with this subject, having a numerically effective scheme for using a dictionary is crucial

since the computational complexity of most algorithms favoring sparsity is proportional to the compu-

tational complexity of the matrix-vector multiplications involving H and its transpose. In particular, for

the DL algorithms alternating a sparse coding step and a dictionary update step, the sparse coding steps

require less computation resources. These resources are therefore available for the dictionary update.

1.3 Related Works

Before going ahead, it is interesting to describe the structures of the dictionaries that have been con-

sidered in DL. Structured and parametric dictionaries have recently been considered with increasing

interest. Interested readers can find a concise bibliographical note on that subject in [19]. In particular,

the structures studied so far include unions of orthobases [9], translation invariant dictionaries [11],

dictionaries composed of patches with multiple sizes [14], dictionaries divided in ordered pieces (that

are learnt from the residuals obtained when representing the sample patches with the previously com-

puted atoms of the dictionary) [24], structures induced by structured codes [7, 8]. Other interesting
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dictionaries are characterized by several layers. Such dictionaries can be constructed as the composi-

tion of a fixed transform and learned dictionaries [20, 17]. They can also be dictionaries made of two

layers based on a sparsifying transform and a sampling matrix (both layers can be learnt by the algo-

rithm investigated in [3]). To the best of our knowledge, there only exists a few attempts for building

dictionaries involving an arbitrary number of layers. In a slightly different context, dictionaries struc-

tured by Kronecker products have been proposed in [23]. Interestingly, despite the non-convexity of

the corresponding energy, it is possible to find some of its global minima [25]. Dictionaries structured

by wavelet-like trees (similar to one we are targeting in this paper) using a dictionary update based on

a gradient descent have been studied in [21].

When compared to these dictionary structures, the structure of the proposed dictionary aims at ob-

taining a numerically efficient translation invariant dictionary, whose elementary atoms H can have

large supports. Moreover, the update of the proposed structured dictionary reduces to a global opti-

mization problem. Surprisingly, the proposed algorithm provides interesting solutions for relatively

large values of the number of layers K, e.g., K = 10 seems very reasonable.

1.4 Paper Organization

The paper is organized as follows. Section 1 formulates the proposed dictionary update and provides

motivations with references to previous works. A more practical problem formulation is introduced

in Section 2. Section 3 presents an algorithm for approximating a dictionary atom as a composition

of convolutions, in order to build a fast transform. The algorithm is based on an alternating least

squares strategy whose steps are detailed carefully. Simulation results illustrating the performance of

the proposed algorithm and its convergence properties are provided in Sections 4 and 5. Conclusions

and future work are reported in Section 6.

2 Reformulating (P0)

The problem (P0) is not very tractable because it has many stationary points. Denote as h=(hk)1≤k≤K ∈
(RP )K the sequence of kernels and as E the objective function of (P0)

E (h) = ‖α∗h1 ∗ · · · ∗hK − u‖2
2.

For any k ∈ {1, . . . ,K}, the gradient of the energy function ∂E
∂hk can be calculated easily, leading to

∂E

∂hk
(h) = H̃k ∗ (α∗h1 ∗ · · · ∗hK −u), (4)

where

Hk = α∗h1 ∗ · · · ∗hk−1 ∗hk+1 ∗ · · · ∗hK , (5)

and where the .̃ operator is defined for any h ∈ R
P as

h̃p = h−p, ∀p ∈ P . (6)

Note that the notation Hk has been used instead of Hk(h) to improve readability.

As soon as hk1 = hk2 = 0 for two distinct values of k1 and k2 ∈ {1, . . . ,K}, we have Hk = 0, for all

k ∈ {1, . . . ,K}, and thus
∂E

∂hk
(h) = 0 ∀k ∈ {1, . . .K}.

As a consequence, nothing prevents a minimization algorithm solving (P0) to get stuck at one of these

stationary points, although it is usually not a global minimizer of (P0).
Furthermore, ∀h ∈ (RP )K and ∀(µk)1≤k≤K ∈ R

K such that ∏
K
k=1 µk = 1, we have

E
[

(µkhk)1≤k≤K

]

= E (h) ,
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while, for any k ∈ {1, . . . ,K},

∂E

∂hk

[

(µkhk)1≤k≤K

]

=
1

µk

∂E

∂hk
(h) .

This relation results in an unbalanced situation where the gradient depends on quantities which are

irrelevant with regard to the value of the objective function.

To address the two issues mentioned above and reduce the number of irrelevant stationary points,

we propose to include an additional constraint for the norms of the kernels hk ∈ R
P , ∀k ∈ {1, . . . ,K}.

More precisely, we consider a norm-to-one constraint ‖hk‖2 = 1, ∀k ∈ {1, . . . ,K} and introduce an

additional signed weight λ ∈ R to scale the result according to the target atom. To simplify notations,

we write

D =
{

h = (hk)1≤k≤K ∈ (RP )K |∀k ∈ {1, . . . ,K},‖hk‖2 = 1 and supp
(

hk
)

⊂ rg
(

Sk
)}

and define the following optimization problem

(P1) : argminλ∈R,h∈D ‖λα∗h1 ∗ · · · ∗hK − u‖2
2,

It is straightforward to construct a solution of (P0) from a solution of (P1)
4. Indeed, if λ and (hk)1≤k≤K

are solutions of (P1), the kernels g = (gk)1≤k≤K ∈ (RP )K defined by

g1 = λ h1 and gk = hk, ∀k ∈ {2, . . . ,K}, (7)

clearly satisfy the constraints of (P0). Moreover, for any ( f k)1≤k≤K ∈ (RP )K satisfying these con-

straints5, we have

‖α∗g1 ∗ . . .∗gK −u‖2
2 = ‖λα∗h1 ∗ . . .∗hK −u‖2

2,

≤
∥

∥

∥

∥

∥

(

K

∏
k=1

‖ f k‖2

)

α∗ f 1

‖ f 1‖2
∗ . . .∗ f K

‖ f K‖2
−u

∥

∥

∥

∥

∥

2

2

,

≤ ‖α∗ f 1 ∗ . . .∗ f K −u‖2
2.

As a consequence, the kernels (gk)1≤k≤K defined by (7) form a solution of (P0).
Let us now analyze the properties of the optimization problem (P1). The first property takes the

form of the following proposition.

Proposition 2.1 (Existence of a solution). For any (u,α,(Sk)1≤k≤K) ∈
(

R
P ×R

P × (P S)K
)

, if

∀h ∈ D, α∗h1 ∗ . . .∗hK 6= 0, (8)

then the problem (P1) has a minimizer.

Proof. First notice that D is a compact set. Moreover, when (8) holds, the objective function of (P1)
is coercive in λ. Thus, for any threshold µ, it is possible to build a compact set such that the objective

function evaluated at any (λ,h) outside this compact set is larger than µ. As a consequence, we can

extract a converging subsequence from any minimizing sequence. Since the objective function of (P1)
is continuous and its domain is closed, the limit of this subsequence is a minimizer of (P1).

Note that there might be refined alternatives to the condition (8). However, the investigation of

the tightest condition for the existence of a minimizer of (P1) is clearly not the subject of this paper.

Concerning the existence of a solution, the main properties of (P1) are that the kernels h ∈ (RP )K

are constrained to live in a compact set. Also, the objective function of problem (P1) is coercive

with respect to λ provided (8) is satisfied. However, notice that the objective function of (P1) is not

necessarily coercive, e.g., it is not coercive if there exists h ∈ (RP )K such that α ∗ h1 ∗ . . . ∗ hK = 0.

4Note that, although this is not necessary to our construction, solutions of (P1) can be computed from solutions of (P0) similarly.
5We further assume that ‖ f k‖2 6= 0, for all k ∈ {1, . . . ,K}, since the inequality is otherwise trivial.
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In this situation, a minimizing sequence might be such that λα ∗ h1 ∗ . . . ∗ hK and (hk)1≤k≤K have

accumulation points but α∗h1 ∗ . . .∗hK goes to 0 and λ goes to infinity. Note finally that we typically

expect the condition (8) to hold as soon as the supports (Sk)1≤k≤K ∈ (P S)K and supp(α) are sufficiently

localized. In our experiments, we have never encountered a situation where α∗h1 ∗ . . .∗hK equals zero.

Let us now give structural properties of (P1). The objective function of (P1) is a polynomial of

degree 2K. It is infinitely differentiable and non-negative. The objective function of (P1) is non-

convex. However, for any k ∈ {1, . . . ,K}, the objective function of (P1) is convex and quadratic with

respect to hk. Finally, D is a smooth but non convex set. Computing an orthogonal projection onto D

is easy.

3 The alternating least squares (ALS) algorithm

3.1 Principle of the algorithm

The objective function in (P1) being non-convex, there is no guaranty to find a global minimum of

(P1). However, it makes sense to build a method finding a stationary point of (P1). For that purpose,

we propose to alternate minimizations with respect to the kernels hk, ∀k ∈ {1, . . . ,K}. More precisely,

for any k ∈ {1, . . . ,K}, we propose to solve (alternatively) the following least square (LS) problem

(Pk) :

{

argminλ∈R,h∈RP ‖λα∗h1 ∗ · · · ∗hk−1 ∗h∗hk+1 ∗ . . .∗hK −u‖2
2,

∣

∣ supp(h)⊂ rg
(

Sk
)

and ‖h‖2 = 1

where the kernels (hk′
p )p∈P are fixed ∀k′ 6= k. The resulting ALS algorithm is described in Algo. 1.

Algorithm 1: Overview of the ALS algorithm

Input:

u: target measurements;

α: known coefficients;

(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .

Output:

λ and kernels (hk)1≤k≤K such that λh1 ∗ . . .∗hK ≈ H.

begin

Initialize the kernels (hk)1≤k≤K ;

while not converged do

for k = 1 ,..., K do

Update λ and hk with a minimizer of (Pk).

end

3.2 Resolution of (Pk)

Before studying the existence of a minimizer of (Pk), let us rewrite the problem (Pk) in a simpler form.

Since any convolution can be described as a matrix-vector product, the problem (Pk) is equivalent to

(Pk) :

{

argminλ∈R,h∈RS ‖λCkh − u‖2
2

| ‖h‖2 = 1

where the #P ×S matrix Ck will be defined later and where we consider that u has been vectorized.

In order to solve this problem, we define

(P′
k) : argminh∈RS ‖Ckh − u‖2

2.
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It is clear that (P′
k) has a minimizer h∗ ∈R

S. Moreover, by computing a stationary point of the quadratic

objective function of the problem (P′
k), we obtain:

h∗ = (CT
k Ck)

†CT
k u, (9)

where (CT
k Ck)

† is the pseudo-inverse of CT
k Ck. Setting

λ = ‖h∗‖2 and hk =

{

h∗

‖h∗‖2
, if ‖h∗‖2 6= 0,

1√
S
1{1,...,S} , otherwise,

(10)

where 1 is the indicator function, one can show that any (µ,g) ∈ R×R
S satisfying the constraints of

(Pk) is such that:

‖λCkhk −u‖2
2 = ‖Ckh∗−u‖2

2,

≤ ‖Ck(µg)−u‖2
2 = ‖µCkg−u‖2

2.

As a consequence, (Pk) has a minimizer and it is provided by (10):

(

λ,hk
)

∈ argminλ∈R,h∈RS ‖λCkh − u‖2
2

| ‖h‖2 = 1

Altogether, we obtain the update rule described by (9) and (10). In order to apply these formulas, the

main computational difficulties are to compute CT
k u, CT

k Ck and the pseudo inverse of CT
k Ck. These

computations are the subject of the next section.

3.3 Computing CT
k u and CT

k Ck

Considering Dirac delta functions for h ∈ R
S and the linearity of Ck, we obtain for any h ∈ R

S

(Ckh)p =
S

∑
s=1

Hk
p−Sk(s)hs, ∀p ∈ P ,

where Hk is defined in (5). In other words, each column of Ck is a vectorization of (Hk
p−Sk(s)

)p∈P . For

any p′ ∈ P , denote as τp′ the translation operator such that (τp′v)p = vp−p′ , ∀(v, p) ∈ R
P ×P . Using

this notation, the sth column of Ck is a vectorization of τSk(s)H
k. Therefore, the sth line of CT

k is the

transpose of a vectorization of τSk(s)H
k. We finally have

(CT
k v)s = 〈τSk(s)H

k,v〉, ∀v ∈ R
P . (11)

Note that the computational complexity for computing Hk is O((K − 1)S#P ). Once Hk has been

computed, the cost for computing (CT
k u)s is O(#P ), ∀s ∈ {1, . . . ,S}, and therefore the cost for comput-

ing CT
k u is O(S#P ). Altogether, we obtain a complexity O(KS#P ).

We can immediately deduce the form of CT
k Ck. Indeed, each of its column is obtained by applying

(11) in which we replace v by the column vector τSk(s′)H
k, for some s′ ∈ {1, . . . ,S}. Therefore the

coefficient of CT
k Ck at the location (s,s′) ∈ {1, . . . ,S}2 is

(CT
k Ck)s,s′ = 〈τSk(s)H

k,τSk(s′)H
k〉. (12)

This Gram matrix is symmetric, positive semidefinite and of size S×S. Once Hk has been computed,

the computational complexity for computing CT
k Ck is O(S2#P ). The computation of its pseudo-inverse

is a well studied problem and is a step of the algorithm that can be optimized. An off-the-shelf imple-

mentation using a singular value decomposition (SVD) typically requires O(S3) operations.
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Algorithm 2 summarizes all the steps required for the proposed ALS algorithm. The overall com-

putational complexity is typically O((K + S)KS#P ) per iteration6. It can be reasonably applied in

situations where KS(K + S) is not to large. The most demanding case considered in the experiments

described in this paper corresponds to KS2 = 6250 (corresponding to K = 10 and S = 25). In order to

choose the number of iterations in the ”while” loop, we have used the relative difference between the

values of the objective function of (Pk) for two consecutive iterations. When this difference is lower

than 10−3, we consider that we have reached a stationary point, and the algorithm stops.

Algorithm 2: Detailed ALS algorithm

Input:

u: target measurements;

α: known coefficients;

(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .

Output:

(hk)1≤k≤K : convolution kernels such that h1 ∗ . . .∗hK ≈ H.

begin

Initialize the kernels ((hk
p)p∈P )1≤k≤K ;

while not converged do

for k = 1 ,..., K do

Compute Hk according to (5) O((K −1)S#P )
Compute CT

k Ck and CT
k u according to (12) and (11); O((S+1)S#P )

Compute h∗ according to (9); O(S3)
Update hk and λ according to (10); O(S)

end

3.4 Convergence of the algorithm

Proposition 3.1 (Convergence of Algorithm 2). For any (u,α,(Sk)1≤k≤K) ∈
(

R
P ×R

P × (P S)K
)

, if

∀h ∈ D, α∗h1 ∗ . . .∗hK 6= 0, (13)

the following statements hold:

1. The sequence generated by Algorithm 2 is bounded and has limit points. The value of the objec-

tive function is the same for all the limit points of the sequence generated by the algorithm.

2. For any limit point (λ∗,h∗) ∈R× (RP )K , if the matrix Ck generated using h∗ is full column rank

∀k ∈ {1, . . . ,K}, then the limit point (λ∗,h∗) is a stationary point for the problem (P1).

Proof. The first item of proposition 3.1 can be obtained directly since 1) the sequence of kernels gen-

erated by the algorithm belong D and D is compact, 2) the objective function of (P1) is coercive with

respect to λ when (13) holds, and 3) the objective function decreases during the iterative process and

is continuous. Concerning the second item of proposition 3.1, since every element of the sequence

generated by Algorithm 2 belong to R×D , and since R×D is a closed set, any limit point (λ∗,h∗)
also belongs to R×D . We denote by F the objective function of (P1), by (λn,hn)n∈N the sequence

generated by Algorithm 2 and by T the mapping obtained when applying the ”for” loop of Algorithm

2. We have, ∀n ∈ N

(λn+1,hn+1) = T (λn,hn).

6In the practical situations we are interested in, #P ≫ S and S3 can be neglected when compared to (K +S)S#P .
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We denote by (λo,ho)o∈N a subsequence of (λn,hn)n∈N converging to a limit point (λ∗,h∗). The

following statements are trivially true:

lim
o→∞

F(λo,ho) = F(λ∗,h∗)

= lim
o→∞

F (T (λo,ho))

However, if all the matrices Ck generated using h∗ are full column rank, when k varies inside {1, . . . ,K},

then T is a continuous mapping in the vicinity of h∗. Therefore, the above equalities garantee that

F(λ∗,h∗) = F (T (λ∗,h∗)) .

As a consequence, for every k ∈ {1, . . . ,K}, (λ∗,h∗,k) is a minimizer and therefore a stationary point

of (Pk). We can then deduce that (λ∗,h∗) is a stationary point of (P1).

3.5 Initialization of the algorithm and restart

First, it is interesting to note that the ALS algorithm does not need any initialization for λ. Moreover, the

initial values (hk)1≤k≤K of the sequence must satisfy the constraints and therefore belong to D . When

the problem (P1) has a global minimizer, we denote by I⊂ D the non-empty convergence set such that

when the ALS algorithm is initialized inside I, it converges to a global minimizer. Surprisingly, after

running intensively the ALS algorithm, it appears that in many situations I is actually large. In order to

illustrate this aspect, we have chosen a simple initialization. It consists of initializing our algorithm by

drawing a random variable uniformly distributed in D . This is easily achieved [15] by using7

hk =
h

‖h‖2
, with h ∼ NS(0, Id),

where NS(0, Id) is the centered normal distribution in R
S. Our experiments will show that P(h 6∈ I) is

often far from 1 when h is uniformly distributed in D.

Moreover, an advantage of this random initialization is that, in order to explore D , we can use a

“restart” strategy. More precisely, we propose to run the ALS algorithm R times, for R∈N, and to return

the result for which the objective function is the smallest. The probability that such a strategy fails to

provide a global minimizer is equal to the probability that none of the R independent initializations

belong to I, i.e.,

P(not global) = [P(h 6∈ I)]R

which decays rapidly to 0, when P(h ∈ I) is not negligible. For instance, to guarantee

P(not global)≤ ε,

for ε > 0, we must take

R ≥ Rε =
log(ε)

log(P(h 6∈ I))
. (14)

Note that the number of restarts does not increase much when ε decreases. However, when P(h ∈ I) is

small (or negligible) we have

R ≥ log(ε)

log [1−P(h ∈ I)]
∼ − log(ε)

P(h ∈ I)
.

Such a strategy is therefore only reasonable when P(h ∈ I) is not too small.

7For simplicity, in the formula below, we do not mention the mapping of RS into R
P necessary for building hk .
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4 Approximation experiments

4.1 Simulation scenario

Our first goal is to empirically assess the ability of a composition of convolutions to approximate a

target atom H ∈ R
P . We are also interested in observing the influence of the number of kernels K

and of the kernel supports on the approximation error. In order to do so, this section presents results

obtained for several 1D and 2D target atoms H (i.e. d = 1 or 2) that have been selected from dictionaries

commonly used in signal and image processing. For all our experiments, we consider K ≤ 11 and

S ≤ 25.

Given a dimension d ∈ {1,2} and a size c ∈ N, we consider the support mappings (Sk)1≤k≤K ∈
(P S)K such that for all k ∈ {1, . . . ,K}

rg
(

Sk
)

= k{1,2, . . . ,c}d . (15)

Figure 1 shows translations of this support mapping for K = 4 and c = 3.

Figure 1: Translations of supports rg
(

Sk
)

described by (15), for k ∈ {1,2,3,4} and for c = 3 (i.e. S =
3×3.
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Notice that, for this kernel supports, it is not difficult to check that the reachable support (see (3)) is

S =

{

K

∑
k=1

k, . . . ,
K

∑
k=1

ck

}d

=

{

K(K +1)

2
, . . . ,c

K(K +1)

2

}d

Therefore, its width is given by
K(K+1)(c−1)

2 and its size (length or area) is given by
(

K(K+1)(c−1)
2

)d
.

This has to be compared with the size of the search space which is given by Kcd . The ratio between

these two quantities correspond to ”compression ratio” when describing the atom with convolution

kernels. Asymptotically, this ratio behaves like 1
K2d . This suggest that the approximation error should

increase, when K is small, at least when the reachable support corresponds to the support of H. The

ratio between the computation complexity of the straightforward computation of the convolutions with

H and the convolution using the kernels is #H
Kcd . Pour Olivier, on pourrait peut-etre donner un petit

tableaux avec des valeurs du ratio entre Kcd et
(

K(K+1)(c−1)
2

)d
, pour differentes valeurs de c et K et

pour d = 1 et d = 2, pour illustrer cet aspect. Non?

For all the experiments in Section 4, we consider a size N ∈ N, a dimension d ∈ {1,2} and take

P = {1, . . . ,N}d . We consider a target atom H ∈ R
Nd

, a code α ∈ R
Nd

and a Gaussian noise b ∈ R
Nd

of standard deviation σ ≥ 0. For each experiment, the quantities N, d, H, α, σ are provided in the

subsection describing the experiment. Given these quantities, we compute u according to (1). Then,

Algorithm 2 has been run for a given number R of restarts and the result having the smallest objective

function value is kept. The value of R depends on the experiment and is provided in the corresponding

subsection. In the sequel, the result of this process is denoted (λ,(hk)1≤k≤K) ∈ R× (RP )K .

Given a result (λ,(hk)1≤k≤K) ∈ R× (RP )K , we evaluate the quality of the approximation of H by

λh1 ∗ · · · ∗hK using the peak-signal-to-noise ratio (PSNR). Moreover, in order to take into account that

the size of the support of H might be much smaller than #P , the PSNR is normalized according to the

size of the support of H. More precisely, it is defined by

PSNRH = 10. log10

(

r2

MSEH

)

.

where r = maxp∈P (Hp)−minp∈P (Hp) is the dynamic range of the atom H and the mean-square-error

(MSE) is defined by:

MSEH =
‖λh1 ∗ · · · ∗hK −H‖2

2

#supp(H)
.

We also provide a feature reflecting both the quality of the convergence and the level of regularization

induced by the structure of the composition of convolution. It takes the form

Conv =
‖λα∗h1 ∗ · · · ∗hK −u‖2

2

‖u‖2
2

.AT T ENT ION,J′aichangerlade f inition. (16)

The latter feature is more difficult it interpret. If it is large, either the convergence has not been reached

or the values of K and S are too small to obtain a good approximation of H. If it is small, the result is

close to a global minimum and the values of K and S do allow a good approximation of u. Notice that

the latter property might be a drawback when u is contaminated by a strong noise.

4.2 1D targets

4.2.1 Modified Discrete Cosine Transform

The modified discrete cosine transform (MDCT) has been used successfully in several signal processing

(i.e. d = 1) applications such as, for instance, audio coding [18]. The aim of this experiment is to
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approximate a MDCT with a composition of convolutions. In order to do so, we apply the inverse

MDCT to a Dirac delta function located at a given frequency, in a signal of size N = 256 A olivier,

cela semble trop petit, non? Dailleurs, les Figures semblent correspondre à un signal entre 100 et

700.. We then apodize the MDC using the sine window (wp)1≤p≤256 defined, for all p ∈ {1, . . . ,256},

by wp = sin[π p
256 ]. This window is, for instance, used in MDCT analysis for time-domain aliasing

cancellation A Olivier, il faudrait une ref.

We have tested the frequency 5 and 50 and obtained, in that manner two target atoms H. The code

α is a Dirac delta function located at p = 1. The noise standard deviation is σ = 0. This is a simple

case where u is just a translation of H. We have used R = 50 restarts. For this experiment, we consider

K = 8, S = c = 9. Moreover, as for all the experiments in this section, the supports of the kernels are

according to (15).

Figure 2: Approximation of a low frequency MDCT (apodized by a sine window) by the convolution of

K = 8 kernels of sparsity S = 9. We have PSNRH = 48.17dB.

We display on Figure 2 and 3 the results obtained respectively for the frequencies 5 and 50. More

precisely, on each of these figure we represent the approximation h1 ∗· · ·∗hK , H and the reachable sup-

portPour Olivier, Il y a un problème car il commence en 200.... Notice that the resulting approximations

are very accurate.

We also run the same experiment for the frequency 50 and when u contains an additive white

Gaussian noise of variance σ2 = 10−5. The normalized value PSNRH between u and H is 20 dB. A

olivier, il n’y a rien après la virgule? We give in Table 1 the values of PSNRH , for 5 ≤ K ≤ 11 and

5 ≤ S ≤ 9. In most cases, PSNRH is larger than that of the noisy data. This means that some denoising

has been obtained.

4.2.2 Sinc function

This experiment consists of approximating the sinc function used to perform a linear zoom of factor

Z = 3 of a signal of size 128 A Olivier, trouver une reference.. We therefore have d = 1 and N = 3 ∗
128= 384. The target atom H is a sinc function obtained by computing the inverse Fourier transform of

the characteristic function of a centered interval of length N/3. The signal to be zoomed corresponds to

the first 128 values of the 128th column of the Barbara image. The code α has been built by upsampling

12



Figure 3: Approximation of a high frequency MDCT (apodized by a sine window) by the convolution of

K = 8 kernel of sparsity S = 9. We have PSNRH = 52.16dB.

PSNRH (dB) K = 5 K = 7 K = 9 K = 11

S = 3 12.93 13.93 14.60 14.60

S = 5 14.06 16.29 20.72 25.30

S = 7 15.81 19.35 23.92 29.04

S = 9 17.55 24.31 26.15 26.43

Table 1: MDCT (frequency 50) approximation. PSNRH for several values of K and S. The normalized

value PSNRH between u and H is 20 dB.

this signal by a factor Z = 3. The upsampling is performed by inserting 2 zeros between every couple

of neighbors of the initial signal. The signal u has been set according to (1), for different noise levels.

For the first experiment, we set σ = 0 (noise-free scenario) and use R = 10 restarts of Algorithm 2.

We consider K = S = 9. Moreover, as for all the experiments in this section, the supports of the kernels

are according to (15).

The code α, and the comparison between the estimated λα ∗ h1 ∗ · · · ∗ hK and the measure u are

displayed on Figure 4. First, we observe that λα ∗ h1 ∗ · · · ∗ hK accurately approximates the function

u. This suggests that the algorithm has probably reached a global minimum. This is confirmed by the

value of Conv =?? which is very small.

We display on Figure 5, the target sinc atom H and the approximation result λ ∗ h1 ∗ · · · ∗ hK . We

see that the resulting composition of convolutions λ∗h1 ∗ · · · ∗hK is a good approximation of the sinc

function.

We also run the same experiment, for K ∈ {6,7,8,9,10} and S ∈ {5,6,7,8,9}, R = 50 and when u

contains an additive white Gaussian noise of variance σ2 = 3. The normalized value PSNRH between

u and α∗H is 28.20 dB.

Table 2 contains the values of PSNRH In most cases, PSNRH is a little larger than that of the noisy

data, which means that we have achieved some degree of denoising. Note that for S = 7, when K

reaches 7, PSNRH starts decreasing. A priori, il semble que l’algo ait bien convergé car Conv est petit,

mais que lapproximation de H ne soit pas assez régularisée. Pour mettre cela en évidence, il faudrait
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Figure 4: Approximation of a 1D sinc function for (K,S) = (9,9). Top: Comparison between the esti-

mated λα∗h1 ∗ · · · ∗hK and the measure u. We have Conv =? ; Bottom: The code α.

regarder le tableau PSNRH pour une expérience sans bruit. Il faudrait aussi montrer le conditionnement

de α. (Phrase A REVOIR)Table 3 shows, for the same experiment, the convergence criteria defined in

(16). Note that it is close to one, and lesser than one for S ≥ 5. It is so even for K = 9 and S = 7, in

which case we have a good reconstruction of the signal u with a poor approximation of the atom H.

PSNRH (dB) K = 3 K = 5 K = 7 K = 9

S = 3 27.85 30.95 34.12 30.64

S = 5 29.08 29.23 32.24 34.02

S = 7 34.39 36.22 24.04 14.51

Table 2: 1D sinc function approximation in the context of a zoom. PSNRH for several values of K and S.

The normalized value PSNRH between u and α∗H is 28.20 dB.
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Figure 5: Approximation of a 1D sinc function with (K,S) = (9,9). The target sinc atom H and the

composition of convolutions λh1 ∗ · · · ∗hK . We have PSNRH = 44.47dB.

Conv K = 3 K = 5 K = 7 K = 9

S = 3 1.39 1.26 1.17 1.17

S = 5 0.97 0.94 0.94 0.94

S = 7 0.91 0.90 0.92 0.91

Table 3: Convergence criterion for the zoom experiment. Conv for several values of K and S.

4.3 2D targets

4.3.1 Curvelet

The aim of this experiment is to approximate curvelet atom H in an image (i.e. d = 2) of size N ×N

with N = 128. The curvelet is obtained by applying the inverse curvelet transform to a Dirac delta

function, using the MCALAB toolbox [6]. The code α corresponds to a Dirac delta function located at

the barycenter of the curvelet. Once again, the support mapping applied is the one described in (15),

with either c = 3 or c = 5. We every values of K satisfying 3 ≤ K ≤ 9. We consider σ = 0 sothat u is a

simple translation of H. We used R = 10 restarts.

We display on Figure 6 the target atom H and λh1 ∗ · · · ∗hK , for K = 7 and S = 5∗5. We observe

that although PSNRH = 49.2dB, the accuracy is not homogeneous. In particular, the tails of curvelet is

not properly captured.

PSNRH (dB) K = 3 K = 5 K = 7 K = 9

S = 3×3 36.46 40.28 40.56 41.28

S = 5×5 43.44 49.70 50.27 46.82

Table 4: Curvelet: PSNRH for several values of K.

Table 4 contains the values of PSNRH for various values of K and c. Notice that in the setting of

the current experiment, we expect that increasing K and S improves the accuracy. Despite the value
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Figure 6: Curvelet approximation with K = 7 and S = 5×5. Comparison between λh1 ∗ . . .∗h7 and the

target curvelet atom H. We have PSNRH = 54.62. Le PSNRH du tableau et de la Figure ne correspondent

pas.

PSNRH value for S = 5×5 and K = 9, this is what we observe. This can only be caused by some lack of

convergence for that particular case. Note that the reachable support associated with these parameters

always contains most of the support of the atom. C’est bizare, on a des valeurs de PSNRH plus garnde

que pour les MDCT alors que l’on voit des erreurs. A quoi est-ce dû?

Finally, Figure 7 shows the kernels (hk)1≤k≤K computed for K = 7 and S = 5× 5. We see that

many kernel coefficients are close to zero, i.e., only the coefficients along the main curvelet axis have

significant values. It is obvious that the simple isotropic dilation of the supports defined by (15) is not

appropriate for this curvelet. This raises the question of the adaptation of support mappings (Sk)1≤k≤K

to the atom’s geometry.

4.3.2 Cosine

The aim of this experiment is to approximate an atom representing a 2D cosine function in an image of

size 64×64 (i.e. d = 2 and N = 64). In the context of image processing, such an atom can be seen as

a large local cosines or a Fourier atoms. Both are widely used in image processing. The interest of this

atom is that it covers the whole image and is of a rather large support. Beside, patches of this size are

difficult to handle with existing dictionary learning strategies. The considered atom is given by

Hp = cos

(

2π
〈p,(??,??)〉

N

)

,∀p ∈ {1, . . . ,64}2.
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Figure 7: Curvelet approximation for K = 7 and S = 5×5. The computed kernels (hk)1≤k≤7.

The code α is a Dirac delta function located at the center of the image. The standard deviation of the

noise is σ = 0. Therefore, u is a simple translation of the cosine atom H.

The support mapping is the same as for the previous experiment (see (15)) with, either c = 3 or

c = 5. We tested values of K such that 3 ≤ K ≤ 9. We used R = 10 restarts and selected the best match

for each parameter setting.

PSNRH (dB) K = 3 K = 5 K = 7 K = 9

S = 3×3 12.30 12.98 15.61 49.05

S = 5×5 12.47 18.10 61.05 113.00

Table 5: 2D Cosine: PSNRH for several values of K and S.

Table 5 shows examples of approximation performance in terms of PSNRH . In this experiment,

since minimizing the objective function of (P1) is equivalent to maximizing the PSNRH , we expect

PSNRH to increase with the parameters. Despite the non-convexity of (P1), that is indeed what we

observe in Table 5. Notice that the values of PSNRH are rather large. For K = 9 and c = 5, the

”compression ratio” (i.e. the ratio between the number of variables describing the kernels and the

image of the cosine) is 9×5×5
64×64 ∼ 1

20 .

The result λh1∗· · ·∗hK , the target atom as well as the difference between these images are displayed

in Figure 8, for K = 7 and S = 5×5. The accuracy is very good for the approximation of a cosine with

a composition of convolutions.
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Figure 8: Cosine approximation with K = 7 and S = 5×5.

4.3.3 Sinc 2D

The aim of this experiment is to approximate an atom representing a 2D sinc function in an image of

size 128× 128 (i.e. d = 2 and N = 128). The sinc target atom H is built the same way as in Section

4.2.2 using the inverse Fourier transform of a centered square whose side is of length N
3 ?. The code α

is a Dirac delta function located at the center of the image. We consider a noise free case and set σ = 0.

The support mapping is again according to (15). Notice that we are not using the knowledge that

the sinc function is separable. We have tested the values of K such that 3 ≤ K ≤ 9. We used R = 10

restarts and selected the best match for each parameter setting.

PSNRH (dB) K = 3 K = 5 K = 7 K = 9

S = 3×3 46.35 47.99 49.43 50.84

S = 5×5 49.32 53.08 54.62 46.76

Table 6: 2D Sinc: PSNRH for several values of K and S.

Table 6 shows examples of approximation performance in terms of PSNRH . As with previous

experiments where α is a dirac delta function and σ = 0, we expect PSNRH to increase with the

parameters. For this experiment, this is not the case since PSNRH decreases for K = 9 and S = 5×5.

This might be due to a lack of convergence. Pour Olivier, je ne comprend pas le sens et le but de cette

phrase. Once again, the reachable support associated with these parameters and our mapping is much

wider than the atom support in most directions.
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The result λh1∗· · ·∗hK , the target atom as well as the difference between these images are displayed

in Figure 9, for K = 7 and S = 5×5.

Figure 9: 2D Sinc function approximation for K = 7 and S = 5×5.
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4.3.4 Experiments based on a wavelet decomposition

In this experiment, we consider a scenario better reflecting the difficulties of dictionary learning. More

precisely, we consider d = 2, N = 512, the target atom H is an atom of wavelet and code α is resulting

from the wavelet coefficient of a natural image. The objective is to approximate the image with an atom

that will itself be a good approximation of the wavelet used in the decomposition. More precisely, the

following operations have been conducted

• Select an Image. (We took the Barbara image.)

• Compute the wavelet transform of the image using the Daubechies wavelet DB4 at level L. (We

used the official MatLab wavelet toolbox and took L = 3.)

• Select the set of coefficients associated with an orientation and a given decomposition level l

such that 1 ≤ l ≤ L. (We took the low frequency at level l = L = 3 for the first experiment and

the horizontal detail at level l = 3 for the second experiment.)

• Set the non selected wavelet coefficients to zero and compute the inverse wavelet transform. Add

Gaussian white noise of variance σ2 to obtain u. (We took σ2 = 5.)

• Take α equal to a zoom of factor 2l of the selected coefficients. The zoom consists in interpolating

with zeros. Note that the code α has the same size as u. Pour Olivier, ne pourrait on pas rajouter

les deux même expériences avec un bruit sur α?

• Solve problem (Pk) with the code α, the target atom u, R = 1, with a support mapping defined by

(15) for the parameters K = 6 and S = 3×3 (i.e. c = 3). Notice, that we do not take into account

that we know supports of a composition of convolution that leads to wavelet atoms.

The experiments for the low frequency wavelet atom at level 3 and the horizontal detail wavelet

atom are respectively shown in figures 10 and 11. Notice that the conditioning of α is less favorable

for the estimation of the low frequency wavelet atom. Ne devrait on pas montrer l’histogramme des

modules des transformées de Fourier des α pour rendre compte du conditionnement? Rajouter un

commentaire, une fois que l’on aura les PSNRH , mais les images d’atomes me semblent très bonnes.

Non?

(Je comprend pas...Au contraire, si α = 0, on a Conv = 0... non?) In both cases, Conv is greater

than 1, which means convergence has not been reached. A probable cause for this is the very high

condition number characterizing the Fourier matrix associated with α. Indeed, the code is built in such

a way that its non-zero values form a regular grid.
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Figure 10: Estimation of the low frequency wavelet atom at level 3 (Conv = 3.1 and PSNRH =??). Top

left: λα ∗ h1 ∗ · · · ∗ hK . Top right: target measure. Bottom left: difference λα ∗ h1 ∗ · · · ∗ hK − u. Bottom

right: composition of convolutions λ∗h1 ∗ · · · ∗hK approximating the target wavelet atom.
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Figure 11: Estimation of the horizontal detail atom at level 3 (Conv = 1.2 and PSNRH =??). Top left:

λα∗h1 ∗ · · · ∗hK . Top right: target measure. Bottom left: difference λα∗h1 ∗ · · · ∗hK −u. Bottom right:

composition of convolutions λ∗h1 ∗ · · · ∗hK approximating the target wavelet atom.
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5 Convergence Assessment

5.1 Simulation Scenario

This section evaluates

P(not global) and Rε =
log(ε)

log(1−P(h ∈ I))

for various supports, kernels and noise level. All the experiments have been conducted with one-

dimensional signals of size #P = 128 and (K,S)∈{2, . . . ,7}×{2, . . . ,10}. We have considered random

support mappings S = (Sk)1≤k≤K . For every k ∈ {1, . . . ,K}, the support mapping Sk maps {1, . . . ,S}
into S distinct elements randomly drawn according to a uniform distribution in {1, ...,10}. Moreover,

for any (k1,k2) ∈ {1, . . . ,K}2, with k1 6= k2, rg
(

Sk1
)

and rg
(

Sk2
)

are independent random vectors. We

also consider K independent random kernels

hk
p

{

∼ N (0,1) , if p ∈ rg
(

Sk
)

= 0 , otherwise.

Finally, the code is set to α=(1,0, . . . ,0) (i.e., no translation) and the image u is obtained by convolving

the kernels

u = α∗h1 ∗ · · · ∗hK +b

where b ∼ N (0,σ2
1S ), σ2 is the noise variance and the set S is the ”reachable support” defined in (3).

Note that u is zero outside of the reachable support.

5.2 Performance measure

Given a problem defined by (u,α,S), a global minimizer h∗ = (h∗,k)1≤k≤K ∈ (RP )K of (P0) and a

solution h = (h
k
)1≤k≤K ∈ (RP )K provided by Algorithm 2, we denote the approximation error by

Ea(u,α,S) = ‖α∗h∗,1 ∗ . . .∗h∗,K −u‖2
2.

For the solutions sample problem constructed in the previous section, we expect that

Ea(u,α,S)≤ σ2 (#S) ,

where σ2 is the noise variance. Moreover, when σ = 0, we know that Ea(u,α,S) = 0. We also denote

the numerical error by

En

(

h,u,α,S
)

= ‖α∗h
1 ∗ . . .∗h

K −u‖2
2 −Ea(u,α,S).

The only quantity that we can actually observe is the sum of these two errors

‖α∗h
1 ∗ . . .∗h

K −u‖2
2 = Ea(u,α,S)+En((h,u,α,S).

We therefore consider that Algorithm 2 has converged to a global minimum if

‖α∗h
1 ∗ . . .∗h

K −u‖2
2 ≤ σ2 (#S)+10−4‖u‖2

2. (17)

Of course, this notion is not very accurate when σ2 is large.
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5.3 Evaluation of P(not global)

For any fixed (K,S) ∈ {2, . . . ,6}×{2, . . . ,10}, we have generated L = 50K2 experiments. Each ex-

periment or input of the algorithm is depicted by an index l ∈ {1, . . . ,L}. For every experiment, we

consider R = 25 random initializations according to a uniform distribution defined in the set of con-

straints associated with (P1), as described in Section 3.5. The corresponding outcome of Algorithm 2

is referred to as the rth result with r ∈ {1, . . . ,R}. Finally, for any (l,r) ∈ {1, . . .L}×{1, . . . ,R}, we

introduce the following indicator function

1(l,r) =

{

1, if (17) holds for the rth result obtained from the lth input,

0, otherwise.

The probability of reaching a global minimum of problem (P1) is estimated as follows

P(global minimizer)≃ 1

LR

L

∑
l=1

R

∑
r=1

1(l,r).

5.4 Results

Figures 12 and 13 show the results obtained in the noiseless (σ = 0) and noisy (σ = 0.1 ∗
√

5) cases

respectively. In each figure, the curves show P(global minimizer) or
log(ε)

log(1−P((hk)1≤k≤K∈I)) for a given

value of K whereas the x axis indicates the value of S. We can see that for very sparse kernels (S ≤ 3),

the probability of success is quite high. However, this probability drops significantly when the support

size increases. Surprisingly, P(global minimizer) generally increases when the support size increases.

The more kernels we use (i.e., the larger K), the steeper the decrease and increase. These results

show that it is possible to obtain convergence to a global minimum with only a few restarts of the

proposed algorithm even for relatively large values of Kprovided K has been chosen properly. The

last experiments obtained in the noisy case show similar patterns. As a consequence, the described

convergence properties seem to be robust to noise.

6 Conclusions

to be written. Include future work (à étoffer et rédiger mieux)We show that approximating an atom-like

signal or image with a composition of convolutions is possible within our model. This could provide

efficient computation for larger atoms in DL. Efficiency could be further improved by using a tree

structure for kernels. Choosing the support mappings remain a large and unexplored issue, possibility

of learning them ”online”.
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Figure 12: Convergence test for σ = 0: Average rate of convergence to a global minimum (top) for

every K ∈ {2, . . . ,7} and corresponding number of restarts Rε to guarantee P(global minimizer) ≥ 99%

(bottom). For every K ∈ {2, . . . ,7}, the rate of convergence has been averaged over L = 50K2 inputs from

which we have computed R = 25 outputs.
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Figure 13: Convergence test for σ2 = 5.10−2: Average rate of convergence to a L2 ball of radius σ
√
♯S

around a global minimum (top) for every K ∈ {2, . . . ,6} and corresponding number of restarts Rε to

guarantee P(global minimizer) ≥ 99% (bottom). For every K ∈ {2, . . . ,6}, the rate of convergence has

been averaged over L = 50K2 inputs, from which we have computed R = 25 outputs.
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