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Toward Fast Transform Learning

Olivier Chabiron · François Malgouyres ·

Jean-Yves Tourneret · Nicolas Dobigeon

Abstract This paper introduces a new dictionary learning

strategy based on atoms obtained by translating the composi-

tion of K convolutions with S-sparse kernels of known sup-

port. The dictionary update step associated with this strategy

is a non-convex optimization problem. We propose a practi-

cal formulation of this problem and introduce a Gauss–Seidel

type algorithm referred to as alternative least square algo-

rithm for its resolution. The search space of the proposed

algorithm is of dimension K S, which is typically smaller

than the size of the target atom and much smaller than the

size of the image. Moreover, the complexity of this algorithm

is linear with respect to the image size, allowing larger atoms

to be learned (as opposed to small patches). The conducted

experiments show that we are able to accurately approximate

atoms such as wavelets, curvelets, sinc functions or cosines

for large values of K. The proposed experiments also indicate

that the algorithm generally converges to a global minimum

for large values of K and S.

Keywords Dictionary learning · Matrix factorization ·
Fast transform · Sparse representation · Global optimization ·
Gauss–Seidel
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1 Introduction

1.1 Problem Formulation

We consider d ∈ N and d-dimensional signals living in a

domain P ⊂ Z
d (i.e., d = 1 for 1D signals, d = 2 for 2D

images,...). Typically, P = {0, . . . , N − 1}d , where N ∈ N

is the number of “pixels” along each axis. We consider an

ideal target atom H ∈ R
P which we want to recover. To fix

ideas, one might think of the target atom as a curvelet in 2D

or an apodized modified discrete cosine in 1D. A weighted

sum u ∈ R
P of translations of the target atom corrupted by

additive noise is observed. More precisely, we are interested

in measurements defined by

u = α ∗ H + b, (1)

where b ∈ R
P is an additive noise, ∗ stands for the circular

discrete convolution1 in dimension d and α ∈ R
P is a code

of known coefficients. A simple example is obtained when

α is a Dirac delta function. In this situation u reduces to a

noisy version of H . Another interesting situation is when α

is a sparse code. This situation turns out to be more favor-

able since, in that case, H is seen several times with different

realizations of the noise. The typical framework we have in

mind includes situations where α is a sparse code, and where

α contains coefficients that have been estimated by dictionary

learning (DL) strategies such as those described in Sect. 1.2.

In such situations, a DL algorithm alternates an estimation of

α and an estimation of H . Of course, α is only approxima-

tively known and the stability of the proposed estimation of

H with respect to the noise affecting α is crucial. Note finally

1 All the signals in R
P are extended by periodization to be defined at

any point in Z
d .



that no assumption or constraint about the code α is required.

However, the performance of an estimator of H from the data

u defined in (1) clearly depends on the conditioning of the

convolution with respect to the value of α.

The problem addressed in this paper consists of both esti-

mating the unknown target atom H and expressing it as a

composition of convolutions of sparse kernels. More pre-

cisely, we consider an integer K ≥ 2 and K convolutions

of sparse kernels (hk)1≤k≤K ∈ (RP )K . We assume that all

these kernels have less than a fixed number S of non-zero ele-

ments (i.e., that they are at most S-sparse). Furthermore, we

assume that the support of the kernels (i.e., the locations in P

of their non-zero elements) are known or pre-set. Similarly

to the code α, the location of the non-zero elements can be

designed manually or can be estimated by some other means.

For instance, the supports could be obtained by alternating

support and kernel estimations.

In order to manipulate the kernel supports, we define, for

all k ∈ {1, . . . , K }, an injective support mapping Sk ∈ P S .

The range of the support mapping is defined by

rg
(

Sk
)

= {Sk(1), . . . , Sk(S)}.

The set of constraints on the support of hk (denoted by

supp
(

hk
)

) takes the form

supp
(

hk
)

⊂ rg
(

Sk
)

,∀k ∈ {1, . . . , K }. (2)

For 1D signals, examples of simple support mappings

include Sk(s) = k(s − 1), ∀s ∈ {1, . . . , S}. A similar sup-

port is displayed in Fig. 1 for 2D images. In addition to

the support constraint (2), the convolution of the K kernels

h = (hk)1≤k≤K ∈ (RP )K , should approximate the target

atom H , i.e.,

h1 ∗ · · · ∗ hK ≈ H.

The motivations for considering such a decomposition are

detailed in Sect. 1.2. They are both to approximate a large tar-

get atom H with a model containing few degrees of freedom

and to obtain target atoms whose manipulation is numerically

efficient. As an illustration, we mention the approximation

of a curvelet target atom by a composition of convolutions

that will receive a specific attention in our experiments (see

Sect. 4.3.1).

Therefore, we propose to solve the following optimization

problem

(P0) :







argminh∈(RP )K ‖α ∗ h1 ∗ · · · ∗ hK − u‖2
2,

subject to supp
(

hk
)

⊂ rg
(

Sk
)

,

∀k ∈ {1, . . . , K }.

Fig. 1 The supports rg
(

Sk
)

described by (15), for d = 2, k ∈
{1, 2, 3, 4} and for c = 1 (i.e., S = 3 × 3). The representation is

shifted so that the origin element of (15) is at the center of each image.

The constraint (2) forces each kernel hk to take the value 0 outside of

rg
(

Sk
)

where ‖.‖2 stands for the usual Euclidean2 norm in R
P . For

instance, in the favorable case where the code α is a Dirac

delta function and b = 0 (noiseless case), the solution of

(P0) approximates the target atom H by a composition of

sparse convolutions. At the other extreme, when the convo-

lution with α is ill-conditioned and the noise is significant,

the solution of (P0) estimates the target atom H and regu-

larizes it according to the composition of sparse convolution

model.

The problem (P0) is non convex. Thus, depending on the

values of K ≥ 2, (Sk)1≤k≤K ∈ (P S)K , α ∈ R
P and u ∈ R

P ,

it might be difficult or impossible to find a good approxima-

tion of a global minimizer of (P0). The main objective of

this paper is to study if such a problem lends itself to global

optimization. Another important objective is to assess empir-

ically if the computed compositions of convolutions provide

good approximations of some atoms usually encountered in

applications. The current paper gives empirical answers to

these questions. In order to do so, it contains the description

of an algorithm for solving (P0) and its performance analysis.

2
R

P and R
S are endowed with the usual scalar product denoted 〈., .〉

and the usual Euclidean norm denoted ‖ · ‖2. We use the same nota-

tion whatever the vector space. We expect that the notation will not be

ambiguous, once in context.



Before describing the proposed algorithm, we mention

some links between the optimization problem (P0) and some

known issues in sparse representation.

1.2 Motivations

The primary motivation for considering the observation

model (1) comes from DL, which was pioneered by Lewicki

and Sejnowski (2000), Olshausen and Field (1997) and has

received a growing attention during the last ten years. It can

be viewed as a way of representing data using a sparse rep-

resentation. We invite the reader to consult the book written

by Elad (2010) for more details about sparse representations

and DL. Given a set of L images3 (ul)1≤l≤L ∈ (RP )L , the

archetype of the DL strategy is to look for a dictionary as the

solution of the following optimization problem

argminH,(αl )1≤l≤L

L
∑

l=1

‖Hαl − ul‖2
2 + λ‖αl‖∗,

where H is a matrix whose columns have a bounded norm

and form the atoms of the dictionary, λ ≥ 0 is a regulariza-

tion parameter and ‖.‖∗ is a sparsity-inducing norm such as

the counting function (or ℓ0 pseudo-norm) or the usual ℓ1

norm. The DL optimization problem is sometimes formu-

lated by imposing a constraint on ‖αl‖∗. The resulting non-

convex problem can be solved (or approximatively solved)

by many methods including the “method of optimal direc-

tion” (MOD) (Engan et al. 1999) and, in a different manner,

by K-SVD (Aharon et al. 2006). To better reflect the distrib-

ution of images, it can also be useful to increase the number

of images and to use an online strategy (Mairal et al. 2010).

Finally, note that an alternative model has been presented

for task driven DL by Mairal et al. (2012). Algorithmically,

all these approaches rely on alternatively updating the codes

(αl)1≤l≤L and the dictionary H.

The problem considered in the current paper mimics an

update step of the dictionary. In this context, α is fixed and the

target atom H is a column of the dictionary H. The dictionary

H is made of translations of the target atom H . The main nov-

elty of the proposed approach is to impose the learned atoms

to be a composition of convolutions of sparse kernels. The

interest for such a constraint is that it provides numerically

effective dictionaries and permits to consider larger atoms.

Indeed, the reconstruction operator

R
P −→ R

P

α 
−→ α ∗ h1 ∗ . . . ∗ hK

and its adjoint can be computed by K convolutions with ker-

nels of size S. As a consequence, the computation of the

3 Usually, DL is applied to small images such as patches extracted from

large images.

reconstruction operator and its adjoint have a computational

complexity of O(K S#P), where #P denotes the cardinality

of the set P . Depending on the support mappings (Sk)1≤k≤K ,

this complexity can be much smaller than a convolution with

a kernel filling the “reachable support”

S =
{

p ∈ P, ∃p1 ∈ rg
(

S1
)

, . . . , pK ∈ rg
(

SK
)

,

K
∑

k=1

pk = p

}

. (3)

In the latter case, the computational complexity is indeed

equal to O(#S#P) or O(#P log(#P)) if the convolutions

are computed using a Fast Fourier Transform (FFT).

Moreover, when several target atoms are considered, the

convolutions of sparse kernels can be arranged according

to a tree structure to save even more computing resources.

The typical example of an existing dictionary having a simi-

lar structure is the dictionary made of undecimated wavelets

(Starck et al. 2007) or undecimated wavelet packets.

Let us detail an example of a fast transform learning model

that can benefit from the current study. Consider a tree and

associate to each edge e ∈ E of the tree a sparse kernel

he ∈ R
P and a support mapping Se ∈ P S ; denote as L the

set of all the leaves l of the tree; denote as αl ∈ R
P the

coefficients of the leaf l ∈ L and as c(l) the path containing

all the edges linking the root of the tree to leaf l, for every

l ∈ L. The reconstruction of a code α = (αl)l∈L ∈
(

R
P

)L

with the fast transform defined by the proposed tree can be

defined as

Hα =
∑

l∈L

αl ∗
(

∗e∈c(l)h
e
)

,

where ∗e∈c(l)h
e denotes the composition of convolutions

between all the kernels associated with the edges of the path

c(l). The adjoint of H is easily established given this formula.

A DL problem can then be defined as follows:

argmin
∑L

l=1 ‖Hαl − ul‖2
2 + γ ‖αl‖∗

subject to h ∈ (RP )E, (αl) ∈ ((RP )L)L ,

and supp
(

he
)

⊂ rg
(

Se
)

,∀e ∈ E,

and ‖he‖2 ≤ 1,∀e ∈ E.

When L = 1 and the tree only contains one leaf, the dic-

tionary update is exactly the problem we are considering in

this paper (modulo the constraint ‖he‖2 ≤ 1). In particu-

lar, it seems impossible to solve the dictionary update of the

above problem if we are not able to solve the problem (P0).

In other words, solving the problem (P0) is a step toward fast

transform learning (hence the name of the paper).

To conclude with the motivations, having a numerically

effective scheme for using a dictionary is crucial since the

computational complexity of most algorithms favoring spar-

sity is proportional to the computational complexity of the



matrix-vector multiplications involving H and its transpose.

In particular, for the DL algorithms alternating a sparse cod-

ing step and a dictionary update step, the sparse coding steps

require less computational resources. These resources are

therefore available for the dictionary update.

1.3 Related Works

Before going ahead, it is interesting to describe the struc-

tures of the dictionaries that have been considered in DL.

Structured and parametric dictionaries have recently been

considered with increasing interest. Interested readers can

find a concise bibliographical note on that subject by

Rubinstein et al. (2010a). In particular, the structures stud-

ied so far include orthobases (Dobigeon and Tourneret

2010) and unions of orthobases (Lesage et al. 2005), trans-

lation invariant dictionaries (Mailhé et al. 2008), con-

catenation of learned and fixed dictionaries (Peyré et al.

2010), dictionaries composed of patches with multiple sizes

(Mairal et al. 2008), dictionaries divided into ordered pieces

(Thiagarajan et al. 2011), structures induced by structured

codes (Jenatton et al. 2010, 2011), and tight frames (Cai

et al. 2014). Other interesting dictionaries are characterized

by several layers. These dictionaries can be constructed as

the composition of a fixed transform and learned dictionar-

ies (Rubinstein et al. 2010b; Ophir et al. 2011). Dictionaries

made of two layers based on a sparsifying transform and a

sampling matrix (both layers can be learned by the algorithm

investigated by Duarte-Carvajalino and Sapiro 2009) have

also been considered. Another attempt requires two layers to

build separable atoms (Rigamonti et al. 2013). To the best

of our knowledge, there only exists a few attempts for build-

ing dictionaries involving an arbitrary number of layers. In

a slightly different context, dictionaries structured by Kro-

necker products have been proposed by Tsiligkaridis et al.

(2013). Interestingly, despite the non-convexity of the cor-

responding energy, it is possible to find some of its global

minima (Wiesel 2012). Finally, dictionaries structured by

wavelet-like trees (similar to one we are targeting in this

paper) using a dictionary update based on a gradient descent

have been studied by Sallee and Olshausen (2002).

When compared to the dictionaries mentioned in this Sec-

tion, the structure of the proposed dictionary aims at obtain-

ing a numerically efficient translation invariant dictionary,

whose elementary atoms H can have large supports. More-

over, the update of the proposed structured dictionary reduces

to a global optimization problem. Surprisingly, the proposed

algorithm provides interesting solutions for relatively large

values of the number of layers K , e.g., K = 10 seems very

reasonable.

It is interesting to mention that the decomposition of H

as a convolution of K kernels makes the problem similar to

the design of filter-banks that has received a considerable

attention in the wavelet community. For instance, filters

defined as convolutions of high-pass and low-pass kernels

with perfect reconstruction properties have been studied in

Delsarte et al. (1992) and Macq and Mertes (1993). These

filters are determined by maximizing an appropriate cod-

ing gain for image compression applications. Other methods

for designing FIR and IIR filters are also mentioned in the

review paper (Lu and Antoniou 2000) (based on weighted

least-squares or on a minimax approach). Finally, we would

like to point out that the filters resulting from our algorithm

can vary from scale to scale, as for for the “non-stationary”

wavelet transform (Uhl 1996) or wavelet-packets (Cohen and

Séré 1996). The main novelty of the proposed work is that our

filters are constructed as a composition of convolutions with

sparse kernels, which cannot be obtained with the existing

methods.

1.4 Paper Organization

The paper is organized as follows. Section 1 formulates the

proposed dictionary update and provides motivations with

references to previous works. A more practical problem for-

mulation is introduced in Sect. 2. Section 3 presents an algo-

rithm for approximating a dictionary atom as a composition

of convolutions, in order to build a fast transform. The algo-

rithm is based on an alternating least squares strategy whose

steps are detailed carefully. Simulation results illustrating the

performance of the proposed algorithm and its convergence

properties are provided in Sects. 4 and 5. Conclusions and

future work are reported in Sect. 6.

2 Reformulating (P0)

The problem (P0) is not very tractable because it has many

stationary points. Denote as h = (hk)1≤k≤K ∈ (RP )K the

sequence of kernels and as E the objective function of (P0)

E (h) = ‖α ∗ h1 ∗ · · · ∗ hK − u‖2
2.

The gradient of E is

∇E (h) =
(

∂ E

∂h1
(h) , . . . ,

∂ E

∂hK
(h)

)

,

where ∂ E
∂hk denotes the partial differential of the energy func-

tion E , for any k ∈ {1, . . . , K }. The latter can be calculated

easily, leading to

∂ E

∂hk
(h) = 2H̃ k ∗ (α ∗ h1 ∗ · · · ∗ hK − u), (4)

where

H k = α ∗ h1 ∗ · · · ∗ hk−1 ∗ hk+1 ∗ · · · ∗ hK , (5)



and where the operator .̃ is defined for any h ∈ R
P as

h̃ p = h−p, ∀p ∈ P. (6)

Note that the notation H k has been used instead of H k(h) to

improve readability.

As soon as hk1 = hk2 = 0 for two distinct values of k1 and

k2 ∈ {1, . . . , K }, we have H k = 0, for all k ∈ {1, . . . , K },
and thus

∂ E

∂hk
(h) = 0 ∀k ∈ {1, . . . K }.

As a consequence, nothing prevents a minimization algo-

rithm solving (P0) to get stuck at one of these stationary

points, although it is usually not a global minimizer of (P0).

Furthermore, ∀h ∈ (RP )K and ∀(µk)1≤k≤K ∈ R
K , if we

set
∏K

k=1 µk =
∏K

k=1 ‖hk‖2 and define g such that ∀k ∈
{1, . . . , K }, gk = hk

‖hk‖2
, we have

E
[

(µk gk)1≤k≤K

]

= E (h) ,

while, for any k ∈ {1, . . . , K },
∂ E

∂hk
(h) = 1

µk

∂ E

∂gk

[

(µk gk)1≤k≤K

]

.

This results in an unbalanced situation where the partial

differentials and the gradient are large along directions of

small kernels. These kernels are therefore favoured which

does not seem justified.

To address the two issues mentioned above and reduce

the number of irrelevant stationary points, we propose to

include an additional constraint for the norms of the kernels

hk ∈ R
P , ∀k ∈ {1, . . . , K }. More precisely, we consider

a norm-to-one constraint ‖hk‖2 = 1, ∀k ∈ {1, . . . , K } and

introduce an additional scaling factor λ ≥ 0, to scale the

result according to the target atom. To simplify notations, we

write

D =
{

h = (hk)1≤k≤K ∈ (RP )K | ∀k ∈ {1, . . . , K },

‖hk‖2 = 1 and supp
(

hk
)

⊂ rg
(

Sk
)

}

and define the following optimization problem

(P1) : argminλ≥0,h∈D ‖λ α ∗ h1 ∗ · · · ∗ hK − u‖2
2.

Let us now analyze the properties of the optimization prob-

lem (P1).

Proposition 1 (Existence of a solution) For any

(u, α, (Sk)1≤k≤K ) ∈
(

R
P × R

P × (P S)K
)

, if

∀h ∈ D, α ∗ h1 ∗ . . . ∗ hK �= 0, (7)

then the problem (P1) has a minimizer.

This property relies on the regularity of the objective func-

tion and the compacity/coercivity of the problem. Its proof

is detailed in Appendix.

Note that there might be refined alternatives to the condi-

tion (7). However, the investigation of the tightest condition

for the existence of a minimizer of (P1) is clearly not the sub-

ject of this paper. Concerning the existence of a solution, note

that the objective function of (P1) is not necessarily coercive,

e.g., it is not coercive if there exists h ∈ (RP )K such that

α∗h1∗. . .∗hK = 0. In this situation, a minimizing sequence

might be such that λα∗h1∗. . .∗hK and (hk)1≤k≤K have accu-

mulation points whereas α ∗h1 ∗ . . .∗hK and λ go towards 0

and infinity. Note finally that we typically expect the condi-

tion (7) to hold as soon as the supports (Sk)1≤k≤K ∈ (P S)K

and supp (α) are sufficiently localized. In our experiments,

we have never encountered a situation where α∗h1 ∗ . . .∗hK

equals zero.

We also have:

Proposition 2 ((P1) is equivalent to (P0)) Let (u, α,

(Sk)1≤k≤K ) ∈
(

R
P × R

P × (P S)K
)

be such that (7) holds.

For any (λ, h) ∈ R × (RP )K , we consider the kernels

g = (gk)1≤k≤K ∈ (RP )K defined by

g1 = λ h1 and gk = hk, ∀k ∈ {2, . . . , K }. (8)

The following statements hold:

1. if (λ, h) ∈ R × (RP )K is a stationary point of (P1) and

λ > 0 then g is a stationary point of (P0).

2. if (λ, h) ∈ R× (RP )K is a global minimizer of (P1) then

g is a global minimizer of (P0).

The proof relies on the homogeneity of the problems

(P0) and (P1). The proof of the proposition is detailed in

Appendix.

To conclude this part, it is interesting to mention some

structural properties of problem (P1). The objective function

of (P1) is a polynomial of degree 2K . Thus, it is infinitely

differentiable and non-negative. The objective function of

(P1) is non-convex. However, for any k ∈ {1, . . . , K }, the

objective function of (P1) is marginally quadratic and convex

with respect to hk . Finally, D is a smooth but non convex set.

It is not difficult to check that the following mapping provides

an orthogonal projection onto D:

(RP )K −→ D

(hk)1≤k≤K 
−→ (h
k
)1≤k≤K ,

where

h
k =







hk rg
(

Sk
)

‖hk rg(Sk)‖2
, if ‖hk

1rg(Sk)‖2 �= 0,

1√
S
1rg(Sk) , otherwise,

where 1rg(Sk) is the characteristic function of rg
(

Sk
)

.



3 The Alternating Least Squares Algorithm

3.1 Principle of the Algorithm

The objective function in (P1) being non-convex, there is in

general no guarantee to find a global or a local minimum

of (P1). However, it makes sense to build a method find-

ing a stationary point of (P1). Also, because the considered

problem has similarities with the best rank 1 approxima-

tion of tensors, we have considered an algorithm inspired

from a well known algorithm solving this tensor problem:

The alternating least squares (ALS) algorithm (De Lathauwer

et al. 2000). This ALS algorithm alternates minimizations

with respect to the kernels hk , ∀k ∈ {1, . . . , K }. The resulting

algorithm is often referred to as a “Gauss–Seidel” or “block

coordinate descent”. Although our convergence analysis will

not rely on these results let us mention that some convergence

properties of these algorithms have been studied in Luo and

Tseng (1992), Grippo and Sciandrone (2000), Razaviyayn et

al. (2013), Attouch et al. (2013). As we will see, the ALS

algorithm takes advantage of the fact that, when all the ker-

nels but one are fixed, the objective function is a quadratic

function of this latter kernel. As a consequence, every step of

the algorithm will have a closed form solution and thus has

a low complexity.

Using a better minimization algorithm might help to

reduce the time required for the optimization. Among the

alternating strategies, we can think of proximal Gauss–Seidel

strategy (see Attouch et al. 2010) or proximal alternating

linerarized minimization (see Bolte et al. 2013) or finally a

variant (see Chouzenoux et al. 2013). Also, gradient descent

or quasi-Newton algorithms might provide good convergence

rates. Finally, the reader can find standard results on all the

issues related to optimization in Bertsekas (2003).

More precisely, for any k ∈ {1, . . . , K }, we propose

to (alternatively) solve the following least squares (LS)

problems

(Pk) :















argminλ≥0,h ∈RP ‖λα ∗ h1 ∗ · · · ∗ hk−1

∗h ∗ hk+1 ∗ . . . ∗ hK − u‖2
2,

subject to supp (h) ⊂ rg
(

Sk
)

and ‖h‖2 = 1.

where the kernels (hk′
p )p∈P are fixed ∀k′ �= k. The result-

ing alternating least square (ALS) algorithm is described in

Algorithm 1.

3.2 Resolution of (Pk)

Before studying the existence of a minimizer of (Pk), let

us rewrite the problem (Pk) in a simpler form. Since the

Algorithm 1: ALS algorithm

Input:

u: target measurements;

α: known coefficients;

(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .

Output:

λ and kernels (hk)1≤k≤K such that λh1 ∗ . . . ∗ hK ≈ H .

begin

Initialize the kernels (hk)1≤k≤K ;

while not converged do

for k = 1 ,..., K do

Update λ and hk with a minimizer of (Pk).

end

embedding from R
S in rg

(

Sk
)

⊂ R
P and the operator

R
P −→ R

P

h 
−→ α ∗ h1 ∗ · · · ∗ hk−1 ∗ h ∗ hk+1 ∗ . . . ∗ hK ,

are linear, their composition can be described by a matrix-

vector product Ckh, where the vector h ∈ R
S and Ck is a

(#P)×S matrix. (The matrix Ck will be detailed in Sect. 3.3.)

A solution of (Pk) can therefore be constructed by embed-

ding in rg
(

Sk
)

⊂ R
P a solution of the equivalent problem

(still denoted (Pk), for simplicity)

(Pk) :
{

argminλ≥0,h∈RS ‖λ Ckh − u‖2
2

subject to ‖h‖2 = 1.

where we consider that u has been vectorized. In order to

solve this problem, we define

(P ′
k) : argminh∈RS ‖Ckh − u‖2

2.

The problem (P ′
k) is a LS problem which has a minimizer

h∗ ∈ R
S . Moreover, the gradient of its objective function is

CT
k (Ckh − u).

Finally, by computing a stationary point of the problem (P ′
k),

we obtain:

h∗ = (CT
k Ck)

†CT
k u, (9)

where (CT
k Ck)

† is the pseudo-inverse of CT
k Ck . Setting

λ = ‖h∗‖2 and hk =
{

h∗
‖h∗‖2

, if ‖h∗‖2 �= 0,
1√
S
1 , otherwise

(10)

where 1 ∈ R
S is a vector of ones. It is easy to check that we

always have h∗ = λhk . One can also show that any (µ, g) ∈
R × R

S satisfying the constraints of (Pk) is such that:

‖λCkhk − u‖2
2 = ‖Ckh∗ − u‖2

2,

≤ ‖Ck(µg) − u‖2
2 = ‖µCk g − u‖2

2.



As a consequence, (Pk) has a minimizer defined by (9) and

(10). Moreover, note that if
(

λ′, h′) is a solution of (Pk), we

can easily check that λ′h′ is a minimizer of (P ′
k). The latter

being unique when Ck is full column rank, we know that the

solution of (Pk) is unique under that same condition.

Altogether, we obtain the update rule by embedding in

rg
(

Sk
)

⊂ R
P the solution described by (9) and (10). In order

to apply these formulas, the main computational difficulties

are to compute CT
k u, CT

k Ck and the pseudo-inverse of CT
k Ck .

These computations are the subject of the next paragraph.

3.3 Computing CT
k u and CT

k Ck

Considering Dirac delta functions for h ∈ R
S and the linear-

ity of Ck , we obtain for any h ∈ R
S

(Ckh)p =
S

∑

s=1

H k
p−Sk (s)

hs, ∀p ∈ P

where H k is defined in (5). In other words, each column of Ck

is a vectorization of (H k
p−Sk (s)

)p∈P . For any p′ ∈ P , denote

as τp′ the translation operator such that (τp′v)p = vp−p′ ,

∀(v, p) ∈ R
P × P . Using this notation, the sth column of

Ck is a vectorization of τSk (s) H k . Therefore, the sth line of

CT
k is the transpose of a vectorization of τSk (s) H k . We finally

have

(CT
k v)s = 〈τSk (s)H k, v〉, ∀v ∈ R

P . (11)

Note that the computational complexity for computing

H k is O((K − 1)S#P). Once H k has been computed, the

cost for computing (CT
k u)s is O(#P), ∀s ∈ {1, . . . , S}, and

therefore the cost for computing CT
k u is O(S#P). Altogether,

we obtain a complexity O(K S#P).

We can immediately deduce the form of CT
k Ck . Indeed,

each of its column is obtained by applying (11) in which

we replace v by the column vector τSk (s′)H k , for some s′ ∈
{1, . . . , S}. Therefore the coefficient of CT

k Ck at the location

(s, s′) ∈ {1, . . . , S}2 is

(CT
k Ck)s,s′ = 〈τSk (s) H k, τSk (s′)H k〉. (12)

This Gram matrix is symmetric, positive semidefinite and of

size S × S. Once H k has been computed, the computational

complexity for computing CT
k Ck is O(S2#P). The compu-

tation of its pseudo-inverse is a well studied problem and is a

step of the algorithm that can be optimized. An off-the-shelf

implementation using a singular value decomposition (SVD)

typically requires O(S3) operations.

Algorithm 2 summarizes all the steps required for the

proposed ALS algorithm. The overall computational com-

plexity is typically O((K + S)K S#P) per iteration of the

while loop.4 It can be reasonably applied in situations where

K S(K + S) is not to large. The most demanding case consid-

ered in the experiments described in this paper corresponds

to K S2 = 6250 (corresponding to K = 10 and S = 25). In

order to choose the number of iterations in the while loop,

we have used the relative difference between the values of

the objective function of (Pk) for two consecutive iterations.

When this difference is lower than 10−4, we consider that we

have reached a stationary point, and the algorithm stops.

Algorithm 2: Detailed ALS algorithm

Input:

u: target measurements;

α: known coefficients;

(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .

Output:

(hk)1≤k≤K : convolution kernels such that h1 ∗ . . . ∗ hK ≈ H .

begin

Initialize the kernels ((hk
p)p∈P )1≤k≤K ;

while not converged do

for k = 1 ,..., K do

Compute H k according to (5)

O((K − 1)S#P)

Compute CT
k Ck and CT

k u according

to (12) and (11) ;

O((S + 1)S#P)

Compute h∗ according to (9);

O(S3)

Update hk and λ according to (10) ;

O(S)

end

3.4 Convergence of the Algorithm

Before stating the convergence result, let us give a few nota-

tions.

First, notice that the result of an iteration of the for loop in

Algorithm 2 only depends on the initial kernels h ∈ D and

not on the initial scaling factor λ. If we consider an initial

condition h ∈ D of the for loop in Algorithm 2, we denote the

initial condition of the kth iteration by Tk(h). For instance,

we have T1(h) = h. We also denote the scaling factor and

the kernels resulting from the whole for loop by T (h). More

precisely, denoting as (λn, hn)n∈N the sequence generated by

Algorithm 2, we have for all n ∈ N

(λn+1, hn+1) = T (hn).

4 In the practical situations we are interested in, #P ≫ S and S3 can

be neglected when compared to (K + S)S#P .



Proposition 3 (Convergence of Algorithm 2) For any (u, α,

(Sk)1≤k≤K ) ∈
(

R
P × R

P × (P S)K
)

, if

α ∗ h1 ∗ . . . ∗ hK �= 0, ∀h ∈ D, (13)

then the following statements hold:

1. The sequence generated by Algorithm 2 is bounded and

its limit points are in R × D. The value of the objective

function is the same for all these limit points.

2. For any limit point (λ∗, h∗) ∈ R × D, if for all k ∈
{1, . . . , K }, the matrix Ck generated using Tk(h

∗) is full

column rank and CT
k u �= 0, then (λ∗, h∗) = T (h∗) and

(λ∗, h∗) is a stationary point of the problem (P1).

The proof relies on the fact that the objective function is

coercive, smooth, that each iteration of the algorithm is a reg-

ular mapping that makes the value of the objective function

decrease. It also exploits the fact that every problem (Pk) has

a unique solution. The detailed proof of the proposition is

given in Appendix.

3.5 Initialization of the Algorithm and Restart

First, it is interesting to note that the ALS algorithm does

not need any initialization for λ. Moreover, the initial ker-

nel values (hk)1≤k≤K must satisfy the constraints and there-

fore belong to D. When the problem (P1) has a global min-

imizer, we denote by I ⊂ D the non-empty convergence set

such that the ALS algorithm converges to a global minimizer

when it has been initialized with an element of I. Surpris-

ingly, after running intensively the ALS algorithm, it appears

that in many situations I is actually large. In order to illus-

trate this aspect, we have chosen a simple initialization. It

consists of initializing our algorithm by drawing a random

variable uniformly distributed in D. This is easily achieved

(Muller 1959) by using5

hk = h

‖h‖2
, with h ∼ NS(0, I d),

where NS(0, I d) is the centered normal distribution in R
S .

Our experiments will show that P (h /∈ I) is often signifi-

cantly smaller than 1 when h is uniformly distributed in D.

Moreover, an advantage of this random initialization is that

we can use a “restart” strategy to explore D. More precisely,

we propose to run the ALS algorithm R times, for R ∈ N,

and to return the result for which the objective function is the

smallest. The probability that such a strategy fails to provide

a global minimizer is equal to the probability that none of the

5 For simplicity, in the formula below, we do not mention the mapping

of R
S into R

P necessary to build hk .

R independent initializations belong to I, i.e.,

P (not global) = [P (h /∈ I)]R

which decays rapidly to 0, when P (h ∈ I) is not negligible.

For instance, to guarantee

P (not global) ≤ ε

for ε > 0, we must take

R ≥ Rε = log(ε)

log (P (h /∈ I))
. (14)

Note that the number of restarts does not increase signifi-

cantly when ε decreases. However, when P (h ∈ I) is small

(or negligible) we have

Rε ∼ − log(ε)

P (h ∈ I)
.

The proposed “restart” strategy is therefore only reasonable

when P (h ∈ I) is not too small.

4 Approximation Experiments

4.1 Simulation Scenario

Our first goal is to empirically assess the ability of a com-

position of convolutions to approximate a given target atom

H ∈ R
P . We are also interested in observing the influence

of the number of kernels K and of the size of the kernels

on the approximation error. In order to do so, this section

presents results obtained for several 1D and 2D target atoms

H (i.e., d = 1 or 2) that have been selected from dictionaries

commonly used in signal and image processing.

For all the experiments in Sect. 4, we consider a size N ∈
N, a dimension d ∈ {1, 2} and take P = {0, . . . , N −1}d . We

consider a target atom H ∈ R
P , a code α ∈ R

P and a zero

mean Gaussian noise b ∈ R
P of variance σ 2. Throughout

these experiments, we explore parameters up to K = 11 and

S = 25. Moreover, for a dimension d ∈ {1, 2} and a size c ∈
N, we always consider the support mappings (Sk)1≤k≤K ∈
(P S)K such that for all k ∈ {1, . . . , K }

rg
(

Sk
)

= k{−c, . . . , 0, . . . , c}d . (15)

For example with two 2D kernels h1 and h2 and a size c = 1,

their support mappings are set to rg
(

S1
)

= {−1, 0, 1} ×
{−1, 0, 1} and rg

(

S2
)

= {−2, 0, 2} × {−2, 0, 2}, which

means that both kernels have S = 9 authorized non-zero

elements.

Note that centering these support mappings on p = 0 is

possible because of the periodization of R
P . Figure 1 shows



an example of support mapping obtained for K = 4, d = 2

and c = 1.

It is not difficult to show (for instance, by induction) that

the reachable support defined in (3) associated with the sup-

port mappings defined in (15) is:

S =
{

K
∑

k=1

−ck, . . . ,

K
∑

k=1

ck

}d

=
{

−c
K (K + 1)

2
, . . . , c

K (K + 1)

2

}d

.

To continue with the previous example, the convolution

of h1 with h2 can reach the set S = {−3, . . . , 3}2, which

contains 49 pixels. Therefore, the width of S is given by

K (K + 1)c and its size (length or area) is (K (K + 1)c)d .

Note that the size of S is usually much smaller than the size

of the search space, equal to K (2c + 1)d . The ratio between

these two quantities corresponds to a “compression ratio”

when describing the atom with convolution kernels. This

ratio behaves like K 2d−1

2d when both c and K grow. Table 1

shows the compression ratio for a few values of (K , c) and

d ∈ {1, 2}. The gain is clearly more interesting when increas-

ing K compared to increasing c.

For most experiments, the support of H is contained into

S. When it is the case, we provide an indicator for the ability

of the composition of convolutions to reduce the search space

while filling the target atom’s support. This indicator G is the

ratio between the size of the effective support of H and the

size of the actual search space using the K S-sparse kernels,

i.e.,

G = # suppeff(H)

K (2c + 1)d

where

suppeff(H) =
{

p ∈ P | |Hp| ≥ 10−4(maxp∈P |Hp|)
}

.

The role of the effective support is to realistically account for

the energy localization in H . We will provide some values

of G for the tests presented in this section.

Table 1 Compression ratio (K (K+1)c)d

K (2c+1)d for various K and c in

dimension d = 1 and d = 2

Compression ratio K = 3 K = 4 K = 6 K = 10

d = 1 c = 1(S=3) 0.67 1.00 1.67 3.00

c = 2(S=5) 0.80 1.20 2.00 3.60

c = 3(S=7) 0.86 1.29 2.14 3.86

d = 2 c = 1(S=9) 1.33 4.00 16.67 90.00

c = 2(S=25) 1.92 5.76 24.00 129.60

c = 3(S=49) 2.20 6.61 27.55 148.78

For each experiment, the quantities N , d, H , α, σ , K , c and

the number R of restarts are provided. Given these quantities,

we compute u according to (1). Then, Algorithm 2 is run for

a given number R of restarts and the result with the smallest

objective function value is kept. The result of this process is

denoted as (λ, (hk)1≤k≤K ) ∈ R × D in what follows.

Given a result (λ, (hk)1≤k≤K ) ∈ R × D, we evaluate the

quality of the approximation of H by λh1 ∗ · · · ∗ hK using

the peak-signal-to-noise ratio (PSNR). Moreover, in order to

consider that the size of the support of H can be much smaller

than #P , the PSNR is normalized according to the size of the

effective support of H . More precisely, it is defined by

PSNRH = 10 log10

(

r2

MSEH

)

where r = maxp∈P (Hp) − minp∈P (Hp) is the dynamic

range of the atom H and the mean-square-error (MSE) is

defined by:

MSEH = ‖λh1 ∗ · · · ∗ hK − H‖2
2

# suppeff(H)
. (16)

Note that the usual PSNR and MSE are normalised by the

whole image size #P instead of # suppeff(H). The normal-

ization defined in (16) is motivated by the nature of most

atoms studied in this section: though their support may span

over the whole set P , most of their energy is concentrated in

a small region.

Note that in noisy settings, PSNR values are provided

in addition to the noise variance σ 2. These PSNR values

inform us on the degradation between α ∗ H and u, and

cannot be compared to the values of PSNRH , which concern

the reconstructed atom only. The only exception is the first

experiment, of paragraph 4.2.1, where the code α is a Dirac

delta function.

We also provide a figure of merit reflecting both the qual-

ity of the convergence and the level of regularization induced

by the composition of convolutions. The Normalized Recon-

struction Error (NRE) is defined as

NRE = ‖λα ∗ h1 ∗ · · · ∗ hK − u‖2
2

‖u‖2
2

. (17)

When NRE is large, either the convergence has not been

reached or the values of K and S are too small to obtain a

good approximation of H . When it is small, the algorithm has

converged to a stationary point close to a global minimum

and the values of K and S provide a good approximation of

u. Note that this last property can be a problem when u is

contaminated by a strong noise.

Finally, in order to assess the additional difficulty induced

by the convolution with the code α, we provide a measure

of conditioning. Indeed, recovering H from u can be a badly



conditioned problem (see (1)) yielding instabilities. For every

experiment where α is not a Dirac delta function, a histogram

of the values of the modulus of its Fourier transform |α̂| is

used to measure conditioning. The greater the range over

which these values span, the worse the conditioning. The

case of a sparse α seems to be the best compromise between

conditioning and redundancy, the latter being crucial to get

a stable approximation of H in the presence of noise.

Note that NRE can be small whatever the conditioning

because the value of the denominator in (17) depends on α.

For this reason, PSNRH is still the most relevant indicator of

the success of the algorithm.

4.2 1D Targets

4.2.1 Apodized Modified Discrete Cosine

The modified discrete cosine transform (MDCT) has been

successfully used in several signal processing applications

such as audio coding (Painter and Spanias 2000). The aim

of the proposed experiment is to approximate an apodized

modified discrete cosine (MDC) with a composition of con-

volutions. In order to do so, we apply the inverse MDCT to a

Dirac delta function located at a given frequency, in a signal

of size 512 (i.e., d = 1). We then apodize the MDC using

the sine window (wp)0≤p≤255 defined by:

wp =











0 if p ∈ {0, . . . , 127}
sin

[

π
(p−128)

256

]

if p ∈ {128, . . . , 383}.
0 if p ∈ {384, . . . , 512}

This type of window is, for instance, used in MDCT

analysis for time-domain aliasing cancellation (Princen and

Bradley 1986).

Figures 2 and 3 show examples of target atoms H obtained

for frequencies 10Hz and 100Hz. The code α used in this

experiment is a Dirac delta function located at p = 256.

In this simple, noiseless case, u equals H . As for all sim-

ulations conducted in this section, the kernel supports have

been defined according to (15). We have used R = 50 restarts

because the simulation is very fast.

Moreover, we have considered 5 ≤ K ≤ 11 and 5 ≤ S =
2c+1 ≤ 11, corresponding to the values of PSNRH reported

in Table 2. One can see that the higher K and S, the better the

approximation of H . This result is expected since increasing

these parameters confers more flexibility to describe the tar-

get atom H , leading to a lower resulting objective function

value (after algorithm convergence), which is inversely pro-

portional to PSNRH . Note that values of PSNRH above 50

dB are obtained in many cases.

The approximations obtained for frequencies 10 and 100,

both with K = 9, S = 2c + 1 = 9, are depicted in Figs. 2

and 3, respectively. More precisely, each figure shows the

Table 2 MDC approximation for frequency 100 Hz: PSNRH for

several values of K and c

PSNRH (dB) K = 5 K = 7 K = 9 K = 11

c = 2 14.43 17.32 23.81 38.26

c = 3 16.23 23.02 46.24 51.48

c = 4 18.45 34.84 54.32 54.33

c = 5 21.60 53.70 54.82 55.73

Fig. 2 Approximation of an apodized frequency 10 MDC by the

convolution of K = 9 kernels of sparsity S = 9 (PSNRH = 58.88 dB)

Fig. 3 Approximation of an apodized frequency 100 MDC by the

convolution of K = 9 kernels of sparsity S = 9 (PSNRH = 54.32 dB)

approximation λh1 ∗ · · · ∗ hK and the atom H . Note that the

resulting approximations are very accurate, and G = 256
9×9

=
3.16.

The same experiment has been conducted for the fre-

quency 100 with K = 9, S = 2c + 1 = 9 and R = 25

restarts, with an additive white Gaussian noise of variance

σ 2 ∈
[

10−6, 10−3
]

. Figure 4 shows PSNRH as a function of

the noise variance. Note that PSNRH is always higher than

the PSNR between u and α ∗ H .6 This means that the model

(P0) reduces noise when u is a noisy apodized MDC. This

6 In this case the comparison is relevant, because α is a Dirac delta

function.



Fig. 4 PSNRH for the approximation of the apodized frequency 100

MDC by the convolution of K = 9 kernels of sparsity S = 9, for

10−6 ≤ σ 2 ≤ 10−3 (blue curve). The green curve is the PSNR between

u and α ∗ H (Color figure online)

denoising would be further improved with a sparse code α

containing several non-zero coefficients.

4.2.2 Sinc Function

This experiment aims at approximating the sinc function used

to perform a linear zoom (Whittaker 1915). The sinc inter-

polation has been successfully approximated with splines

(Aldroubi et al. 1992). Though the spline interpolation can be

interpreted as a composition of convolutions, we use different

kernel supports. The zoom factor is Z = 3 and the signal is of

size 128. We therefore have d = 1 and N = 3 × 128 = 384.

The target atom H is a sinc function obtained by computing

the inverse Fourier transform of the characteristic function of

a centered interval of length N/3. The signal to be zoomed

corresponds to the first 128 values of the 128th column of

the Barbara image.

The code α has been built by upsampling this signal by

a factor Z = 3 (see Fig. 5). This upsampling has been per-

formed by inserting 2 zeros between every couple of neigh-

bors in the initial signal. We are obviously not in a case where

α is sparse. Moreover, the histogram of its Fourier transform

displayed in Fig. 6 shows that the convolution with α is not

very well conditioned. Indeed, the ratio between the highest

Fourier coefficient and the lowest is 728.

The signal u has been constructed according to (1) for

different noise levels. Moreover, as for all experiments in

this section, kernel supports have been set according to (15).

First, we have considered K = 9 and c = 4 (i.e., S = 9)

and run R = 50 restarts of Algorithm 2 for noiseless and

noisy signals (σ 2 = 5). Figures 7 and 8 shows the target sinc

atom H and the approximation λ ∗ h1 ∗ · · · ∗ hK , for the

noiseless and noisy cases. In the noiseless case (Fig. 7), we

see that the resulting composition of convolutions λ ∗ h1 ∗
· · · ∗ hK is a good approximation of the sinc function. In

the noisy case (Fig. 8), the approximation is less accurate,

Fig. 5 Code α used in the the approximation of a 1D sinc function

Fig. 6 Histogram of |α̂|, the modulus of the Fourier transform of the

code

Fig. 7 Approximation of a noiseless 1D sinc function with (K , c) =
(9, 4). The target sinc atom H and the composition of convolutions

λh1 ∗ · · · ∗ hK . PSNRH = 44.47 dB

which is expected since there is no regularization and the

convolution with α is ill-conditioned.

The same experiment has been run for K ∈ {3, 5, 7, 9}
and c ∈ {1, 2, 3} (i.e. S ∈ {3, 5, 7}), R = 50, for both cases

σ 2 = 0 and σ 2 = 5. In the latter case, the PSNR between u

and α ∗ H is 28.20 dB.



Fig. 8 Approximation of a noisy (σ 2 = 5) 1D sinc function with

(K , c) = (9, 4). The target sinc atom H and the composition of convo-

lutions λh1 ∗ · · · ∗ hK . PSNRH = 35.68 dB

Table 3 Sinc approximation: PSNRH for σ 2 = 5 (R = 50)

PSNRH (dB) K = 3 K = 5 K = 7 K = 9

c = 1 31.66 33.14 34.53 35.77

c = 2 37.34 38.03 37.32 36.67

c = 3 37.69 37.61 36.63 36.82

Fig. 9 Evolution of PSNRH and NRE, for the sinc target atom, with

respect to the noise variance σ 2, for K = 9 , c = 3

Tables 3 and 5 contain the values of PSNRH obtained

for these parameters. In the noisy case (Table 3), PSNRH is

only a little smaller than that of the noiseless case (Table 5),

which suggests that the method is robust to noise. To confirm

this, a single case (K = 9, c = 3) is run for an increasing

noise variance 0 < σ 2 < 20. Figure 9 shows that when the

noise variance increases (and PSNR between u and α ∗ H

decreases), PSNRH decreases at the same rate.

Moreover, in the presence of noise, increasing parameters

K ans S does not clearly improve PSNRH . This is due to

the lack of regularization, when K and c are large. We do not

observe this phenomenon in Table 5, which contains PSNRH

results for the noiseless case.

Table 4 Sinc approximation: NRE for σ 2 = 5 (R = 50)

NRE × 10−3 K = 3 K = 5 K = 7 K = 9

c = 1 5.0 4.6 4.1 4.1

c = 2 3.5 3.5 3.4 3.4

c = 3 3.5 3.4 3.3 3.2

Table 5 Sinc approximation: PSNRH for σ 2 = 0 (R = 50)

PSNRH (dB) K = 3 K = 5 K = 7 K = 9

c = 1 31.46 33.91 32.89 33.79

c = 2 37.59 38.95 39.29 39.49

c = 3 39.14 41.86 41.93 42.07

Table 6 Sinc approximation: NRE for σ 2 = 0 (R = 50)

NRE × 10−3 K = 3 K = 5 K = 7 K = 9

c = 1 2.0 1.2 1.2 1.1

c = 2 0.3 0.2 0.2 0.2

c = 3 0.2 0.1 0.1 0.1

Tables 4 and 6 show, for the same experiments, the conver-

gence criterion defined in (17). We observe that increasing

K and c improves the criterion NRE, even in the noisy case,

which is expected because of the conditioning of the convo-

lution with α. This simulation shows that it is possible to have

a good reconstruction of the signal u with a poor approxi-

mation of the atom H when the convolution with α is poorly

conditioned.

Finally, it is interesting to test the stability of the proposed

model to an imperfect knowledge of α. For this purpose, a

Gaussian noise bα ∼ N (0, σ 2
α ) has been added to the code

α used to solve (P1) (u is still built with a noiseless α). We

have set K = 9 and c = 3, i.e., S = 7, and have run the

algorithm for several noise levels 0 ≤ σ 2
α ≤ 15. Figure 10

shows that PSNRH is stable with respect to σ 2
α , even though

NRE tends to increase with σ 2
α . This suggest that the model

is robust to an imperfect knowledge of α.

Finally, it is important to note that all the kernels used in

these 1D experiments have the same support. Despite this

constraint, the optimized kernels approximate very differ-

ent target atoms such as MDC at frequency 10 and 100

and a sinc function. This shows that the proposed model

based on compositions of convolutions is reasonably rich and

versatile.

4.3 2D Targets

4.3.1 Curvelet

The aim of this experiment is to approximate a curvelet atom

H in an image (i.e., d = 2) of size N × N with N = 128.



Fig. 10 Evolution of PSNRH , for the sinc target atom, with respect to

the noise variance σα on the code α, for K = 9 , c = 3

The curvelet is obtained by applying the inverse curvelet

transform to a Dirac delta function, using the MCALAB

toolbox (Fadili et al. 2010). The code α corresponds to a

Dirac delta function located at the barycenter of the curvelet.

Once again, the support mapping is the one described in (15),

with either c = 1 or c = 2. Note that this support mapping

does not take the anisotropy of the curvelet into account.

This is an unfavorable situation. All values of K satisfying

3 ≤ K ≤ 11 have been tested. We consider a noiseless case

so that u is a simple translation of H . We have used R = 10

restarts.

Figure 11 shows the target atom H and λh1 ∗ · · · ∗ hK ,

for K = 7 and c = 2. For these parameters, the size

ratio between the effective support of the curvelet and the

actual search space is G = 42.72. We observe that, although

PSNRH = 44.30 dB, the accuracy of the approximation is

not the same in different parts of the image. In particular, the

tails of curvelet are not properly captured.

Table 7 contains the values of PSNRH for various val-

ues of K and c. In this experiment, we were expecting that

increasing K and S would improve the accuracy. It is not

exactly what we observe in Table 7. For S = 5×5, increasing

K beyond a certain value actually makes PSNRH decrease.

This result can be explained by a lack of convergence, as is

confirmed in Table 8. This problem could easily be corrected

by an initialization exploiting the results obtained for smaller

values of K and c.

Finally, Fig. 12 shows the kernels (hk)1≤k≤K computed

for K = 7 and S = 5 × 5. We can observe that many ker-

nel coefficients are close to zero, i.e., only the coefficients

along the main direction of the curvelet have significant val-

ues. It is obvious that the simple isotropic dilation of the sup-

ports defined by (15) is not appropriate for this curvelet. This

raises the question of the adaptation of the support mappings

(Sk)1≤k≤K to the atom’s geometry.

Fig. 11 Curvelet approximation with K = 7 and S = 5 × 5.

Comparison between λh1 ∗ . . . ∗ h7 (top) and the target curvelet atom

H (bottom). We have PSNRH = 44.30

Table 7 Curvelet approximation: PSNRH for several values of K and

S

PSNRH (dB) K = 3 K = 5 K = 7 K = 9 K = 11

S = 3 × 3 33.06 36.55 36.52 37.22 37.01

S = 5 × 5 39.99 45.81 44.30 40.74 38.05

Table 8 Curvelet approximation: NRE for several values of K and c

NRE K = 3 K = 5 K = 7 K = 9 K = 11

c = 1 1.99 0.89 0.90 0.76 0.80

c = 2 0.40 0.11 0.15 0.34 0.63

4.3.2 Cosine

The aim of this experiment is to approximate an atom repre-

senting a 2D cosine function in an image of size 64×64 (i.e.,

d = 2 and N = 64). In the context of image processing, such

an atom can be seen as a large local cosine or a Fourier atom.

Both are widely used in image processing. The interest of



Fig. 12 Curvelet approximation for K = 7 and S = 5 × 5. Zoom on

the computed kernels (hk)1≤k≤7. The colormap is flattened around 0 to

highlight the higher coefficients

this atom is that it covers the whole image and is of a rather

large support. Beside, patches of this size are difficult to han-

dle with existing DL strategies. The considered atom is given

by

Hp = cos

(

2π
〈p, (2, 5)〉

N

)

,∀p ∈ {0, . . . , 63}2.

The code α is a sparse vector whose support elements are

randomly chosen. More precisely, for all p ∈ P , there is

a probability 10−1 that αp �= 0. The values of the non-zero

elements are then set according to the centered normal distri-

bution N (0, 1). In other words, for a given p, the elements of

code αp are assumed to be independent and identically dis-

tributed according to a Bernoulli-Gaussian distribution, that

has been widely used in sparse signal and image deconvolu-

tion (Champagnat et al. 1996; Kail et al. 2012; Quinsac et al.

2011). Therefore, u contains a few weighted translations of

the cosine atom H ,7 which should result in a better approxi-

mation of H using Algorithm 2. Figures 13 and 14 show the

code and the histogram of its Fourier transform. Note that the

ratio between the largest and the smallest Fourier coefficients

(in modulus) is 91, which corresponds to a reasonable con-

ditioning. The target u is built with additive Gaussian noise

7 A sum of cosines of same frequency and different phases will yield a

cosine of unchanged frequency.

Fig. 13 Cosine experiment: code α

Fig. 14 Cosine experiment: modulus of the Fourier transform of the

code |α̂|

of variance σ 2 = 0.5, which corresponds to a normalized

PSNRH between α ∗ H and u of 22.08.

The support mapping is the same as for the previous

experiment (see 15) with, either c = 1 (S = 3 × 3) or

c = 2 (S = 5 × 5). Different Values of K have been tested

in the range 3 ≤ K ≤ 11, each time with R = 15 restarts.

Tables 9 and 10 provide the PSNRH and NRE indica-

tors in the studied range of parameters. In this experiment,

we expect to obtain a somewhat regularized atom thanks to

the repetitions induced by the sparse (and reasonably con-

ditioned) code α. We observe in Table 9 that PSNRH rises

above 30 if parameters K and S are large enough. Even for

K = 9 and c = 2, the ratio between the number of vari-

ables describing the kernels and the size of the cosine is

G = 64×64
9×5×5

= 18.20. Table 10 shows a steady improvement

of NRE when K and c increase.

Figures 15 and 16 show the cosine image u, its approxima-

tion λα ∗h1 ∗ · · · ∗hK , the actual atom H and λh1 ∗ · · · ∗hK ,

for K = 7 and c = 2. The results obtained here are quite



Table 9 2D cosine approximation: PSNRH

PSNRH (dB) K = 3 K = 5 K = 7 K = 9 K = 11

c = 1 11.79 12.27 13.81 25.15 30.09

c = 2 11.94 15.97 41.44 38.94 39.82

Table 10 2D cosine approximation: NRE

NRE K = 3 K = 5 K = 7 K = 9 K = 11

c = 1 1.02 0.89 0.41 0.04 0.02

c = 2 0.96 0.24 0.01 0.01 0.01

Fig. 15 Cosine approximation with K = 7, c = 2, and Gaussian

noise of variance σ 2 = 0.5. Cosine image u (left) and approximation

λα ∗ h1 ∗ · · · ∗ hK (right)

Fig. 16 Cosine approximation with K = 7, c = 2, and Gaussian

noise of variance σ 2 = 0.5. True atom H (left) and approximation

λh1 ∗ · · · ∗ hK (right)

accurate even though the cosine image was corrupted by addi-

tive noise.

Figure 17 shows the obtained kernels (hk)1≤k≤K . As

opposed to the kernels obtained for the curvelet approxima-

tion, the energy is more uniformly distributed on the kernel

supports. These kernels and the curvelet kernels are provided

in a Matlab file available online (see http://chabiron.perso.

enseeiht.fr/FTL_demo/FTL_demo_v1.1.zip).

This experiment was also run with fixed K = 7 and c = 2

for an increasing noise variance, to test the robustness of

the proposed model. Figure 18 shows the values of PSNRH

associated with the reconstructed image, as a function of the

Fig. 17 Cosine approximation with K = 7, c = 2, and Gaussian noise

of variance σ 2 = 0.5. Zoom on the computed kernels (hk)1≤k≤7)

Fig. 18 Evolution of PSNRH of a reconstructed cosine atom when the

noise variance σ 2 varies in [0, 2], for K = 6 and c = 2(S = 5 × 5)

noise variance. Note that PSNRH decreases at the same rate

as the PSNR measuring the degradation between u and α∗H .

4.3.3 Wavelet Decomposition

In this experiment, we consider a scenario reflecting the diffi-

culties of DL. More precisely, we consider d = 2, N = 512,

a target atom H defined as a wavelet atom and a code α result-

ing from the wavelet coefficients of a natural image. More

precisely, the following operations have been conducted



Fig. 19 Logarithm of the histogram of |α̂|, the modulus of the Fourier

transform of the code. Approximation coefficients (top) and Horizontal

detail coefficients (bottom)

– Select an image (here the Barbara image).

– Compute the wavelet transform of the image using the

Daubechies wavelet db4 at level L . We used the official

Matlab wavelet toolbox with L = 3.

– Select the set of coefficients associated with an ori-

entation and a given decomposition level l such that

1 ≤ l ≤ L . The low frequency at level l = L = 3

was considered for the first experiment and the horizon-

tal detail at level l = 3 for the second experiment.

– Set the non selected wavelet coefficients to zero and com-

pute the inverse wavelet transform. Add white Gaussian

noise of variance σ 2 = 5 to obtain u.

– Defineα as a zoom of factor 2l of the selected coefficients,

where the zoom consists of interpolating with zeros.

– Solve problem (Pk) with the code α, the target atom u,

R = 1, with a support mapping defined by (15) for the

parameters K = 6 and S = 3 × 3 (i.e. c = 1). Note

that the knowledge of the supports associated with the

composition of convolutions leading to the wavelet atom

was not used in this experiment.

The results obtained for the low frequency wavelet atom

at level 3 and the horizontal detail wavelet atom are shown

Fig. 20 Estimation of the low frequency wavelet atom at level 3. Target

u (left) and λα ∗ h1 ∗ · · · ∗ hK (right). NRE = 10−3

Fig. 21 Estimation of the low frequency wavelet atom at level 3. Atom

H (left) and λ ∗ h1 ∗ · · · ∗ hK (right). PSNRH = 29.94

in Figs. 20, 21, 22 and 23. Note that the conditioning of the

convolution with α is less favorable for the estimation of

the low frequency wavelet atom. Indeed, α is sparser when

selecting detail coefficients, which results in a better condi-

tioned problem. Figure 19 shows histograms of |α̂| for both

cases. Note that the ratio between the largest and the small-

est Fourier coefficients (in modulus) is 532 for the horizontal

detail case, and 6.67 × 104 in the approximation case.

For both experiments, the composition of convolutions is

close to the corresponding wavelet atom. However, PSNRH

is larger for the horizontal detail case, which suggests

that a good conditioning for α is crucial. Unsurprisingly,

convergence is better for the approximation coefficients

case (NRE = 10−3) than for the horizontal detail case

(NRE = 0.68), though our primary concern remains accu-

racy on atom reconstruction. Note, however, that we did

not run multiple restarts: a better convergence could still be

achieved by increasing R.

Finally, we rerun both experiments with additive Gaussian

noise of variance σ 2
α = 10 corrupting the code α. Note that

this noise degrades the conditioning of the convolution with

α. For the horizontal detail coefficients, we obtain
max|α̂|
min|α̂| =

4.99 × 103, NRE = 1.62 and PSNRH = 29.09. For the

approximation coefficients, we obtain
max|α̂|
min|α̂| = 8.47×104,

NRE = 0.002 and PSNRH = 27.17. The horizontal detail

case still gives a better result, as expected. Both approxima-

tions λh1 ∗ · · · ∗ hK are shown in Figs. 24 and 25.



Fig. 22 Estimation of the horizontal detail wavelet atom at level 3.

Target u (left) and approximation λα∗h1∗· · ·∗hK (right). NRE = 0.68

Fig. 23 Estimation of the horizontal detail wavelet atom at level 3.

Atom H (left) and approximation λ ∗ h1 ∗ · · · ∗ hK (right). PSNRH =
36.61

Fig. 24 Approximation obtained with a noisy code α (σ 2
α = 10).

Horizontal detail atom H (left) and its approximation λh1 ∗ · · · ∗ hK

(right) (PSNRH = 29.09, NRE = 1.62)

Fig. 25 Approximation obtained with a noisy code α (σ 2
α = 10).

Approximation atom (left) and its approximation λh1 ∗ · · · ∗ hK (right)

(PSNRH = 27.17, NRE = 2 × 10−3)

As for 1D atoms, it is important to note that all the kernels

used in these 2D experiments have the same support. Again,

despite this constraint, the optimized kernels approximate

very different target atoms such as a curvelet, a cosine and

a wavelet. This shows that the composition of convolution

model is reasonably rich and versatile. This potential will be

exploited to obtain dictionaries well adapted to a given image

class, once the dictionaries are learnt from datasets.

4.4 Dictionary Learning Experiment

As a follow-up to the previous experiment related to wavelet

decomposition, the experiment presented in this section puts

the method more in context with the intended application,

namely DL. Basically, it is the same experiment as the one

presented in Sect. 4.3.3 except that the code is learnt through

a sparse coding scheme instead of being supposed known.

We consider d = 2, N = 256, a wavelet atom H and a

code α∗ resulting from the wavelet coefficients of the barbara

image. More precisely, the following operations have been

conducted

– Build α∗, H and u exactly as in Sect. 4.3.3 for the case

of horizontal detail coefficients. That is, α is the level 23

upsampling of the horizontal detail coefficients, H is the

level 3 horizontal detail wavelet atom, and u = α∗ ∗ H

is the partial wavelet reconstruction of the input image

(using the level 3 horizontal coefficients only).

– Initialize α and the kernels (hk)1≤k≤K with random val-

ues, where K = 5 and S = 3 × 3, with the support

mapping defined by (15).

– Iterate between:

– Solve a Basis Pursuit Denoising (BPDN) problem to

update α,

– Solve a variant of (P1) that does not contain λ with

the updated code α,

Although, this is a preliminary study and we have no proof

of convergence, this aims at finding a solution of the follow-

ing DL problem:

argminα,(hk )1≤k≤K
‖α ∗ h1 ∗ · · · ∗ hK − u‖2

2 + γ ‖αl‖1

subject to h ∈ (RP )K , α ∈ R
P ,

and supp
(

hk
)

⊂ rg
(

Sk
)

,∀k ∈ {1, . . . , K },
and ‖hk‖2 ≤ 1,∀k ∈ {1, . . . , K },
and supp (α) ⊂ Sα, j

with Sα, j = {p′ ∈ P|∀p ∈ P, p′ = j p}, for some chosen

integer j . The role of the constraint on the support of α is

to improve the incoherence of the set of atoms of our dic-

tionary. Note that the constraints on the kernel norms have

been changed to ‖hk‖2 ≤ 1,∀k ∈ {1, . . . , K } and that the

weight λ has been removed. To solve the sparse coding part



Table 11 DL experiment: PSNRH , NRE and sparsity for various

support constraints on the code

Initialization PSNRH NRE Sparsity (%)

Noisy α∗, j = 8 30.59 0.04 1.0

Random, j = 8 19.10 0.04 1.1

Random, j = 4 18.21 0.07 1.9

In some cases, PSNRH is computed after a translation and/or a sign

change

of this problem, we use BPDN (Chen et al. 1998) with a

simple Iterative Thresholding algorithm (Daubechies et al.

2004) with the renormalization of the dictionary proposed in

(Malgouyres and Zeng 2009).

The experiment is run for different initializations and sup-

ports for the code. First, the initial code is chosen as the

solution α∗ perturbed by additive Gaussian noise of variance

σ 2 = 5, and j = 8 is chosen for the support constraint on α.

This is supposed to be the most favorable case since α∗ has

been built as a level 8 upsampling. In another experiment,

we use a Gaussian random initialisation for j ∈ {4, 8}. The

L1 penalty γ has been empirically set to 10.

Table 11 shows the results obtained in terms of PSNRH ,

NRE and sparsity level, whereas Fig. 26 shows the atoms

obtained with a randomly initialized code and j ∈ {4, 8}.
Though this experiment is only a first attempt for learning

both the code and the atoms with our model, it appears that

enforcing incoherence of the atoms of our dictionary will

play a central role to fully learn fast transforms.

5 Convergence Assessment

5.1 Simulation Scenario

This section evaluates

P (not global) and Rε = log(ε)

log (1 − P (h ∈ I))

for various supports, kernels and noise levels. All the exper-

iments have been conducted with one-dimensional signals

of size #P = 128 and (K , S) ∈ {2, . . . , 7} × {2, . . . , 10}
and random support mappings S = (Sk)1≤k≤K . For every

k ∈ {1, . . . , K }, the support mapping Sk maps {1, . . . , S}
into S distinct elements randomly drawn according to a uni-

form distribution in {1, ..., 10}. Moreover, for any (k1, k2) ∈
{1, . . . , K }2, with k1 �= k2, rg

(

Sk1
)

and rg
(

Sk2
)

are inde-

pendent random vectors. We also consider K independent

random kernels

hk
p

{

∼ N (0, 1) , if p ∈ rg
(

Sk
)

= 0 , otherwise.

Fig. 26 Estimation of the horizontal detail wavelet atom at level 3 with

code unknown. Atom H (top left) and approximations with j = 8 (top

right), j = 4 (bottom left) and j = 8 with a favorable initialization

(bottom right)

Finally, the code is set to α = (1, 0, . . . , 0) (i.e., no transla-

tion) and the image u is obtained by convolving the kernels,

i.e.,

u = α ∗ h1 ∗ · · · ∗ hK + b

where b ∼ N (0, σ 2
1S), σ 2 is the noise variance and the set

S is the “reachable support” defined in (3). Note that u is

zero outside of the reachable support.

5.2 Performance Measure

Given a problem defined by (u, α, S), a global minimizer

h∗ = (h∗,k)1≤k≤K ∈ (RP )K of (P0) and a solution h =
(h

k
)1≤k≤K ∈ (RP )K provided by Algorithm 2, we denote

the approximation error by

Ea(u, α, S) = ‖α ∗ h∗,1 ∗ . . . ∗ h∗,K − u‖2
2.

For the problem constructed in the previous paragraph, we

expect that

Ea(u, α, S) ≤ σ 2 (#S) ,

where σ 2 is the noise variance. Moreover, we know that

Ea(u, α, S) = 0 for σ = 0. We also denote the numerical

error by

En

(

h, u, α, S
)

= ‖α ∗ h
1 ∗ . . . ∗ h

K − u‖2
2 − Ea(u, α, S).



The only quantity that we can actually observe is the sum of

these two errors

‖α ∗ h
1 ∗ . . . ∗ h

K − u‖2
2 = Ea(u, α, S) + En((h, u, α, S).

We therefore consider that Algorithm 2 has converged to a

global minimum if

‖α ∗ h
1 ∗ . . . ∗ h

K − u‖2
2 ≤ σ 2 (#S) + 10−4‖u‖2

2. (18)

Of course, this notion is not very accurate when σ 2 is large.

5.3 Evaluation of P (not global)

For any fixed (K , S) ∈ {2, . . . , 6} × {2, . . . , 10}, we have

generated L = 50K 2 signals. Each signal is labelled by an

index l ∈ {1, . . . , L}. For every experiment, we consider

R = 25 random initializations according to a uniform distrib-

ution defined on the set of constraints associated with (P1), as

described in Sect. 3.5. The corresponding outcome of Algo-

rithm 2 is referred to as the r th result with r ∈ {1, . . . , R}.
Finally, for any (l, r) ∈ {1, . . . L}×{1, . . . , R}, we introduce

the following indicator function

1(l, r) =







1, if (18) holds for the r th result

obtained from the lth input,

0, otherwise.

The probability of reaching a global minimum of problem

(P1) is estimated as follows

P (global minimizer) ≃ 1

L R

L
∑

l=1

R
∑

r=1

1(l, r).

5.4 Results

Figures 27 and 28 show the results obtained in the noise-

less (σ 2 = 0) and noisy (σ 2 = 5 × 10−2) cases respec-

tively. In each figure, the curves show P (global minimizer)

and the number of restarts needed to ensure a failure prob-

ability lower than ε, Rǫ = log(ε)

log(1−P((hk )1≤k≤K ∈I))
for a given

value of K whereas the x axis indicates the support size S.

We can see that for very sparse kernels (S ≤ 3), the prob-

ability of success is quite high. However, this probability

drops significantly when the support size increases. Surpris-

ingly, P (global minimizer) increases when the support size

increases. The more kernels we use (i.e., the larger K ), the

steeper the decrease and increase. These results show that it

is possible to obtain convergence to a global minimum with

only a few restarts of the proposed algorithm even for rel-

atively large values of K . The last experiments obtained in

the noisy case show similar patterns. As a consequence, the

described convergence properties seem to be robust to noise.

Fig. 27 Convergence test for σ = 0: Estimated probability of reaching

a global minimum (top) for every K ∈ {2, . . . , 7} and corresponding

number of restarts Rǫ to guarantee P (global minimizer) ≥99 % (bot-

tom). For every K ∈ {2, . . . , 7}, the results have been averaged over

L = 50K 2 inputs from which we have computed R = 25 outputs

Fig. 28 Convergence test for σ 2 = 5 × 10−2: Estimated probability

of reaching a L2 ball of radius σ
√

#S around a global minimum (top)

for every K ∈ {2, . . . , 6} and corresponding number of restarts Rǫ

to guarantee P (global minimizer) ≥99 % (bottom). For every K ∈
{2, . . . , 6}, the results have been averaged over L = 50K 2 inputs, from

which we have computed R = 25 outputs

6 Conclusions and Perspectives

We introduced a new important problem whose purpose is

to mitigate the computational issues encountered in most

DL frameworks (which generally constrain the use of small

patches). We proposed to consider atoms defined as a compo-

sition of convolutions with sparse kernels. The determination

of these atoms required to solve a non-convex optimization

problem. Using the sparsity of kernels to reduce the search

space, we studied a computationally efficient algorithm based

on alternate least squares minimizations. This algorithm has

linear complexity with respect to the image size. It allows the



learning of fast transforms by the dictionary update stage and

permits to consider larger atoms. Our experiments showed

that compositions of convolutions can approximate accu-

rately many atom-like signals and images such as curvelets,

cosines and wavelets. This illustrates that the non-convex

optimization problem considered in this paper lends itself to

global optimization and that (despite the constraint on the

kernel supports) the considered setting is sufficiently rich

and versatile to approximate a large class of atoms. How-

ever, the full potential of these compositions of convolutions

for approximation purposes still remains to be assessed.

Future work includes the definition of a tree structure

for the proposed composition of kernel convolutions for DL

applications. Designing efficient rules to learn the kernel sup-

ports also remains a large and unexplored issue which might

have a huge impact on the performance of the proposed algo-

rithm. The typical strategies one can think of for improving

the supports is to adapt algorithms like the orthogonal match-

ing pursuit or to add a term in the energy favoring the sparsity

of the kernels. Also, the learning algorithms investigated in

the important literature related to deep learning (and in partic-

ular to convolutional networks) would deserve to be studied

in the context of convolutions with sparse kernels. Indeed,

as explained in Bengio and LeCun (2007), even if the con-

vergence of these algorithms is difficult to prove, they do not

seem to suffer from the convergence problems that plague

deep fully-connected neural nets.

In a similar direction, the experiments of Sect. 5 show

an unexpected behavior of the algorithm. Understanding for-

mally when the functional lends itself to global optimization

is a important question that we plan to address in the near

future.
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7 Appendix

7.1 Proof of Proposition 1

First notice that D is a compact set. Moreover, when (7)

holds, the objective function of (P1) is coercive in λ. Thus,

for any threshold µ, it is possible to build a compact set such

that the objective function evaluated at any (λ, h) outside this

compact set is larger thanµ. As a consequence, we can extract

a converging subsequence from any minimizing sequence.

Since the objective function of (P1) is continuous in a closed

domain, any limit point of this subsequence is a minimizer

of (P1).

7.2 Proof of Proposition 2

The proof of 1 hinges on formulating the expression of a sta-

tionary point of (P1), then showing that the Lagrange mul-

tipliers associated with the norm-to-one constraint for the

(hk)1≤k≤K are all equal to 0. First, considering the partial

differential of the objective function of (P1) with respect to

λ and a Lagrange multiplier γλ ≥ 0 for the constraint λ ≥ 0,

we obtain

λ‖α ∗ h1 ∗ · · · ∗ hK ‖2
2 −

〈

α ∗ h1 ∗ · · · ∗ hK , u
〉

= γλ

2
, (19)

and

λγλ = 0. (20)

Then, considering Lagrange multipliers γk ∈ R associ-

ated with each constraint ‖hk‖2 = 1, we have for all

k ∈ {1, . . . , K }

λH̃ k ∗ (λα ∗ h1 ∗ · · · ∗ hK − u) = γkhk, (21)

where H k is defined by (5). Taking the scalar product of (21)

with hk and using both ‖hk‖2 = 1 and (19), we obtain

γk = λ
γλ

2
= 0, ∀k ∈ {1, . . . , k}.

Hence, (21) takes the form, for all k ∈ {1, . . . , K }

λH̃ k ∗ (λα ∗ h1 ∗ · · · ∗ hK − u) = 0. (22)

When λ > 0, this immediately implies that the kernels g

defined by (8) satisfy

∂ E

∂hk
(h) = 0, ∀k ∈ {1, . . . K },

i.e., the kernels g ∈ (RP )K form a stationary point of (P0).

The proof of the item 2 is straightforward since for any

( f k)1≤k≤K ∈ (RP )K satisfying the constraints of (P0)
8, we

have

‖α ∗ g1 ∗ . . . ∗ gK − u‖2
2

= ‖λα ∗ h1 ∗ . . . ∗ hK − u‖2
2

≤
∥

∥

∥

∥

∥

(

K
∏

k=1

‖ f k‖2

)

α ∗ f 1

‖ f 1‖2
∗ . . . ∗ f K

‖ f K ‖2
− u

∥

∥

∥

∥

∥

2

2

≤ ‖α ∗ f 1 ∗ . . . ∗ f K − u‖2
2.

As a consequence, the kernels (gk)1≤k≤K defined by (8) form

a solution of (P0).

8 We further assume that ‖ f k‖2 �= 0, for all k ∈ {1, . . . , K }, since the

inequality is otherwise trivial.



7.3 Proof of Proposition 3

The first item of proposition 3 can be obtained directly since

1) the sequence of kernels generated by the algorithm belongs

to D and D is compact, 2) the objective function of (P1)

is coercive with respect to λ when (13) holds, and 3) the

objective function is continuous and decreases during the

iterative process.

To prove the second item of proposition 3, we consider a

limit point (λ∗, h∗) ∈ R × D. We denote by F the objec-

tive function of (P1) and denote by (λo, ho)o∈N a subse-

quence of (λn, hn)n∈N which converges to (λ∗, h∗). The fol-

lowing statements are trivially true, since F is continuous

and (F(λn, hn))n∈N decreases:

lim
o→∞

F
(

T (ho)
)

= lim
o→∞

F(λo, ho) = F(λ∗, h∗) (23)

However, if for any k inside {1, . . . , K }, we have CT
k u �= 0

and the matrix Ck generated using Tk(h
∗) is full column rank,

then there exist an open neighborhood of Tk(h
∗) such that

these conditions remain true for the matrices Ck generated

from kernels h in this neighborhood. As a consequence, the

kth iteration of the for loop is a continuous mapping on this

neighborhood. Finally, we deduce that there is a neighbor-

hood of h∗ in which T is continuous.

Since T is continuous in the vicinity of h∗ and (ho)o∈N

converges to (h∗), the sequence (T (ho))o∈N converges to

T (h∗) and (23) guarantees that

F
(

T (h∗)
)

= F(λ∗, h∗).

As a consequence, denoting h∗ = (h∗,k)1≤k≤K , for every k ∈
{1, . . . , K }, F(λ∗, h∗,k) is equal to the minimal value of (Pk).

Since Ck is full column rank, we know that this minimizer

is unique (see the end of Sect. 3.2) and therefore (λ∗, h∗,k)

is the unique minimizer of (Pk). We can then deduce that

(λ∗, h∗) = T (h∗).
Finally, we also know that (λ∗, h∗) is a stationary point

of (Pk). Combining all the equations stating that, for any

k, (λ∗, h∗,k) is a stationary point of (Pk), we can find that

(λ∗, h∗) is a stationary point of (P1).
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