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Introduction

It is well-known for a long time that dependence concepts play an important role in Probability and Statistics. Many practical applications concern e.g. the management of (insurances, economics, financial,..) risks, performance evaluation of Discrete Event Systems such as manufacturing systems, networks, etc. based on stochastic models (see e.g. [START_REF] Szekli | Stochastic Ordering and Dependence in Applied Probability[END_REF], [START_REF] Muller | Comparison Methods for Stochastic Models and Risks[END_REF], [START_REF] Hunter | Markovian Queues With Correlated Arrival Processes[END_REF] and references therein).

Pioneering works on the subject are the ones of Fréchet ([14], [START_REF] Fréchet | Sur les Tableaux de Corrélations dont les Marges sont Données[END_REF]) who proposed a way to study dependence in Probability and Statistics. Independently, this problem also received attention from Bonferroni [START_REF] Bonferroni | Teoria Statistica delle Classi e Calcolo delle Probabilitá[END_REF] and Hoeffding [START_REF] Hoeffding | Masstabinvariante Korrelationstheorie[END_REF].

The Fréchet problem in Probability and Statistics is a particular case of the following problem called in this paper the abstract Fréchet problem which is defined hereafter. The main idea of such a work is to obtain optimistic and pessimistic bounds only as functions of given marginals. It means that no dependence model is required. For more details on the importance of such an approach and its applications the reader is referred to Rüschendorf [START_REF] Ruschendorf | Fréchet-Bounds and Their Applications[END_REF] and references therein, Williamson and Downs [START_REF] Williamson | Probabilistic Arithmetic: Numerical Methods for Calculating Convolutions and Dependency Bounds[END_REF], and Regan et al. [START_REF] Regan | Equivalence of methods for uncertainty propagation of real-valued random variables[END_REF].

The abstract Fréchet problem

Let us consider the 6-tuple S = (S, ⊕, ⊙, O, 1; ) where S is a set equipped with an addition ⊕ : S × S → S, a multiplication ⊙ : S × S → S and a partial order . The element O (resp. 1) denotes the neutral element for ⊕ (resp. ⊙).

As we will see in the sequel, the definition of the abstract Fréchet problem is only based on the addition. However, the role of the multiplication will be explained in Remark 3.1. In particular, the multiplication allows us to study the geometric properties of the set of solutions of the Fréchet problem (see subsection 4.3).

Let (X, A) be a measurable space (i.e. A is a σ-algebra of parts of the set X).

A set function f : A → S is called an (A, S)-measure if it obeys the following properties:

(M 1). f (∅) = O, (M 2). f (A∪B) = f (A)⊕f (B), for any pair A, B ∈ A of disjoint sets, i.e. such thatA∩

B = ∅.
Let us denote the set of all (A, S)-measures on A by M(A, S).

Note that in Hamm [START_REF] Hamm | Uncertain Dynamical Systems Defined by Pseudomeasures[END_REF] they are called pseudo-additive measures. Moreover, if f ∈ M(A, S) satisfies:

(P ). f (X) = 1,
f is called a (A, S)-probability.

Assume that the partial order defined on S is such that it is possible to define a partial order D on the set M(A ⊗ A, S) where A ⊗ A denotes the smallest σ-algebra containing the elements of A × A.

Let us define the function π

i : X × X → X, (x 1 , x 2 ) → x i as the projection on the ith coordinate of X × X such that for all A ∈ A: π -1 i (A) def = {x ∈ X × X | π i (x) ∈ A} ∈ A ⊗ A, i = 1, 2.
Let P and Q be any elements of the set M(A, S). P and Q are called marginals. Let us denote F(P, Q, S) the set of all elements H of M(A ⊗ A, S) verifying:

(F1). H • π -1 1 = P , (F2). H • π -1 2 = Q. D is an element H * of F(P, Q, S) such that for any H ∈ M(A⊗A, S), H = H * , we have: if H D H * then H / ∈ F(P, Q, S) (minimal element); if H * D H then H / ∈ F(P, Q, S) (maximal element).
Then, the abstract Fréchet problem consists in finding (if exist) extremal (i.e. maximal and minimal) elements with respect to (w.r.t.) the partial order D of the set F(P, Q, S).

It is easy to see that if P (X) = Q(X) then F(P, Q, S) = ∅. Thus, in the sequel we will assume that:

P (X) = Q(X). (1) 
In this paper we study the discrete case, that is the case where the measurable space is the discrete (topological) space:

̥ n def = (X = {1, . . . , n} = I n , A = 2 {1,...,n} = I n ) (2) 
where 2 (•) denotes the set of all subsets of the set (•).

Conditions (F1) and (F2) in the discrete case are equivalent to:

∀i ∈ I n , ⊕ k∈In h(i, k) = p(i) (3a) 
and

∀j ∈ I n , ⊕ l∈In h(l, j) = q(j) (3b) 
We adopt the following notation convention. Let Ω be either the finite set I n or I n × I n endowed with the order which is defined as follows: if Ω = I n it denotes ≤, the natural order on the set of real numbers R; if Ω = I n × I n it denotes the componentwise ordering, that is:

∀x 1 , x 2 , y 1 , y 2 ∈ I n , (x 1 , x 2 ) (y 1 , y 2 ) def ⇔ x i ≤ y i , i = 1, 2.
For any (2 Ω , S)-measure M , the symbol m (resp. M ) will denote the density (resp. the distribution) of M defined by: ∀ω ∈ Ω m(ω) = M ({ω}) (resp.

M (ω) = ⊕ {ω ′ |ω ′ ω} M ({ω ′ })).
We are interested in finding (if exist) extremal elements of F(P, Q, S) w.r.t. the particular partial order D on M(I n ⊗ I n , S) denoted D 1 and defined as follows:

∀H, H ′ , H D 1 H ′ def ⇔ ∀i, j ∈ I n , H(i, j) H ′ (i, j). (4) 
For example, the statistics case [15, Section I] corresponds to the measurable space ̥ n and the semiring Q + = (Q + , +, ×, 0, 1; ≤) , where Q + denotes the set of nonnegative rational numbers, +, × and ≤ are the usual addition, multiplication, and the natural order on R, respectively. The probability case [15, Section II] is a particular case of the positive measure case which corresponds to ̥ n and the semiring R + = (R + , +, ×, 0, 1; ≤).

Motivations for the study of the idempotence case

In this paper we consider the case where the measurable space is ̥ n and S = (S, ⊕, ⊙, O, 1; ) is an idempotent semiring, that is a semiring whose ⊕ is idempotent (i.e. ∀s, s⊕s = s). Such measures appear in many fields of research such as fuzzy theory (see e.g. [START_REF] Dubois | Fundamentals of Fuzzy Sets, Fuzzy Sets: History and Basic Notions[END_REF]), large deviation theory (see e.g. [START_REF] Varadhann | Large Deviations and Applications[END_REF], [START_REF] Puhalskii | Large Deviation and Idempotent Probability, Chapman and Hall[END_REF]), fractal theory (see e.g. [START_REF] Falconer | Fractal Geometry[END_REF]), optimization theory/dynamic programming (see e.g. [START_REF] Kolokoltsov | Idempotent Analysis and Its Applications[END_REF]), non linear difference equations (see e.g. [START_REF] Pap | Applications of Decomposable Measures on Nonlinear Difference Equations[END_REF]), decision/game theory (see e.g. [START_REF] Aumann | Values of non-atomic games[END_REF]). (A, S)-measures can also be considered as particular cases of

Choquet capacities [START_REF] Choquet | Theory of Capacities[END_REF]. In the literature (A, S)-measures, as defined in this paper, are closely related to other kinds of measures: maxitive measures [START_REF] Shilkret | Maxitives Measure and Integration[END_REF],

decomposable measures [START_REF] Pap | Pseudo Analysis[END_REF], null-additive measures [START_REF] Pap | Null-additive set functions[END_REF], possibility measures ([22, and references therein], [START_REF] Dubois | Possibility Theory[END_REF]), measures based on triangular norms or t-norms (see e.g. [START_REF] Dubois | A Class of Fuzzy Measures Based on Triangular Norms. A general framework for the combination of uncertain information[END_REF]). For other vocabulary the reader is also referred to Puhalskii [START_REF] Puhalskii | Large Deviation and Idempotent Probability, Chapman and Hall[END_REF]Appendix B]. The concept of independence and conditioning are well-known in the context of idempotency and/or fuzzyness. For instance this transfer of probabilistic axioms to optimization/control theory has been successfully applied on dynamic programming and optimization (or decision)

processes (see e.g. [START_REF] Moral | Maslov Optimization Theory: Optimality vs Randomness[END_REF], [START_REF] Del Moral | Maslov Idempotent Probability Calculus I[END_REF], [START_REF] Del Moral | Maslov Idempotent Probability Calculus II[END_REF], [START_REF] Akian | Bellman Processes[END_REF], [START_REF]Min-Plus Linearity and Statistical Mechanics[END_REF] and references therein) and for particular classes of uncertain dynamical systems (see e.g. [START_REF] Hamm | Uncertain Dynamical Systems Defined by Pseudomeasures[END_REF]). Last but not least it is proved in [START_REF] Truffet | The Fréchet Contingency Array Problem is Max-Plus Linear[END_REF] that the Fréchet array problem is max-plus linear which means that it is linear when addition is max and multiplication is +. Thus, it seems natural to go into deeper investigations in dependence problems in the idempotent case.

Organization of the paper

The paper is organized in order to be self-contained. In Section 2 basic results on Fréchet correlation array problem and basic results on order and idempotent algebra are recalled. In Section 3 we define the Fréchet problem over an idempotent semifield. In Section 4 we present the main results dealing with the problem of Section 3. In subsection 4.1, Theorem 4.1 we prove the existence and the uniqueness of the upper bounding problem. This proof is based on the distributive lattice order property of an idempotent semifield.

In subsection 4.2 we mention that it may exist a large number of minimal solutions in the idempotent case (see Examples 4.1 and 4.2). We also provide two algorithms: Algorithm 1 computes one minimal solution and Algorithm 2 computes all minimal solutions. This part of the problem needs further work.

Finally, in subsection 4.3, Theorem 4.2 we show that the set of solutions to the idempotent Fréchet problem is an idempotent convex set. Section 5 concludes this work.

Preliminaries

The Fréchet array problem

In this subsection we consider the so-called Hoeffding-Fréchet problem which corresponds to the abstract Fréchet problem with the measurable space ̥ n = (I n , I n ) defined by ( 2) and the naturally ordered semiring R + = (R + , +, ×, 0, 1; ≤

). Result 2.1 Let P be a (I n , R + )-measure and let H be a (I n ⊗I n , R + )-measure.

Let us consider the partial order

A . If H(i, j), for all i, j = 1, . . . , n, are known and verify the condition:

(M). H(i, j) + H(i -1, j -1) -H(i -1, j) -H(i, j -1) ≥ 0,
for all i, j = 1, . . . , n, where by convention

H(0, • ) = H( • , 0) = 0.
Then, the density h of H is defined, for all i, j = 1, . . . , n, by:

h(i, j) = H(i, j) + H(i -1, j -1) -H(i -1, j) -H(i, j -1) (5) 
B . Conversely, if h(l, k) ≥ 0 are given for all k, l = 1, . . . , n then:

H(i, j) = i l=1 j k=1 h(l, k), i, j = 1, . . . , n, (6) 
define the distribution function of the measure H.

C . If P (i), i ∈ I n are given numbers which verify the monotonicity condition:

(m). P (i) -P (i -1) ≥ 0, for all i, . . . , n with the convention:

P (0) = 0.
Then, the density p of P is defined by:

p(i) = P (i) -P (i -1), i = 1, . . . , n. D . Conversely, if p(i) ≥ 0, i = 1, .
. . , n, are given then:

P (i) = i k=1 p(k), i = 1, . . . , n,
define the distribution function of the measure P .

We are now in position to restate Fréchet's result using our settings.

Result 2.2 ([15]

) Let P and Q be two given marginals on ̥ n . Then, the subset

F(P, Q, S) of M(I n ⊗ I n , R + ): i) is not empty if P and Q verify condition (1), i.e. P (I n ) = Q(I n ) = θ, θ ∈ R + .
ii) And under i) it has a unique maximal element F max and a unique minimal element F min , with respect to

D ≤ 1 , which verify condition (M, Result 2.1)
and are characterized by their distribution functions from I n × I n into R + respectively defined by:

(i, j) → F max (i, j) = min(P (i), Q(j)), (7a) 
and

(i, j) → F min (i, j) = max(0, P (i) + Q(j) -θ), (7b) 

Ordered sets

Let (X , ) be a poset. (X , ) is a sup-semilattice (resp. inf-semilattice) if any 

set {x 1 , x 2 } ⊂ X has a supremum {x 1 , x 2 } (an infimum {x 1 , x 2 }). (X , ) is a lattice iff (X , ) is a sup-and inf-semilattice. (X , ) is a complete sup- semilattice (resp. inf-semilattice) if any set A ⊂ X has a supremum A (an infimum A). (X , ) is a complete lattice iff (X ,

Idempotent algebra

Let us define the fundamental (idempotent) algebraic structures used in this paper.

Definition 2.1 (Basic structures) .

Semigroup. A semigroup is a set S endowed with an associative operation

⊕ : S × S → S. 1. Monoid. A monoid is a set M = (M, ⊕, O) which is a semigroup with a neutral element O. Moreover, if ⊕ is commutative then M is a commutative monoid.

Group.

A group is a monoid G = (G, ⊙, 1) such that all elements are invertible, i.e. for any element a , there exists a unique element c = a -1 such that a⊙ c = c ⊙ a = 1. 

Semifield. A semifield is a set

K = (k, ⊕, ⊙, O, 1) such that (k, ⊕, ⊙, O, 1) is a semiring and (k \ {O}, ⊙, 1) is a group.
Semigroup, Monoid, group, semiring, semifield are said to be idempotent when ⊕ is idempotent (i.e. ∀a, a ⊕ a = a).

Algebra and order

Let S = (S, ⊕) be a commutative idempotent semigroup. We define the natural (or standard) partial order as follows:

x y def ⇔ ∃z y = x ⊕ z, ⇔ y = x ⊕ y (Because ⊕ is idempotent). ( 8 
)
The notation x y means y x. The relation x ≺ y means that x y and x = y. From now on, will denote the partial order defined by (8).

Remark By definition of and because ⊕ is idempotent and commutative, we easily see that ⊕ is monotone, i.e.:

a b ⇒ ∀c, a ⊕ c b ⊕ c (9) 
By definition of and because ⊕ is idempotent and commutative, we have: ⊙ is monotone, i.e.: 

               a b c d ⇒ a ⊙ c b ⊙ d. (10) 
⊙ d = (b ⊕ a) ⊙ (d ⊕ c) = a ⊙ c ⊕ a ⊙ d ⊕ b ⊙ c ⊕ b ⊙ d z .
Thus, by definition of (8) the result is proved. 2

Let us mention the following useful order properties of idempotent semifields.

Proposition 2.4 Let (k, ⊕, ⊙, O, 1; ) be an idempotent semifield equipped with the natural (partial) order defined by [START_REF] Del Moral | Maslov Idempotent Probability Calculus I[END_REF].

(i). (k, ⊕;

) is a lattice semigroup such that ⊕ = ∨.

(ii). The lattice (k, ) is distributive, i.e. for all a, b, c ∈ S:

a ⊕ (b ∧ c) = (a ⊕ b) ∧ (a ⊕ c) (11a) and a ∧ (b ⊕ c) = (a ∧ b) ⊕ (a ∧ c). ( 11b 
) (iii). ⊙ distributes over ∧,i.e.: ∀a, b, c ∈ S, a ⊙ (b ∧ c) = (a ⊙ b) ∧ (a ⊙ c), (b ∧ c) ⊙ a = (b ⊙ a) ∧ (c ⊙ a). (12) 
Proof. To prove (i), we just have to remark that by monotonicity of ⊙ (see [START_REF] Dubois | Fundamentals of Fuzzy Sets, Fuzzy Sets: History and Basic Notions[END_REF]):

∧{a, b} =                (a -1 ⊕ b -1 ) -1 if {a, b} ⊂ S \ {O} O otherwise. Indeed, assume that a, b = O. Because ⊕ = ∨: a -1 ⊕b -1 ≥ a -1 and a -1 ⊕b -1 ≥ b -1 . Thus, because ⊙ is monotone: (a -1 ⊕ b -1 ) -1 a and (a -1 ⊕ b -1 ) -1 b.
Hence, by definition of ∧:

(a -1 ⊕ b -1 ) -1 a ∧ b. Let c a, c b. Then c -1 ≥ a -1 , c -1 ≥ b -1 , and therefore c -1 ≥ a -1 ⊕ b -1 , hence c (a -1 ⊕ b -1 ) -1 .
The equality holds because is antisymmetric. The case a = O or b = O is trivial.

For the proof of (ii) the reader is referred to [START_REF] Birkhoff | Lattice Theory[END_REF]Chap. 12]. The result (iii) can be found in e.g. [3, p. 168]. 2

Definition of the Idempotent Fréchet problem

Let us consider the measurable space ̥ n . The basic algebraic structure we consider in this paper is a naturally ordered idempotent semifield K = (k, ⊕, ⊙, O, 1;

).

Remark 3.1 The choice of this algebraic structure is motivated as follows.

Our paper is an algebraic oriented paper and the idempotent semifield hypothesis is a very important one. It includes idempotent semirings such as

R max = ([-∞, +∞], ⊕ = max, ⊙ = +, O = -∞, 1 = 0) and R min = ([-∞, +∞], ⊕ = min, ⊙ = +, O = +∞, 1 = 0)
which play an important role in e.g. optimization theory.

It allows us to point out that only the distributive lattice property of such a structure is needed to prove one of our main result dealing with the maximal element of the Fréchet problem (see Theorem 4.1 and Remark 4.1). Thus, our result holds for other algebraic structures which have a distributive lattice property such as some incline algebras and fuzzy algebras which play an important

role in many fields (see e.g. [START_REF] Kim | Inclines and Inclines Matrices: a Survey[END_REF], [START_REF] Baccelli | Synchronization and Linearity[END_REF] and references therein).

Finally, this algebraic structure allows us to study the set of all elements which are solution to the idempotent Fréchet problem we define below.

Let us begin by the following fundamental remark. ∀H,

H ′ , H D 2 H ′ def ⇔ ∀i, j ∈ I n , h(i, j) h ′ (i, j) (13) 
Because ⊕ is non-decreasing the partial order 

Main results

We assume that the conditions described in Section 3 are satisfied and that condition (1) is satisfied, i.e.

⊕ i p(i) = σ = ⊕ j q(j). 

Study of maximal solutions

(i, j) → h max (i, j) = p(i) ∧ q(j). (14) 
Proof. We have to study solutions (if exist) of the system of equation (3a)-(3b), that is the solution of:

(I). ∀i, j ∈ I n , ⊕ k∈In h(i, k) = p(i), ⊕ l∈In h(l, j) = q(j)
By definition of the partial order (see [START_REF] Del Moral | Maslov Idempotent Probability Calculus I[END_REF]) and because ⊕ is commutative and associative:

(I) ⇒ (II). ∀i, j ∈ I n , h(i, j) p(i), and h(i, j) q(j).

Note that (k, ) is a lattice (see (i), Proposition 2.4) thus it is an inf-semilattice and hence:

(II) ⇔ (III). ∀i, j ∈ I n , h(i, j) p(i) ∧ q(j).

Because (k, ) is a distributive lattice (see (ii), Proposition 2.4) we have:

⊕ k (p(i)∧q(k)) = p(i)∧(⊕ k q(k)) = p(i)∧σ.
Then, because p(i) σ and thanks to Proposition 2.1 one concludes that: ⊕ k (p(i) ∧ q(k)) = p(i), ∀i. Similarly, we prove that ⊕ l (p(l)∧q(j)) = q(j), ∀j and that: ⊕ k,l p(l)∧q(k) = σ. Thus we have proved that the measure H max with density (i, j) → h max (i, j) 

def = p(i) ∧ q(j)
F(P, Q, R + ) in general.

Study of minimal solutions

The main result of this subsection is that there is not always a unique minimal solution for the idempotent Fréchet problem w.r.t

D 2 . Example 4.1 Let us consider the idempotent semifield R max = ([-∞, +∞], ⊕ = max, ⊙ = +, O = -∞, 1 = 0;
), recalling that defined by ( 8) coincides with ≤ in this case. Let us take the (I 2 , R max )-measures P and Q characterized by their density vector p = (1, -5) T and q = (-2, 1), respectively. The minimal solutions of the Fréchet problem (3a)-(3b) are:

        -2 1 O -5         and         -2 1 -5 O        
Moreover, as demonstrated in the following example there may exist a large number of minimal solutions. (i). for all i ∈ I n-1 , there exists a unique k i ∈ I n such that h min (i, j)

=                p(i) if j = k i O otherwise.
(ii). h min (n, j) = 1 for j ∈ I n .

Since there are n possibilities to satisfy condition (i), for a given i ∈ I n-1 , the number of minimal solutions is n n-1 .

Finding one minimal solution of the Fréchet problem (3a)-(3b) can be done easily by starting from the maximal solution H max , and trying to set h max (i, j)

to O, as long as it is possible. The following algorithm follows this scheme:

Algorithm 1 Computing one minimal solution of the Fréchet problem Input: density vectors p and q.

Output: a minimal solution H min .

Set H min to the maximal solution H max ;

E := I n × I n ; While E = ∅ do
Take any (i, j) in E ;

h min (i, j) := O ;
If H min does not satisfy (3a)-(3b) then h min (i, j) := h max (i, j) ;

E := E \ {(i, j)} ;
end This algorithm provides a minimal solution: otherwise there exists at least one h min (i, j) that can be set to O without violating conditions (3a)-(3b), which contradicts the fact that the algorithm tries to set every h min (i, j) to O. The O(n 3 ) time complexity of the algorithm can be improved by storing and updating the number r(i) of elements in a row of H max equal to p(i)

(respectively the number r(i) of elements in a column of H max equal to q(i)).

Hence, h(i, j) is set to O only if condition "(r(i) > 1 or h(i, j) = p(i)) and (c(i) > 1 and h(i, j) = q(j))" is satisfied. Since checking this condition and updating r(i) and c(i) take time O(1), the complexity of Algorithm Proof. First we prove that the solutions found are minimal. Suppose the algorithm returns one non-minimal solution H. In this case there is at least one element (i, j) such that h(i, j) = h max (i, j) and H is still a solution if h(i, j) is set to O. Therefore there exist k and l such that h(i, l) = p(i) and h(k, j) = q(j). If (i, j) has been treated by the algorithm before (i, l) and (k, j), then h(i, l) or h(k, j) (or both) should have been set to O: so suppose, without loss of generality, that (i, l) has been first considered. Since h(i, l) = p(i) and h(k, j) = q(j), procedure M inimalSolution should have set h(i, j) to O when 

(i, j) = h max (i, j) */ H ′ := H ; L := {(i, k) ∈ E| h(i, k) = h(i, j) and k = j} ; C := {(l, j) ∈ E| h(l, j) = h(i, j) and l = i} ; foreach (k, l) ∈ L ∪ C do h ′ (k, l) := O if H ′ does not satisfy (3a)-(3b) then h ′ (k, l) := h(k, l) ; end MinimalSolution(p, q, H ′ , E \ ({(i, j)} ∪ L ∪ C), S) ;
end trying to set elements of row i to O (Step 2), which contradicts our assumption. Now we prove that all minimal solutions are found. Assume there is a minimal solution H ′ not generated by the algorithm, and let H be a minimal solution found by the algorithm. Since H = H ′ , there exists (i, j) such that h(i, j) = h ′ (i, j). We consider two cases:

• h ′ (i, j) = O: since H ′ is a solution, there exist k and l such that h ′ (i, l) = h max (i, l) = p(i) and h ′ (k, j) = h max (k, j) = q(j). Since H is a minimal solution such that h(i, j) = h max (i, j), it is not possible to have O ≺ h(i, l)

and O ≺ h(k, j) at the same time. Suppose, without loss of generality, that only h(i, l) is equal to O, or, if h(k, j) = h(i, l) = O, that h(i, l) has been set to O before h(k, j). After setting h(i, l) to O (Step 1), procedure M inimalSolution has set h(i, l) to h max (i, l) = p(i) and has tried to set elements of row i to O (Step 2). Because h(k, j) = h max (k, j) = q(j), the algorithm should have set h(i, j) to O, which contradicts our assumption.

• h ′ (i, j) = h max (i, j): since h(i, j) = O, there exist k and l such that h(i, l) = h max (i, l) = p(i) and h(k, j) = h max (k, j) = q(j). Since H ′ is a minimal solution such that h ′ (i, j) = h max (i, j), it is not possible to have O ≺ h ′ (i, l)

and O ≺ h ′ (k, j) at the same time. Therefore, h(i, l) = O or h(k, j) = O, and the previous case applies.
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Obviously, this algorithm does not have a polynomial time complexity since the number of minimal solutions can be exponential (see example 4.2).

Study of other elements

In this subsection we characterize the set F(P, Q, K) recalling that K is a naturally ordered idempotent semifield. Let us begin by the following definition.

Definition 4.1 A subset X of K is an idempotent convex set if ∀u, v ∈ X , ∀α, β ∈ K such that α ⊕ β = 1: α ⊙ u ⊕ β ⊙ v ∈ X .
We give next the main result of this subsection.

Theorem 4.2 The set F(P, Q, K) is an idempotent convex set.

Proof. Let H 1 and H 2 be two elements of F(P, Q, K). Let H = α ⊙ H 1 ⊕ β ⊙ H 2 = [α ⊙ h 1 (i, j) ⊕ β ⊙ h 2 (i, j)], ∀α, β ∈ K such that α ⊕ β = 1.

For all i ∈ I n , We have proved that relation (3a) is verified by H. A similar proof is used to

⊕ k∈In h(i, k) = ⊕ k∈In (α ⊙ h 1 (i, k) ⊕ β ⊙ h 2 (i, k) = (⊕ k∈In α ⊙ h 1 (i, k)) ⊕ (⊕ k∈In β ⊙ h 2 (i, k)) (⊕
show that H satisfies (3b). Thus, H ∈ F(P, Q, K) and the result is proved. 2

Noticing that the Minkowski theorem holds for max-plus convex Sets [START_REF] Gaubert | The Minkowski Theorem for Max-plus Convex Sets[END_REF], the previous result suggests to investigate the topological properties (e.g. compactness) of the set H ∈ F(P, Q, K).

In this paper we have studied an idempotent (or fuzzy) version of the Fréchet array problem. In the case of an idempotent semifield the set of all solutions is an idempotent convex set (see subsection 4.3 and Theorem 4.2).

There exists a unique upper bound to this problem. The proof is valid not only for an idempotent semifield but also for a distributive lattice. Such a structure naturally appears in the context of fuzzyness.

The lower bounding problem is more complex. There exist several (maybe many) lower bounds of a given Fréchet array problem. As a further work we need to count exactly their numbers and try to find other algorithms more efficient than the one we have proposed in this paper.

D ≤ 1

 1 on the distributions associated to the elements of M(I n ⊗ I n , R + ) defined by (4) (where is replaced with ≤). Let us remark that the R + -valued measures defined on the discrete topology are completely characterized because of the relationship between the density function and the distribution function. This relation is recalled in the following result.

  ) is a complete sup-and inf-semilattice. A lattice is distributive if ∧ and ∨ are left distributive w.r.t one another, i.e. a∨(b∧c) = (a∨b)∧(a∨c), a∧(b∨c) = (a∧b)∨(a∧c), and also right distributive, i.e. (b ∧ c) ∨ a = (b ∨ a) ∧ (c ∨ a), (b ∨ c) ∧ a = (a ∧ b) ∨ (a ∧ c). Proposition 2.1 Let (X , ) be a lattice. Then, a b ⇔ b = a ∨ b ⇔ a ∧ b = a. Proof. By definition of ∨ and ∧ we have: b = a ∨ b ⇒ a b and a ∧ b = a ⇒ a b. Assume that a b. Because is reflexive we have a a which implies by definition of ∧ that: a a∧b. Noticing that a∧b a and is antisymmetric we conclude that: a = a ∧ b. Similarly we prove that a b ⇒ b = a ∨ b on the inequality b b. 2

3 .

 3 Semiring. A semiring is a set S = (S, ⊕, ⊙, O, 1) with O = 1 such that (S, ⊕, O) is a commutative monoid, ⊙ : S × S → S is associative and its neutral element is 1, ⊙ has O as absorbing element, ⊙ distributes over ⊕.

Proposition 2 . 2

 22 a a ⊕ b and b a ⊕ b. Conversely, assume that there exists c such that a c and b c. Then, because ⊕ is monotone (see (9)) and idempotent we have a ⊕ b c ⊕ c = c. Thus, for all a, b the supremum of a and b, a ∨ b exists and is a ⊕ b. This well-known result is recalled in the next Proposition. The class of all idempotent commutative semigroups coincides with the class of all sup-semilattices. From this Proposition we immediately deduce that the class of idempotent commutative monoids with neutral element O coincides with the class of sup-semilatices having the bottom element ⊥ = O. An idempotent commutative semigroup (S, ⊕; ) is a complete ordered set iff ∀A ⊆ S, ⊕A def = ⊕ a∈A a exists in S. An idempotent commutative semigroup (S, ⊕; ) such that ∀x, y , x ∧ y exists is called a lattice semigroup. An idempotent semiring S = (S, ⊕, ⊙, O, 1; ) is complete if (S, ⊕; ) is a complete ordered set and ∀B ⊆ S, ∀c ∈ S: (⊕B) ⊙ c = ⊕ b∈B b ⊙ c, c ⊙ (⊕B) = ⊕ b∈B c⊙b. One also remarks that any distributive lattice with a bottom element ⊥ and a top element ⊤ (resp. a complete distributive lattice) is an idempotent semiring (resp. an idempotent complete semiring). Proposition 2.3 Let S = (S, ⊕, ⊙, O, 1; ) be an idempotent semiring. Then,

Proof.

  Assume that a b and c d. Then, b = a ⊕ b and d = c ⊕ d. By distributivity of ⊙ over ⊕, and because ⊕ is commutative one has: b

Remark 3 . 2

 32 Let us recall that a (I n , K)-measure P (resp. a (I n ⊗ I n , K)measure H) is completely characterized by its discrete density function, i.e. the application p :I n → k, i → p(i) def = P ({i}) (resp. h : I n × I n → k, (i, j) → h(i, j) def = H({i}×{j}))but not always by its distribution function. For example let us consider the idempotent semifield R max = ([-∞, +∞], ⊕ = max, ⊙ = +, O = -∞, 1 = 0; ). Note that in this case defined by[START_REF] Del Moral | Maslov Idempotent Probability Calculus I[END_REF] coincides with ≤ the natural order on R. Let P be a (I 3 , R max )-measure whose density is the constant function p = -5. Then, its distribution function is also the constant function i → -5. But if we take P ′ whose density p ′ is defined by p ′ (i) = -5i + 1, i ∈ I 3 then P ′ has also the same distribution function as P .Because of this remark only (B and D Result 2.1) are still valid. In order to find (if exist) extremal elements of the set F(P, Q, S) we define the partial order D 2 on M(I n ⊗ I n , K) based on the comparison of density functions as follows.

D 2 is stronger than the partial order on distribution functions D 1 .

 1 It means that the extremal solutions (if exist) of the Fréchet problem with partial order D 2 are also extremal solutions of the same Fréchet problem (i.e., the same algebraic structure) with partial order D 1 .

Theorem 4 . 1

 41 The set F(P, Q, K) has a unique maximal element H max w.r.t the partial order D 2 completely characterized by its density function from I n × I n → k defined by:

Example 4 . 2

 42 Let n ≥ 2 be an integer and let us consider the (I n , R max )measures P and Q characterized by their density vector p = (-1, -2, . . . , -(n-1), 1) T and q = (1, 1, . . . , 1), respectively. The minimal solutions H min = [h min (i, j)] of the Fréchet problem (3a)-(3b) are such that :

  is commutative and associative)= α ⊙ (⊕ k∈In h 1 (i, k)) ⊕ β ⊙ (⊕ k∈In h 2 (i, k)) (by distributivity) = α ⊙ p(i) ⊕ β ⊙ p(i) = (α ⊕ β) ⊙ p(i) (by distributivity) = p(i).

  For the classical Fréchet problem (i.e., when the semiring is R + ) the bound h max is still valid because (R + , +; ≤) is a naturally ordered infsemilattice. But, measure H max , whose density is h max , is not an element of

	Remark 4.2			
				is
	the maximum element of the set F(P, Q, K) w.r.t	D	2 .	2
	Remark 4.1 In the previous proof we only use the fact that a semifield is a
	distributive lattice.			

  Computing all minimal solutions of the Fréchet problem Input: density vectors p and q.

	4.2 is
	lowered to O(n 2 ).
	The next step is to compute all minimal solutions, which can be done by
	algorithm 4.2:
	Algorithm 2 Output: set S of all minimal solutions.
	Compute the maximal solution H max ;
	E := I n × I n ;
	S := ∅ ;
	MinimalSolution(p, q, H max , E, S) ;
	Proposition 4.1 Algorithm 4.2 computes all minimal solutions of the Fréchet
	array problem (3a)-(3b), i.e. it computes all possible sets E ⊆ I

n × I n such that h min (i, j) = h max (i, j) if (i, j) ∈ E, and h min (i, j) = O otherwise.
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