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Measurement in the de Broglie-Bohm interpretation:
Double-slit, Stern-Gerlach and EPR-B

Michel Gondran
University Paris Dauphine, Lamsade, 75 016 Paris, France∗

Alexandre Gondran
École Nationale de l’Aviation Civile, 31000 Toulouse, France†

We propose a pedagogical presentation of measurement in the de Broglie-Bohm interpretation. In
this heterodox interpretation, the position of a quantum particle exists and is piloted by the phase
of the wave function. We show how this position explains determinism and realism in the three
most important experiments of quantum measurement: double-slit, Stern-Gerlach and EPR-B.
First, we present a numerical simulation of the double-slit experiment performed by Jönsson in

1961 with electrons. The method of Feynman path integrals allows to calculate the time dependent
wave function. It shows that the interference phenomena appears only some centimeters after the
slits. Moreover, the de Broglie-Bohm trajectories provide an explanation for the impact positions
of the particles. Finally, we show how these trajectories converge to classical trajectories.
Second, we present an analytic expression of the wave function in the Stern-Gerlach experiment.

This explicit solution requires the calculation of a Pauli spinor with a spatial extension. This
solution enables to demonstrate the decoherence of the wave function and the three postulates of
quantum measurement: quantization, the Born interpretation and wave function reduction. The
spinor spatial extension also enables the introduction of the de Broglie-Bohm trajectories, which
gives a very simple explanation of the particles’ impact and of the measurement process.
Third, we study the EPR-B experiment, the Bohm version of the Einstein-Podolsky-Rosen exper-

iment. Its theoretical resolution in space and time shows that a causal interpretation exists where
each atom has a position and a spin. Finally, we suggest that a physical explanation of non-local
influences is possible, compatible with Einstein’s point of view on relativity.

I. INTRODUCTION

"I saw the impossible done".1 This is how John Bell
describes his inexpressible surprise in 1952 upon the pub-
lication of an article by David Bohm2. The impossibility
came from a theorem by John von Neumann outlined in
1932 in his book The Mathematical Foundations of Quan-
tum Mechanics,3 which seemed to show the impossibil-
ity of adding "hidden variables" to quantum mechanics.
This impossibility, with its physical interpretation, be-
came almost a postulate of quantum mechanics, based
on von Neumann’s indisputable authority as a mathe-
matician. As Bernard d’Espagnat notes in 1979:

"At the university, Bell had, like all of us, received
from his teachers a message which, later still, Feynman
would brilliantly state as follows: "No one can explain
more than we have explained here [...]. We don’t have
the slightest idea of a more fundamental mechanism from
which the former results (the interference fringes) could
follow". If indeed we are to believe Feynman (and Banesh
Hoffman, and many others, who expressed the same idea
in many books, both popular and scholarly), Bohm’s the-
ory cannot exist. Yet it does exist, and is even older than
Bohm’s papers themselves. In fact, the basic idea behind
it was formulated in 1927 by Louis de Broglie in a model
he called "pilot wave theory". Since this theory provides
explanations of what, in "high circles", is declared in-
explicable, it is worth consideration, even by physicists
[...] who do not think it gives us the final answer to the
question "how reality really is."4

And in 1987, Bell wonders about his teachers’ silence
concerning the Broglie-Bohm pilot-wave:

"But why then had Born not told me of this ’pilot
wave’? If only to point out what was wrong with it? Why
did von Neumann not consider it? More extraordinarily,
why did people go on producing "impossibility" proofs af-
ter 1952, and as recently as 1978? While even Pauli,
Rosenfeld, and Heisenberg could produce no more devas-
tating criticism of Bohm’s version than to brand it as
"metaphysical" and "ideological"? Why is the pilot-wave
picture ignored in text books? Should it not be taught,
not as the only way, but as an antidote to the prevailing
complacency? To show that vagueness, subjectivity and
indeterminism are not forced on us by experimental facts,
but through a deliberate theoretical choice?"5

More than thirty years after John Bell’s questions, the
interpretation of the de Broglie-Bohm pilot wave is still
ignored by both the international community and the
textbooks.

What is this pilot wave theory? For de Broglie, a quan-
tum particle is not only defined by its wave function. He
assumes that the quantum particle also has a position
which is piloted by the wave function.6 However only the
probability density of this position is known. The posi-
tion exists in itself (ontologically) but is unknown to the
observer. It only becomes known during the measure-
ment.

Recent articles in AJP7–9 presented a useful introduc-
tion to the Broglie-Bohm pilot-wave and the de Broglie-
Bohm trajectories of some quantum systems: free Gaus-
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sian wave packets, wave-packet superposition, scattering
at a potential step, tunneling through a rectangular bar-
rier.

The goal of the present paper is to complete these arti-
cles with the study of the measurement in the de Broglie-
Bohm interpretation about the three most important ex-
periments of quantum measurement: the double-slit ex-
periment which is the crucial experiment of the wave-
particle duality, the Stern and Gerlach experiment with
the measurement of the spin, and the EPR-B experiment
with the problem of non-locality.

The paper is organized as follows. First, we recall the
de Broglie-Bohm interpretation in section II.

In section III, we present a numerical simulation of
the double-slit experiment performed by Jönsson in 1961
with electrons11. The method of Feynman path inte-
grals allows to calculate the time-dependent wave func-
tion. The evolution of the probability density just outside
the slits leads one to consider the dualism of the wave-
particle interpretation. And the de Broglie-Bohm tra-
jectories provide an explanation for the impact positions
of the particles. Finally, we show how these trajectories
converge to classical trajectories when making h tend to
0.

In section IV, we present an analytic expression of the
wave function in the Stern-Gerlach experiment. This ex-
plicit solution requires the calculation of a Pauli spinor
with a spatial extension. This solution enables to demon-
strate the decoherence of the wave function and the three
postulates of quantum measurement: quantization, Born
interpretation and wave function reduction. The spinor
spatial extension also enables the introduction of the de
Broglie-Bohm trajectories which gives a very simple ex-
planation of the particles’ impact and of the measurement
process.

In section V, we study the EPR-B experiment, the
Bohm version of the Einstein-Podolsky-Rosen experi-
ment. Its theoretical resolution in space and time shows
that a causal interpretation exists where each atom has
a position and a spin. Finally, we suggest that a physical
explanation of non-local influences is possible, compati-
ble with Einstein’s point of view on relativity.

II. THE DE BROGLIE-BOHM
INTERPRETATION

In the de Broglie-Bohm interpretation, the wave func-
tion don’t describe the state of the particle completely. It
is necessary to add this initial position and an equation
to define the evolution of this position in the time. It is
this position that is called the "hidden variable".

The two first postulates of quantum mechanics, de-
scribing the quantum state and its evolution, must be
completed in this heterodox interpretation. At initial
time t=0, the state of the particle is given by the initial
wave function Ψ0(x) (a wave packet) and its initial posi-
tion X(0); it is the new first postulate. The new second

postulate gives the evolution on the wave function and on
the position. For a single spin-less particle in a potential
V (x), the evolution of the wave function is given by the
usual Schrödinger equation

i~
∂Ψ(x, t)

∂t
= − ~2

2m
4Ψ(x, t) + V (x)Ψ(x, t) (1)

Ψ(x, 0) = Ψ0(x) (2)

and the evolution of the particle position is given by

dX(t)

dt
=

J(x, t)
ρ(x, t)

|x=X(t) = v(x, t)|x=X(t) (3)

where

ρ(x, t) = |Ψ(x, t)|2 (4)

is the usual quantum probability density,

J(x, t) =
~

2mi
(Ψ∗(x, t)∇Ψ(x, t)−Ψ(x, t)∇Ψ∗(x, t)) (5)

is the usual quantum current, v(x, t) is a velocity field,
and as usual these quantities satisfy the continuity equa-
tion

∂ρ(x, t)
∂t

+ div(ρ(x, t)v(x, t)) = 0. (6)

If we now write the wave function through the semi-
classical transformation

Ψ(x, t) =
√
ρ(x, t)eiS(x,t)/~ (7)

where S is the phase of Ψ, then

v(x, t) =
J(x, t)
ρ(x, t)

=
∇S(x, t)

m
(8)

and the velocity field is encoded in the phase.
In the case of a particle with spin, as in the Stern and

Gerlach experiment, the Schrödinger equation must be
replaced by the Pauli or Dirac equations.

The third quantum mechanics postulate which de-
scribes the measurement operator (the observable) can be
conserved. But the three postulates of measurement are
not necessary: the postulate of quantization, the Born
postulate of probabilistic interpretation of the wave func-
tion and the postulate of the reduction of the wave func-
tion. We see that the three postulates of measurement
can be explained on each example as we will shown in
the following.

We replace these thee postulates by a single one, that
describes the interaction between the initial wave func-
tion Ψ0(x) and the initial particle position X(0); it is
called the "quantum equilibrium hypothesis". For a set
of identically prepared particles having t = 0 wave func-
tion Ψ0(x), it is assumed that the initial particle positions
X(0) are distributed according to:

P [X(0) = x] ≡ P (x, 0) = |Ψ0(x)|2 = ρ0(x). (9)
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Then, the probability distribution (P (x, t) ≡ P [X(t) =
x]) for a set of particles moving with the velocity field
v(x, t) of the equation (3) satisfies

∂P (x, t)
∂t

+ div(P (x, t)v(x, t)) = 0. (10)

Because P (x, 0) = ρ0(x) ("quantum equilibrium hy-
pothesis" with equation (9)), one deduces from (6) and
(10) that for all times

P [X(t) = x] ≡ P (x, t) = ρ(x, t) = |Ψ(x, t)|2. (11)

This is the property of the "equivariance" of the
|Ψ(x, t)|2 probability distribution10. Then, with only
the "quantum equilibrium hypothesis", we find the Born
probabilistic interpretation, which signifies that "the
pilot-wave theory will make the same statistical previ-
sions as ordinary quantum mechanics for any experiment
in which the outcome is registered by the final position
of the particle.9"

Thus, in the de Broglie-Bohm pilot-wave, the exis-
tence of a position for the particle solves the main prob-
lem of the Copenhaguen interpretation about measure-
ment: The evolution of the wave function being causal
and deterministic and representing all knowable infor-
mation about a system, why is the result of a quantum
measurement fundamentally nondeterministic?

However, the de Broglie-Bohm interpretation uses only
the initial conditions (Ψ0(x) and X(0)) and the evolution
equations (1) and (3). The measurement corresponds to
the quantum state at time t (Ψ(x, t) and X(t)). To know
this state, it is necessary to solve in detail the evolution
equations (1) and (3). In the standard interpretation, one
uses the postulates of measurement and these solutions
are not necessary.

We will revisit the three measurement experiments
through mathematical calculations and numerical simu-
lations. For each one, we present the statistical interpre-
tation that is common to the Copenhagen interpretation
and the de Broglie-Bohm pilot wave, then the trajecto-
ries specific to the de Broglie-Bohm interpretation. We
show that the precise definition of the initial conditions,
i.e. the preparation of the particles, plays a fundamental
methodological role.

III. DOUBLE-SLIT EXPERIMENT WITH
ELECTRONS

Young’s double-slit experiment12 has long been the
crucial experiment for the interpretation of the wave-
particle duality. A simple experiment, it has two fea-
tures of quantum phenomena: the wave nature at the
macroscopic level, linked to the phenomenon of interfer-
ence of the wave function with the corpuscular nature at
the microscopic level, related to impacts on the screen.
Two-slit interference experiments have been realized with
massive objects, such as electrons11,13, neutrons14, cold

neutrons15, atoms16, and more recently, with coherent
ensembles of ultra-cold atoms17, and even with meso-
scopic single quantum objects such as C60 and C70

18.
For Feynman, this experiment addresses "the basic ele-
ment of the mysterious behavior [of electrons] in its most
strange form. [It is] a phenomenon which is impossible,
absolutely impossible to explain in any classical way and
which has in it the heart of quantum mechanics. In real-
ity, it contains the only mystery."19 The de Broglie-Bohm
interpretation and the numerical simulation help us here
to revisit the double-slit experiment with electrons per-
formed by Jönsson in 1961 and to provide an answer to
Feynman’mystery. These simulations correspond to com-
plete simulations of the double-slit experiment20. They
follow those conducted in 1979 by Philippidis, Dewdney
and Hiley21. However, the former simulations have some
limitations because they did not consider realistic slits.
The slits, which can be clearly represented by a function
G(y) with G(y) = 1 for −β ≤ y ≤ β and G(y) = 0 for
|y| > β, if they are 2β in width, were modeled by a Gaus-
sian function G(y) = e−y

2/2β2

. Interference was found,
but the calculation could not account for diffraction at
the edge of the slits.

FIG. 1. Diagram of the Jönsson’s double slit experiment per-
formed with electrons.

Figure 1 shows a diagram of the double slit experiment
by Jönsson. An electron gun emits electrons one by one
in the horizontal plane, through a hole of a few microme-
ters, at a velocity v = 1.8× 108m/s along the horizontal
x-axis. After traveling for d1 = 35cm, they encounter
a plate pierced with two horizontal slits A and B, each
0.2µm wide and spaced 1µm from each other. A screen
located at d2 = 35cm after the slits collects these elec-
trons. The impact of each electron appears on the screen
as the experiment unfolds. After thousands of impacts,
we find that the distribution of electrons on the screen
shows interference fringes.

The slits are very long along the z-axis, so there is
no effect of diffraction along this axis. In the sim-
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ulation, we therefore only consider the wave function
along the y-axis; the variable x will be treated classi-
cally with x = vt. Electrons emerging from an electron
gun are represented by the same initial wave function,
Ψ0(y) = (2πσ2

0)−1/4e−y
2/4σ2

0 with the standard deviation
σ0 = 3µm.

A. Probability density

Figure 2 gives a general view of the evolution of
the probability density from the source to the detec-
tion screen (a lighter shade means that the density
is higher i.e. the probability of presence is high).
The calculations were made using the method of
Feynman path integrals20. The wave function be-
fore the slits (t < t1 = d1/v ' 2.10−11s) is equal
to Ψ(y, t) = (2πs2

0(t))−1/4e−(y−vt)2/4σ0s0(t) with
s0(t) = σ0(1 + i~t/2mσ2

0). Because ~t/2mσ2
0 � 1,

the wave function keeps its Gaussian shape be-
fore the slits. The wave function after the
slits (t1 < t < t1 + d2/v ' 4.10−11s) is de-
duced from the values of the wave function at
slits A and B: Ψ(y, t) = ΨA(y, t) + ΨB(y, t)
with ΨA(y, t) =

∫
A
K(y, t, ya, t1)Ψ(ya, t1)dya,

ΨB(y, t) =
∫
B
K(y, t, yb, t1)Ψ(yb, t1)dyb and

K(y, t, yα, t1) = (m/2i~t1)2eim(y−yα)2/2~(t−t1).

FIG. 2. General view of the evolution of the probability den-
sity from the source to the screen in the Jönsson experiment.
A lighter shade means that the density is higher i.e. the prob-
ability of presence is high.

Figure 3 shows a close-up of the evolution of the prob-
ability density just after the slits. We note that inter-
ference will only occur a few centimeters after the slits.
Thus, if the detection screen is 1cm from the slits, there is
no interference and one can determine by which slit each
electron has passed. In this experiment, the measure-
ment is performed by the detection screen, which only
reveals the existence or absence of the fringes.

The calculation method enables us to compare the evo-
lution of the cross-section of the probability density at

FIG. 3. Close-up of the evolution of the probability density
in the first 3cm after the slits in the Jönsson experiment.

−10 −5 0 5 10

µm

(d) : 35cm

−2 −1 0 1 2

µm

(c) : 3,5cm

−1 −0.5 0 0.5 1
µm

(b) : 3,5mm

−1 −0.5 0 0.5 1

µm

(a) : 0,35mm

FIG. 4. Comparison of the probability density |ΨA + ΨB |2
(full line) and |ΨA|2 + |ΨB |2 (dotted line) at various distances
after the slits: (a) 0.35mm, (b): 3.5mm, (c): 3.5cm and (d):
35cm.

various distances after the slits (0.35mm, 3.5mm, 3.5cm
and 35cm) where the two slits A and B are open simul-
taneously (interference: |ΨA + ΨB |2) with the evolution
of the sum of the probability densities where the slits A
and B are open independently (the sum of two diffrac-
tions: |ΨA|2 + |ΨB |2). Figure 4 shows that the difference
between these two phenomena appears only a few cen-
timeters after the slits. The previous calculations are
independent of the de Broglie-Bohm interpretation (ad-
dition of a position to the quantum particle), and enable
us to better understand this experiment in the orthodox
interpretation frame.
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B. Impacts on screen and de Broglie-Bohm
trajectories

The interference fringes are observed after a certain
period of time when the impacts of the electrons on the
detection screen become sufficiently numerous. Classical
quantum theory only explains the impact of individual
particles statistically.

However, in the de Broglie-Bohm interpretation: a par-
ticle has an initial position and follows a path whose ve-
locity at each instant is given by equation (8). On the
basis of this assumption we conduct a simulation experi-
ment by drawing random initial positions of the electrons
in the initial wave packet ("quantum equilibrium hypoth-
esis").

−35 −30 −20 −10 0 10 20 30 35

−4

−3

−2

−1

0

1

2

3

4

cm

µ
m

FIG. 5. 100 electron trajectories for the Jönsson experiment.

Figure 5 shows, after its initial starting position, 100
possible quantum trajectories of an electron passing
through one of the two slits: We have not represented
the paths of the electron when it is stopped by the first
screen. Figure 6 shows a close-up of these trajectories
just after they leave their slits.

The different trajectories explain both the impact of
electrons on the detection screen and the interference
fringes. This is the simplest and most natural interpre-
tation to explain the impact positions: "The position of
an impact is simply the position of the particle at the
time of impact." This was the view defended by Einstein
at the Solvay Congress of 1927. The position is the only
measured variable of the experiment. It is therefore not
logical to call it the "hidden variable" as it is often called
in the criticisms of the de Broglie-Bohm interpretation.

The previous quantum trajectories answer the ques-
tion: "Through which slit did the electron pass?" Going
from the impact of the particle on the screen, one can
trace the particle back to its starting point thanks to its
path, as is done in classical mechanics.

At the theoretical level, it is interesting to note that
the position variable is identical to its operator (XΨ =

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cm

µ
m

FIG. 6. Close-up on the 100 trajectories of the electrons just
after the slits.

xΨ). In the de Broglie-Bohm interpretation, it trivially
satisfies the three postulates of the measurement of quan-
tum mechanics. As the position is its own eigenvalue, it
satisfies postulate 4 directly from the measurement of
a physical quantity. Since the particle follows the de
Broglie-Bohm trajectories, the probabilistic interpreta-
tion of the wave function of Born (postulate 5) is satis-
fied at each moment provided it is satisfied at the initial
moment ("quantum equilibrium hypothesis"). Postulate
6 on the reduction of the wave packet is not necessary to
explain the impacts.

Through numerical simulations, we will demonstrate
how, when the Planck constant h tends to 0, the quan-
tum trajectories converge to the classical trajectories. In
reality a constant is not able to tend to 0 by definition.
The convergence to classical trajectories is obtained if the
term ht/m→ 0; so h→ 0 is equivalent to m→ +∞ (i.e.
the mass of the particle grows) or t→ 0 (i.e. the distance
slits-screem d2 → 0 or the particle velocity v → +∞).
Figure 7 shows the 100 trajectories that start at the same
100 initial points when Planck’s constant is divided re-
spectively by 10, 100, 1000 and 10000 (equivalent to mul-
tiplying the mass by 10, 100, 1000 and 10000). We obtain
quantum trajectories converging to the classical trajec-
tories, when h tends to 0.

The study of the slits clearly shows that, in the de
Broglie-Bohm interpretation, there is no physical separa-
tion between quantum mechanics and classical mechan-
ics. All particles have quantum properties, but specif-
ically quantum behavior only appears in certain exper-
imental conditions: here when the ratio ht/m is suffi-
ciently large. Interferences only appear gradually and
the quantum particle behaves at any time as both a wave
and a particle.
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FIG. 7. Convergence of 100 electron trajectories when h is
divided by 10, 100, 1 000 and 10 000.

IV. THE STERN-GERLACH EXPERIMENT

In 1922, by studying the deflection of a beam of silver
atoms in a strongly inhomogeneous magnetic field (cf.
Figure 8) Otto Stern and Walter Gerlach22 obtained an
experimental result that contradicts the common sense
prediction: the beam, instead of expanding, splits into
two separate beams giving two spots of equal intensity
N+ and N− on a detector, at equal distances from the
axis of the original beam.

FIG. 8. Schematic configuration of the Stern-Gerlach experi-
ment.

Historically, this is the experiment which helped es-
tablish spin quantization. Theoretically, it is the seminal
experiment posing the problem of measurement in quan-
tum mechanics. Today it is the theory of decoherence
with the diagonalization of the density matrix that is
put forward to explain the first part of the measurement
process23. However, although these authors consider the
Stern-Gerlach experiment as fundamental, they do not
propose a calculation of the spin decoherence time.

We present an analytical solution to this decoherence
time and the diagonalization of the density matrix. This
solution requires the calculation of the Pauli spinor with

a spatial extension as the equation:

Ψ0(z) = (2πσ2
0)−

1
2 e
− z2

4σ2
0

(
cos θ02 e

−iϕ0
2

sin θ0
2 e

i
ϕ0
2

)
. (12)

Quantum mechanics textbooks19,24–26 do not take into
account the spatial extension of the spinor (12) and sim-
ply use the simplified spinor without spatial extension:

Ψ0 =

(
cos θ02 e

−iϕ0
2

sin θ0
2 e

i
ϕ0
2

)
. (13)

However, as we shall see, the different evolutions of the
spatial extension between the two spinor components will
have a key role in the explanation of the measurement
process. This spatial extension enables us, in follow-
ing the precursory works of Takabayasi27, Bohm28,29,
Dewdney et al.30 and Holland31, to revisit the Stern and
Gerlach experiment, to explain the decoherence and to
demonstrate the three postulates of the measure: quanti-
zation, Born statistical interpretation and wave function
reduction.

Silver atoms contained in the oven E (Figure 8) are
heated to a high temperature and escape through a nar-
row opening. A second aperture, T, selects those atoms
whose velocity, v0, is parallel to the y-axis. The atomic
beam crosses the gap of the electromagnet A1 before con-
densing on the detector, P1 . Before crossing the elec-
tromagnet, the magnetic moment of each silver atom
is oriented randomly (isotropically). In the beam, we
represent each atom by its wave function; one can as-
sume that at the entrance to the electromagnet, A1, and
at the initial time t = 0, each atom can be approxi-
matively described by a Gaussian spinor in z given by
(12) corresponding to a pure state. The variable y will
be treated classically with y = vt. σ0 = 10−4m corre-
sponds to the size of the slot T along the z-axis. The
approximation by a Gaussian initial spinor will allow ex-
plicit calculations. Because the slot is much wider along
the x-axis, the variable x will be also treated classically.
To obtain an explicit solution of the Stern-Gerlach ex-
periment, we take the numerical values used in the Co-
henTannoudji textbook24. For the silver atom, we have
m = 1.8× 10−25kg, v0 = 500 m/s (corresponding to the
temperature of T = 1000K). In equation (12) and in
figure 9, θ0 and ϕ0 are the polar angles characterizing
the initial orientation of the magnetic moment, θ0 corre-
sponds to the angle with the z-axis. The experiment is
a statistical mixture of pure states where the θ0 and the
ϕ0 are randomly chosen: θ0 is drawn in a uniform way
from [0, π] and that ϕ0 is drawn in a uniform way from
[0, 2π].

The evolution of the spinor Ψ =

(
ψ+

ψ−

)
in a magnetic

field B is then given by the Pauli equation:

i~
( ∂ψ+

∂t
∂ψ−
∂t

)
= − ~2

2m
∆

(
ψ+

ψ−

)
+ µBBσ

(
ψ+

ψ−

)
(14)
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FIG. 9. Orientation of the magnetic moment. θ0 and ϕ0

are the polar angles characterizing the spin vector in the de
Broglie-Bohm interpretation.

where µB = e~
2me

is the Bohr magneton and where σ =

(σx, σy, σz) corresponds to the three Pauli matrices. The
particle first enters an electromagnetic field B directed
along the z-axis, Bx = B′0x, By = 0, Bz = B0 − B′0z,
with B0 = 5 Tesla, B′0 =

∣∣∂B
∂z

∣∣ = 103 Tesla/m over a
length ∆l = 1 cm. On exiting the magnetic field, the
particle is free until it reaches the detector P1 placed at
a D = 20 cm distance.

The particle stays within the magnetic field for a time
∆t = ∆l

v = 2×10−5s. During this time [0,∆t], the spinor
is:32 (see Appendix A)

Ψ(z, t) '

 cos θ02 (2πσ2
0)−

1
2 e
−

(z−
µBB

′
0

2m
t2)2

4σ2
0 ei

µBB
′
0tz−

µ2
BB
′2
0

6m
t3+µBB0t+

~ϕ0
2

~

i sin θ0
2 (2πσ2

0)−
1
2 e
−

(z+
µBB

′
0

2m
t2)2

4σ2
0 ei

−µBB
′
0tz−

µ2
BB
′2
0

6m
t3−µBB0t−

~ϕ0
2

~

 . (15)

After the magnetic field, at time t+ ∆t (t ≥ 0) in the
free space, the spinor becomes:29–33 (see Appendix A)

Ψ(z, t+ ∆t) '

 cos θ0
2

(2πσ2
0)−

1
2 e
− (z−z∆−ut)

2

4σ2
0 ei

muz+~ϕ+
~

sin θ0
2

(2πσ2
0)−

1
2 e
− (z+z∆+ut)2

4σ2
0 ei

−muz+~ϕ−
~


(16)

where

z∆ =
µBB

′
0(∆t)2

2m
= 10−5m, u =

µBB
′
0(∆t)

m
= 1m/s.

(17)
Equation (16) takes into account the spatial extension of
the spinor and we note that the two spinor components
have very different z values. All interpretations are based
on this equation.

A. The decoherence time

We deduce from (16) the probability density of a pure
state in the free space after the electromagnet:

ρθ0(z, t+ ∆t) ' (2πσ2
0)−

1
2

(
cos2

θ0
2
e
− (z−z∆−ut)

2

2σ2
0

+ sin2 θ0
2
e
− (z+z∆+ut)2

2σ2
0

)
(18)

Figure 10 shows the probability density of a pure state
(with θ0 = π/3) as a function of z at several values of t
(the plots are labeled y = vt). The beam separation does
not appear at the end of the magnetic field (1 cm), but
16 cm further along. It is the moment of the decoherence.
The decoherence time, where the two spots N+ and N−

−0.6 0 0.6

mm

0 cm

−0.6 0 0.6

mm

6 cm

−0.6 0 0.6

mm

16 cm

−0.6 0 0.6

mm

21 cm

FIG. 10. Evolution of the probability density of a pure state
with θ0 = π/3.

are separated, is then given by the equation:

tD '
3σ0 − z∆

u
= 3× 10−4s. (19)

This decoherence time is usually the time required to
diagonalize the marginal density matrix of spin variables
associated with a pure state34:

ρS(t) =

( ∫
|ψ+(z, t)|2dz

∫
ψ+(z, t)ψ∗−(z, t)dz∫

ψ−(z, t)ψ∗+(z, t)dz
∫
|ψ−(z, t)|2dz

)
(20)

For t ≥ tD, the product ψ+(z, t + ∆t)ψ−(z, t + ∆t) is
null and the density matrix is diagonal: the probability
density of the initial pure state (16) is diagonal:

ρS(t+ ∆t) = (2πσ2
0)−1

(
cos2 θ0

2 0
0 sin2 θ0

2

)
(21)

B. Proof of the postulates of quantum
measurement

We then obtain atoms with a spin oriented only along
the z-axis (positively or negatively). Let us consider the
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spinor Ψ(z, t + ∆t) given by equation (16). Experimen-
tally, we do not measure the spin directly, but the z̃ po-
sition of the particle impact on P1 (Figure 11).

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

0

1

z
 (

m
m

)

x (mm)

−

N
+

N

FIG. 11. 1000 silver atom impacts on the detector P1.

If z̃ ∈ N+, the term ψ− of (16) is numerically
equal to zero and the spinor Ψ is proportional to(

1
0

)
, one of the eigenvectors of σz: Ψ(z̃, t + ∆t) '

(2πσ2
0)−

1
4 cos θ02 e

− (z̃1−z∆−ut)
2

4σ2
0 ei

muz̃1+~ϕ+
~

(
1
0

)
.

If z̃ ∈ N−, the term ψ+ of (16) is numerically
equal to zero and the spinor Ψ is proportional to(

0
1

)
, the other eigenvector of σz: Ψ(z̃, t + ∆t) '

(2πσ2
0)−

1
4 sin θ0

2 e
− (z̃2+z∆+ut)2

4σ2
0 ei

−muz̃2+~ϕ−
~

(
0
1

)
. Therefore,

the measurement of the spin corresponds to an eigen-
value of the spin operator Sz = ~

2σz. It is a proof of the
postulate of quantization.

Equation (21) gives the probability cos2 θ0
2 (resp.

sin2 θ0
2 ) to measure the particle in the spin state +~

2

(resp. −~
2 ); this proves the Born probabilistic postulate.

By drilling a hole in the detector P1 to the location of
the spot N+ (figure 8), we select all the atoms that are in
the spin state |+〉 =

(
1
0

)
. The new spinor of these atoms

is obtained by making the component Ψ− of the spinor Ψ
identically zero (and not only numerically equal to zero)
at the time when the atom crosses the detector P1; at
this time the component Ψ− is indeed stopped by de-
tector P1. The future trajectory of the silver atom after
crossing the detector P1 will be guided by this new (nor-
malized) spinor. The wave function reduction is therefore
not linked to the electromagnet, but to the detector P1

causing an irreversible elimination of the spinor compo-
nent Ψ−. The previous calculations and deductions are
independent of the de Broglie-Bohm interpretation and
cast a different light on this experiment and the postu-
lates.

C. Impacts and quantizations explained by de
Broglie-Bohm trajectories

Finally, it remains to provide an explanation of the in-
dividual impacts of silver atoms. The spatial extension
of the spinor (12) allows to take into account the parti-
cle’s initial position z0 and to introduce the Broglie-Bohm
trajectories2,6,30,31,35 which is the natural assumption to
explain the individual impacts.

Figure 12 presents, for a silver atom with the initial

spinor orientation (θ0 = π
3 , ϕ0 = 0), a plot in the (Oyz)

plane of a set of 10 trajectories whose initial position z0

has been randomly chosen from a Gaussian distribution
with standard deviation σ0. The spin orientations θ(z, t)
are represented by arrows.
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m
m

)
FIG. 12. Ten silver atom trajectories with initial spin orien-
tation (θ0 = π

3
) and initial position z0; arrows represent the

spin orientation θ(z, t) along the trajectories.

The final orientation, obtained after the decoherence
time tD, depends on the initial particle position z0 in the
spinor with a spatial extension and on the initial angle
θ0 of the spin with the z-axis. We obtain +π

2 if z0 > zθ0

and −π2 if z0 < zθ0 with

zθ0 = σ0F
−1

(
sin2 θ0

2

)
(22)

where F is the repartition function of the normal
centered-reduced law. If we ignore the position of the
atom in its wave function, we lose the determinism given
by equation (22).

In the de Broglie-Bohm interpretation with a realistic
interpretation of the spin, the "measured" value is not
independent of the context of the measure and is contex-
tual. It conforms to the Kochen and Specker theorem:36
Realism and non-contextuality are inconsistent with cer-
tain quantum mechanics predictions.

Now let us consider a mixture of pure states where
the initial orientation (θ0, ϕ0) from the spinor has been
randomly chosen. These are the conditions of the ini-
tial Stern and Gerlach experiment. Figure 13 represents
a simulation of 10 quantum trajectories of silver atoms
from which the initial positions z0 are also randomly cho-
sen.
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FIG. 13. Ten silver atom trajectories where the initial ori-
entation (θ0, ϕ0) has been randomly chosen; arrows represent
the spin orientation θ(z, t) along the trajectories.

Finally, the de Broglie-Bohm trajectories propose a
clear interpretation of the spin measurement in quantum
mechanics. There is interaction with the measuring ap-
paratus as is generally stated; and there is indeed a min-
imum time required to measure. However this measure-
ment and this time do not have the signification that is
usually applied to them. The result of the Stern-Gerlach
experiment is not the measure of the spin projection
along the z-axis, but the orientation of the spin either
in the direction of the magnetic field gradient, or in the
opposite direction. It depends on the position of the par-
ticle in the wave function. We have therefore a simple
explanation for the non-compatibility of spin measure-
ments along different axes. The measurement duration
is then the time necessary for the particle to point its
spin in the final direction.

V. EPR-B EXPERIMENT

Nonseparability is one of the most puzzling aspects of
quantum mechanics. For over thirty years, the EPR-B,
the spin version of the Einstein-Podolsky-Rosen exper-
iment37 proposed by Bohm38, the Bell theorem39 and
the BCHSH inequalities5,39,40 have been at the heart of
the debate on hidden variables and non-locality. Many
experiments since Bell’s paper have demonstrated viola-
tions of these inequalities and have vindicated quantum
theory41. Now, EPR pairs of massive atoms are also con-
sidered42. The usual conclusion of these experiments is
to reject the non-local realism for two reasons: the im-
possibility of decomposing a pair of entangled atoms into
two states, one for each atom, and the impossibility of
interaction faster than the speed of light.

Here, we show that there exists a de Broglie-Bohm
interpretation which answers these two questions pos-
itively. To demonstrate this non-local realism, two

methodological conditions are necessary. The first condi-
tion is the same as in the Stern-Gerlach experiment: the
solution to the entangled state is obtained by resolving
the Pauli equation from an initial singlet wave function
with a spatial extension as:

Ψ0(rA, rB) =
1√
2
f(rA)f(rB)(|+A〉|−B〉 − |−A〉|+B〉),

(23)
and not from a simplified wave function without spatial
extension:

Ψ0(rA, rB) =
1√
2

(|+A〉|−B〉 − |−A〉|+B〉). (24)

f function and |±〉 vectors are presented later.
The resolution in space of the Pauli equation is essen-

tial: it enables the spin measurement by spatial quantiza-
tion and explains the determinism and the disentangling
process. To explain the interaction and the evolution
between the spin of the two particles, we consider a two-
step version of the EPR-B experiment. It is our second
methodological condition. A first causal interpretation of
EPR-B experiment was proposed in 1987 by Dewdney,
Holland and Kyprianidis43 using these two conditions.
However, this interpretation had a flaw31 (p. 418): the
spin module of each particle depends directly on the sin-
glet wave function, and thus the spin module of each
particle varied during the experiment from 0 to ~

2 . We
present a de Broglie-Bohm interpretation that avoid this
flaw.44

FIG. 14. Schematic configuration of the EPR-B experiment.

Figure 14 presents the Einstein-Podolsky-Rosen-Bohm
experiment. A source S created in O pairs of identical
atoms A and B, but with opposite spins. The atoms A
and B split following the y-axis in opposite directions,
and head towards two identical Stern-Gerlach apparatus
EA and EB. The electromagnet EA "measures" the spin
of A along the z-axis and the electromagnet EB "mea-
sures" the spin of B along the z′-axis, which is obtained
after a rotation of an angle δ around the y-axis. The
initial wave function of the entangled state is the singlet

state (23) where r = (x, z), f(r) = (2πσ2
0)−

1
2 e
− x

2+z2

4σ2
0 ,

|±A〉 and |±B〉 are the eigenvectors of the operators σzA
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and σzB : σzA |±A〉 = ±|±A〉, σzB |±B〉 = ±|±B〉. We
treat the dependence with y classically: speed −vy for A
and vy for B. The wave function Ψ(rA, rB , t) of the two
identical particles A and B, electrically neutral and with
magnetic moments µ0, subject to magnetic fields EA and
EB, admits on the basis of |±A〉 and |±B〉 four com-
ponents Ψa,b(rA, rB , t) and satisfies the two-body Pauli
equation31 (p. 417):

i~
∂Ψa,b

∂t
=

(
− ~2

2m
∆A −

~2

2m
∆B

)
Ψa,b

+ µBEA
j (σj)

a
cΨc,b + µBEB

j (σj)
b
dΨ

a,d (25)

with the initial conditions:

Ψa,b(rA, rB , 0) = Ψa,b
0 (rA, rB) (26)

where Ψa,b
0 (rA, rB) corresponds to the singlet state (23).

To obtain an explicit solution of the EPR-B experi-
ment, we take the numerical values of the Stern-Gerlach
experiment.

One of the difficulties of the interpretation of the EPR-
B experiment is the existence of two simultaneous mea-
surements. By doing these measurements one after the
other, the interpretation of the experiment will be facili-
tated. That is the purpose of the two-step version of the
experiment EPR-B studied below.

A. First step EPR-B: Spin measurement of A

In the first step we make a Stern and Gerlach "mea-
surement" for atom A, on a pair of particles A and B in
a singlet state. This is the experiment first proposed in
1987 by Dewdney, Holland and Kyprianidis.43

Consider that at time t0 the particle A arrives at the
entrance of electromagnet EA. After this exit of the mag-
netic field EA, at time t0 +4t+ t, the wave function (23)
becomes44:

Ψ(rA, rB , t0 +4t+ t) =
1√
2
f(rB)× ( f+(rA, t)|+A〉|−B〉

− f−(rA, t)|−A〉|+B〉)
(27)

with

f±(r, t) ' f(x, z ∓ z4 ∓ ut)ei(
±muz

~ +ϕ±(t)) (28)

where z∆ and u are given by equation (17).
The atomic density ρ(zA, zB , t0 + ∆t + t) is found by

integrating Ψ∗(rA, rB , t0 +4t+ t)Ψ(rA, rB , t0 +4t+ t)
on xA and xB :

ρ(zA, zB , t0 + ∆t+ t) =

(
(2πσ2

0)−
1
2 e
− (zB)2

2σ2
0

)
(29)

×

(
(2πσ2

0)−
1
2

1

2

(
e
− (zA−z∆−ut)

2

2σ2
0 + e

− (zA+z∆+ut)2

2σ2
0

))
.

We deduce that the beam of particle A is divided into
two, while the beam of particle B stays undivided:

• the density of A is the same, whether particle A is
entangled with B or not,

• the density of B is not affected by the "measure-
ment" of A.

Our first conclusion is: the position of B does not de-
pend on the measurement of A, only the spins are in-
volved. We conclude from equation (27) that the spins
of A and B remain opposite throughout the experiment.
These are the two properties used in the causal interpre-
tation.

B. Second step EPR-B: Spin measurement of B

The second step is a continuation of the first and corre-
sponds to the EPR-B experiment broken down into two
steps. On a pair of particles A and B in a singlet state,
first we made a Stern and Gerlach measurement on the
A atom between t0 and t0 +4t+ tD, secondly, we make
a Stern and Gerlach measurement on the B atom with
an electromagnet EB forming an angle δ with EA during
t0 +4t+ tD and t0 + 2(4t+ tD).

At the exit of magnetic field EA, at time t0 +4t+ tD,
the wave function is given by (27). Immediately after the
measurement of A, still at time t0 +4t + tD, the wave
function of B depends on the measurement ± of A:

ΨB/±A(rB , t0 +4t+ t1) = f(rB)|∓B〉. (30)

Then, the measurement of B at time t0 + 2(4t + tD)
yields, in this two-step version of the EPR-B experiment,
the same results for spatial quantization and correlations
of spins as in the EPR-B experiment.

C. Causal interpretation of the EPR-B experiment

We assume, at the creation of the two entangled
particles A and B, that each of the two particles A
and B has an initial wave function with opposite spins:
ΨA

0 (rA, θA0 , ϕA0 ) = f(rA)
(

cos
θA0
2 |+A〉+ sin

θA0
2 e

iϕA0 |−A〉
)

and ΨB
0 (rB , θB0 , ϕB0 ) =

f(rB)
(

cos
θB0
2 |+B〉+ sin

θB0
2 e

iϕB0 |−B〉
)
with θB0 = π− θA0

and ϕB0 = ϕA0 − π. Then the Pauli principle tells us that
the two-body wave function must be antisymmetric;
after calculation we find the same singlet state (23):

Ψ0(rA, θA, ϕA, rB , θB , ϕB) =− eiϕ
A

f(rA)f(rB) (31)
× (|+A〉|−B〉 − |−A〉|+B〉) .

Thus, we can consider that the singlet wave function is
the wave function of a family of two fermions A and B
with opposite spins: the direction of initial spin A and
B exists, but is not known. It is a local hidden variable
which is therefore necessary to add in the initial condi-
tions of the model.
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This is not the interpretation followed by the Bohm
school29,31,43 in the interpretation of the singlet wave
function; they suppose, for example, a zero spin for each
of the particles at the initial time.

We assume that at the initial time we know the spin
of each particle (given by each initial wave function) and
the initial position of each particle.

Step 1: spin measurement of A

In the equation (27) particle A can be considered inde-
pendent of B. We can therefore give it the wave function

ΨA(rA, t0 +4t+ t) =cos
θA0
2
f+(rA, t)|+A〉

+ sin
θA0
2
eiϕ

A
0 f−(rA, t)|−A〉(32)

which is the wave function of a free particle in a Stern
Gerlach apparatus and whose initial spin is given by
(θA0 , ϕA0 ). For an initial polarization (θA0 , ϕA0 ) and an ini-
tial position (zA0 ), we obtain, in the de Broglie-Bohm
interpretation29 of the Stern and Gerlach experiment, an
evolution of the position (zA(t)) and of the spin orienta-
tion of A (θA(zA(t), t))33.

The case of particle B is different. B follows a rectilin-
ear trajectory with yB(t) = vyt, zB(t) = zB0 and xB(t) =
xB0 . By contrast, the orientation of its spin moves with
the orientation of the spin of A: θB(t) = π− θA(zA(t), t)
and ϕB(t) = ϕ(zA(t), t) − π. We can then associate the
wave function:

ΨB(rB , t0 +4t+ t) = f(rB)

(
cos

θB(t)

2
|+B〉 (33)

+ sin
θB(t)

2
eiϕ

B(t)|−B〉
)
.

This wave function is specific, because it depends upon
initial conditions of A (position and spin). The orienta-
tion of spin of the particle B is driven by the particle A
through the singlet wave function. Thus, the singlet wave
function is the non-local hidden variable.

Step 2: Spin measurement of B

At the time t0 + ∆t+ tD, immediately after the mea-
surement of A, θB(t0 + ∆t+ tD) = π or 0 in accordance
with the value of θA(zA(t), t) and the wave function of
B is given by (30). The frame (Ox′yz′) corresponds to
the frame (Oxyz) after a rotation of an angle δ around
the y-axis. θB corresponds to the B-spin angle with the
z-axis, and θ′B to the B-spin angle with the z′-axis, then
θ′B(t0 + ∆t + tD) = π + δ or δ. In this second step, we
are exactly in the case of a particle in a simple Stern and
Gerlach experiment (with magnet EB) with a specific
initial polarization equal to π + δ or δ and not random
like in step 1. Then, the measurement of B, at time

t0 + 2(4t+ tD)), gives, in this interpretation of the two-
step version of the EPR-B experiment, the same results
as in the EPR-B experiment.

D. Physical explanation of non-local influences

From the wave function of two entangled particles, we
find spins, trajectories and also a wave function for each
of the two particles. In this interpretation, the quantum
particle has a local position like a classical particle, but
it has also a non-local behavior through the wave func-
tion. So, it is the wave function that creates the non
classical properties. We can keep a view of a local realist
world for the particle, but we should add a non-local vi-
sion through the wave function. As we saw in step 1, the
non-local influences in the EPR-B experiment only con-
cern the spin orientation, not the motion of the particles
themselves. Indeed only spins are entangled in the wave
function (23) not positions and motions like in the initial
EPR experiment. This is a key point in the search for a
physical explanation of non-local influences.

The simplest explanation of this non-local influence
is to reintroduce the concept of ether (or the preferred
frame), but a new format given by Lorentz-Poincaré and
then by Einstein in 192045: "For the mechanical be-
haviour of a corporeal system hovering freely in empty
space depends not only on relative positions (distances)
and relative velocities, but also on its state of rotation,
which physically may be taken as a characteristic not ap-
pertaining to the system in itself.[...] Recapitulating, we
may say that according to the general theory of relativity
space is endowed with physical qualities; in this sense,
therefore, there exists an ether.[...] But this ether may
not be thought of as endowed with the quality character-
istic of ponderable inedia, as consisting of parts which
may be tracked through time. The idea of motion may
not be applied to it."

Taking into account the new experiments, especially
Aspect’s experiments, Popper46 (p. XVIII) defends a
similar view in 1982 :

"I feel not quite convinced that the experiments are cor-
rectly interpreted; but if they are, we just have to accept
action at a distance. I think (with J.P. Vigier) that this
would of course be very important, but I do not for a mo-
ment think that it would shake, or even touch, realism.
Newton and Lorentz were realists and accepted action at
a distance; and Aspect’s experiments would be the first
crucial experiment between Lorentz’s and Einstein’s in-
terpretation of the Lorentz transformations."

Finally, in the de Broglie-Bohm interpretation, the
EPR-B experiments of non-locality have therefore a great
importance, not to eliminate realism and determinism,
but as Popper said, to rehabilitate the existence of a cer-
tain type of ether, like Lorentz’s ether and like Einstein’s
ether in 1920.
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VI. CONCLUSION

In the three experiments presented in this article, the
variable which is measured in fine is the position of the
particle given by this impact on a screen. In the double-
slit, the set of these positions gives the interferences; in
the Stern-Gerlach and the EPR-B experiments, it is the
position of the particle impact which allows to define the
spin value.

It is this position that the de Broglie-Bohm interpre-
tation adds to the wave function to define a complete
state of the quantum particle. The de Broglie-Bohm in-
terpretation is then based only on the initial conditions
Ψ0(x) and X(0) and the evolution equations (1) and (3).
If we add the "quantum equilibrium hypothesis" (9), we
have seen that we can deduce , for these three examples,
the three postulates of measurement. Moreover, the de
Broglie-Bohm trajectories propose a clear explanation of
the spin measurement in quantum mechanics.

However, we have seen two very different cases in the
measurement process. In the first case (double slit exper-
iment), there is no influence of the measuring apparatus
(the screen) on the quantum particle. In the second case
(Stern-Gerlach experiment, EPR-B), there is an interac-
tion with the measuring apparatus (the magnetic field)
and the quantum particle. The result of the measure-
ment depends on the position of the particle in the wave
function. The measurement duration is then the time
necessary for the stabilisation of the result.

This heterodox interpretation explains clearly experi-
ments with one or two particles, but with more particles
the issues become more complex. However it is also the
case in classical mechanics, n-body problems need spe-
cific methods for n ≥ 3.

Independently of the de Broglie-Bohm interpretation,
the resolution of the time-dependent Schrödinger equa-
tion (double-slit experiment) or the Pauli equation with
spatial extension (Stern-Gerlach and EPR experiments)
enables us to better understand those experiments. In
the double-slit experiment, the interference phenomena
appears only some centimeters after the slits; in the
Stern-Gerlach experiment, the spin up/down measure-
ment appears also after a given time, called decoherence
time.

Appendix A: Calculating the spinor in the
Stern-Gerlach experiment

In the magnetic field B = (Bx, 0, Bz), the Pauli equa-
tion (14) gives coupled Schrödinger equations for each
spinor component

i~
∂ψ±
∂t

(x, z, t) =− ~2

2m
∇2ψ±(x, z, t)

± µB(B0 −B′0z)ψ±(x, z, t)

∓ iµBB′0xψ∓(x, z, t). (A1)

If one effects the transformation32

ψ±(x, z, t) = exp

(
± iµBB0t

~

)
ψ±(x, z, t)

equation (A1) becomes

i~
∂ψ±
∂t

(x, z, t) =− ~2

2m
∇2ψ±(x, z, t)

∓ µBB′0zψ±(x, z, t)

∓ iµBB′0xψ∓(x, z, t) exp

(
±i2µBB0t

~

)
The coupling term oscillates rapidly with the Larmor fre-
quency ωL = 2µBB0

~ = 1, 4×1011s−1. Since |B0| � |B′0z|
and |B0| � |B′0x|, the period of oscillation is short com-
pared to the motion of the wave function. Averaging over
a period that is long compared to the oscillation period,
the coupling term vanishes, which entails32

i~
∂ψ±
∂t

(x, z, t) = − ~2

2m
∇2ψ±(x, z, t)∓ µBB′0zψ±(x, z, t).

(A2)
Since the variable x is not involved in this equation

and ψ0
±(x, z) does not depend on x, ψ±(x, z, t) does not

depend on x: ψ±(x, z, t) ≡ ψ±(z, t). Then we can explic-
itly compute the preceding equations for all t in [0,∆t]
with ∆t = ∆l

v = 2× 105s.
We obtain:

ψ+(z, t) = ψK(z, t) cos θ02 e
i
ϕ0
2 and K = −µBB′0

ψ−(z, t) = ψK(z, t)i sin θ0
2 e
−iϕ0

2 and K = +µBB
′
0

σ2
t = σ2

0 +
(

~t
2mσ0

)2

and

ψK(z, t) = (2πσ2
t )−

1
4 e
−

(z+Kt2

2m
)2

4σ2
t exp

i

~

[
−~

2
tan−1

(
~t

2mσ2
0

)
−Ktz − K2t3

6m
+

(z + Kt2

2m
)2~2t2

8mσ2
0σ

2
t

]
. (A3)

where (A3) is a classical result.47
The experimental conditions give ~∆t

2mσ0
= 4 ×

10−11 m � σ0 = 10−4 m. We deduce the approxima-
tions σt ' σ0 and

ψK(z, t) ' (2πσ2
0)−

1
4 e
−

(z+Kt2

2m
)2

4σ2
0 exp

i

~

[
−Ktz − K2t3

6m

]
.

(A4)
At the end of the magnetic field, at time ∆t, the spinor

equals to

Ψ(z,∆t) =

(
ψ+(z,∆t)
ψ−(z,∆t)

)
(A5)

with

ψ+(z,∆t) = (2πσ2
0)−

1
4 e
− (z−z∆)2

4σ2
0

+ i
~muz cos

θ0

2
eiϕ+

ψ−(z,∆t) = (2πσ2
0)−

1
4 e
− (z+z∆)2

4σ2
0
− i

~muzi sin
θ0

2
eiϕ−
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z∆ =
µBB

′
0(∆t)2

2m
, u =

µ0B
′
0(∆t)

m
and

ϕ+=
ϕ0

2
− µBB0∆t

~
− K2(∆t)3

6m~
;

ϕ−= −ϕ0

2
+
µ0B0∆t

~
− K2(∆t)3

6m~
.

We remark that the passage through the magnetic field
gives the equivalent of a velocity +u in the direction 0z
to the function ψ+ and a velocity −u to the function
ψ−. Then we have a free particle with the initial wave

function (A5). The Pauli equation resolution again yields
ψ±(x, z, t) = ψx(x, t)ψ±(z, t) and with the experimental

conditions we have ψx(x, t) ' (2πσ2
0)−

1
4 e
− x2

4σ2
0 and

ψ+(z, t+ ∆t) ' (2πσ2
0)−

1
4 cos

θ0

2

× exp
− (z−z∆−ut)

2

4σ2
0

+ i
~ (muz− 1

2mu
2t+~ϕ+)

ψ−(z, t+ ∆t) ' (2πσ2
0)−

1
4 i sin

θ0

2

× exp
− (z+z∆+ut)2

4σ2
0

+ i
~ (−muz− 1

2mu
2t+~ϕ−)
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