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Thomas Bonometti - S. Balachandar

Effect of Schmidt number on the structure and propagation
of density currents

Abstract The results of a numerical study of two- and three-dimensional Boussinesq density currents are
described. They are aimed at exploring the role of the Schmidt number on the structure and dynamics of den-
sity driven currents. Two complementary approaches are used, namely a spectral method and a finite-volume
interface capturing method. They allow for the first time to describe density currents in the whole range of
Schmidt number 1 < S¢ < oo and Reynolds number 102 < Re < 10*. The present results confirm that the
Schmidt number only weakly influences the structure and dynamics of density currents provided the Reynolds
number of the flow is large, say of O(10%) or more. On the contrary low- to moderate-Re density currents
are dependant on Sc as the structure of the mixing region and the front velocities are modified by diffusion
effects. The scaling of the characteristic density thickness of the interface has been confirmed to behave as
(ScRe)~ /2. Three-dimensional simulations suggest that the patterns of lobes and clefts are independent of Sc.
In contrast the Schmidt number is found to affect dramatically (1) the shape of the current head as a depression
is observed at high-Sc, (2) the formation of vortex structures generated by Kelvin—Helmholtz instabilities. A
criterion is proposed for the stability of the interface along the body of the current based on the estimate of
a bulk Richardson number. This criterion, derived for currents of arbitrary density ratio, is in agreement with
present computed results as well as available experimental and numerical data.

Keywords Density currents - Gravity currents - Buoyancy driven flows - Mixing - Spectral methods -
Finite volume methods

PACS 47.11.-j - 47.20.Bp - 47.55.P- - 92.10.Lq

1 Introduction

Density currents are mainly horizontal flows that are driven by lateral pressure gradient induced by density
difference between the current and the surrounding fluid. These flows are encountered in various geophysical,
environmental and safety problems such as thunderstorm fronts, volcanic eruptions, oil spills on the ocean,
snow avalanches and fires in enclosed structures [1,16,36]. These density currents can be produced with den-
sity differences ranging from a fraction of a percent (e.g. oceanic currents with inhomogeneous salinity or
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temperature) to large values (e.g. dam break flows). Density currents can be considered as Boussinesq flows as
long as the density ratio does not exceed 1.2 approximately [13,17]. Recently Huppert [22] provided a review
of the rich physical problems related to density currents.

The degree to which the heavy and light fluids mix can be an important factor in determining the structure
and dynamics of the current. Mixing at the macroscale is due to interfacial instability, while mixing at the
molecular level is controlled by diffusivity of the agent responsible for density difference. In gases and liquids,
thermal and concentration diffusivities show wide variation. For example, the Schmidt (or Prandtl) number for
thermal diffusivity in air is around 0.7, while in water it is about 7.0. Here the Schmidt number (Sc) is defined
as the ratio between the kinematic viscosity v and the molecular diffusivity K of the fluids, i.e. Sc = v/K. In
contrast, the Schmidt number for salt and several other solvents in water is about 700. If the density difference
is due to a suspension of fine particles then the effective Schmidt number is typically large and often a complex
function of local shear and particle concentration.

There are situations where the two fluids are molecularly immiscible, as in the case of an oil slick spreading
on water or the flood of water into the ambient air after a dam break. The Schmidt number tends to infinity
in these cases and mixing of the different fluids is only at the macro-scale through interfacial instability and
turbulence. Thus, Schmidt numbers ranging from less than one to very large values tending to infinity are
of practical interest. In the case of density currents involving immiscible fluids, density and viscosity ratio
between the two fluids and surface tension effects also play a role.

Two and three-dimensional simulations have been performed for Boussinesq planar density currents at
moderate Reynolds numbers [9,13,18,25,29]. They provide detailed information on the propagation speed of
the current, the three-dimensional lobe and cleft structure of the head, and the turbulent structure of the body.
All these simulations use the assumption that the molecular diffusivity K and the kinematic viscosity v of the
fluids are of the same order, i.e. the Schmidt number Sc¢ = O(1). Necker et al. [28] performed a number of
test calculations for different values of Sc and observed the flow to be nearly independent of Sc as long as Sc
was not much smaller than one. Birman et al. [3] indicated that the influence of Sc in the range 0.2-5 to be
quite small.

Numerical approaches based on variable density single fluid formulation are typically limited to modest
values of Schmidt number. While the Reynolds number (Re) controls the smallest length scale associated with
the velocity field, ScRe controls the smallest length scale associated with the concentration field. Thus, for
large Sc unattainably fine grids are required to resolve the sharp concentration interface, while the flow itself
does not require such resolution. As a result the Schmidt number in these simulations is typically limited
to less than 10. Only numerical approaches that are designed to resolve sharp interfaces can handle nearly
immiscible fluids. They however are not well suited for studying density currents at O (1) Sc. As a result an
extensive study over a wide range of Sc from O(1) to very large values has not been performed so far, and
the detailed influence of the Schmidt number on the structure and dynamics of density currents remains an
open question. Interestingly, the hydraulic theories of density currents ignore molecular diffusivity and thus
consider the immiscible limit [2,34,38].

Here we attempt to deepen our understanding of the influence of the Schmidt number on the structure and
dynamics of Boussinesq flows through numerical simulations. We present two- and three-dimensional com-
putational results of lock—exchange density currents for various Reynolds numbers. Two different numerical
techniques are employed in this work, namely, a spectral method and a finite-volume method, allowing us to
investigate the role of the Schmidt number on density currents over a wide range of Sc. We describe in Sect. 2
the computational approaches and illustrate the accuracy of the numerical methods for density currents. The
influence of the Schmidt number on currents of various Reynolds number is analyzed in Sect. 3. In this section
the effect of Sc on the three-dimensionality of the current is also addressed. A summary of the main results is
given in Sect. 4.

2 Numerical formulation

The physical configuration of the density currents to be considered here is shown in Fig. 1. Initially, a slab of
heavy fluid of density pg (shown in Fig. 1 as the shaded region) is separated from the light fluid of density
pr. The heavy fluid is initially of half-width xo along the flow direction and extends over the entire height H
of the channel (lock—exchange configuration).
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Fig. 1 The physical configuration and nomenclature used in this work. The dotted line represents the initial separation between
fluids. The thick line represents the interface at later times. The whole domain 2L x H is computed in the spectral code while
the right-half side of the domain L x H is computed in the finite-volume code

2.1 Basic equations

If we assume the two fluids to be Newtonian, incompressible and miscible with no phase change, their evolution
is then described using the one-fluid formulation of the Navier—Stokes equations, namely

V.u=0, 2.1)
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where u, pyi. p and p are the local velocity, total pressure, density and dynamic viscosity in the flow,
respectively and g denotes gravity. In the case of miscible fluids, the local density obeys

9
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where the molecular diffusivity K is taken to be constant. In the following, we assume the viscosity to be
constant and the same for both fluids. We consider the dynamic pressure p = piot + p1gz instead of the total
pressure (z being the spatial coordinate parallel to the gravity vector), and choose H aslengthscale, U = \/g'H
as velocity scale and H/U as time scale (g’ is the reduced gravity defined as ¢’ = g(pg — pr)/poL). The
dimensionless density and pressure are given by

ﬁzu, and p = p2 2.4)
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Any variable with a tilde on top is to be understood as dimensionless. The dimensionless form of (2.1)—(2.3)
read
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Three dimensionless parameters have been introduced in (2.5)—(2.7) namely the Reynolds number, the Schmidt
number and the parameter ¢ defined as
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2.2 The two computational approaches

In this work we have employed two different numerical techniques: a fully de-aliased pseudo-spectral code
[10] and a finite-volume/volume-of-fluid method with no interface reconstruction [5]. The spectral code was
used to simulate currents with moderate Schmidt number while the finite-volume code was used for high-Sc.
This allows us to explore the range of parameters 102 < Re < 10*and 1 < Sc < oc.

2.2.1 The spectral code

In the spectral code, Fourier expansions are employed for the flow variables along the horizontal directions
(x and y). In the inhomogeneous vertical z-direction a Chebyshev expansion is used with Gauss-Lobatto
quadrature points [10]. Details on the implementation of this numerical scheme can be found in Cortese and
Balachandar [12].

Periodic boundary conditions are enforced along the horizontal directions and as shown in Fig. 1 the com-
putational domain is a rectangular box of size 2L x H. The box is typically taken to be very long along the
streamwise direction in order to allow free unhindered development of the current. At the top and bottom walls,
no-slip and zero-gradient conditions are enforced for velocity and density, respectively. The initial density is
smoothly varied from O to 1 over a thin region located at the interface [3,8]. The flow is started from rest with
a minute random disturbance prescribed in the density field.

In the present work, only two-dimensional computations are performed with this code (three-dimensional
examples can be found in Cantero et al. [8]). We employ a 1,024 x 80 gridina32H x H domain (L = 16H)
for all Re except Re = 10* for which a 4,000 200 grid in a 64H x H domain is used, as in Birman et al. [3].
The numerical resolution for each simulation is selected to have between 4 and 6 decades of decay in the
energy spectrum for all the variables. The time step is selected to produce a Courant number smaller than 0.5.
In the spectral code, the value of the parameter ¢ in Eq. (2.6) is set to zero.

2.2.2 The finite-volume code

The second numerical technique is a finite-volume/volume-of-fluid method with no interface reconstruction.
Equations (2.5)—(2.7) are solved using the JADIM code originally developed for gas—liquid flows capable of
accurately capturing the dynamics of flows with high density ratios [5,6]. In this approach, the equation of
evolution of the density is chosen to be hyperbolic, i.e. the right-hand side of Eq. (2.7) is zero. Although no
physical diffusivity is introduced in the advection of p, the numerical thickness of the interface is not strictly
zero as it is typically resolved over three grid cells [6]. This is equivalent to using a Schmidt number sufficiently
large that the product ScRe in the right-hand side of Eq. (2.7) is much greater than one (denoted as S¢ — oo
throughout this paper). An effective Schmidt number can be estimated, which depends on the degree of spatial
resolution. The effective Schmidt number for the spatial resolutions used here is estimated to be of O (10%)
(see Appendix).

The transport equation of the density is solved using a modified version of the transport scheme proposed by
Zalesak [39]. The overall algorithm is second-order accurate in both time and space. Details on the algorithms
as well as validation of the code may be found in Bonometti and Magnaudet [6].

A symmetry free-slip boundary condition is used along the x = 0 plane, and thus the computational domain
used with the finite-volume code is only half that used for the spectral code (i.e. the domain size is L x H). At
the top and bottom walls, no-slip and zero concentration gradient conditions are imposed. The initial density
p is defined as 1 for x < xg and O for x > xg and the fluid is initially at rest. Two and three-dimensional
computations performed with this code are presented here. As for the two-dimensional simulations, we use a
1,600 x 160 grid in a 25H x H domain (L = 25H) for all Re except Re = 10* for which a 2400 x 240 grid
is used. The details of the 3D simulations are provided in Sect. 3.5. Since the finite-volume code is written
so as to treat fluids of arbitrary density contrast, we cannot strictly impose the value of the parameter € in
Eq. (2.6) to be zero, therefore ¢ is set to 0.01 in order for the currents to be considered as Boussinesq.

2.3 Preliminary tests and validation

The present two techniques have been used in the past and validated for various problems. Resolution require-
ments of the spectral code in the Boussinesq limit have been well established [8,9]. Also the energy spectra in



Fig. 2 Time evolution of the front velocity of the S¢ — oo density current at different grid resolutions. a Re = 103, b Re = 10*.
Dashed-dotted line: 416 x 80. Dashed line: 832 x 160. Solid line: 1,248 x 240. Circles: 1,664 x 320. Dotted line: Benjamin’s
theory. Triangles: simulation with free-slip boundary conditions (grid 832 x 160). Note that for Re = 103, the velocity curves
of the last three grid resolutions are almost indistinguishable

the present spectral simulations have been verified to show several decades of decay and thereby ensuring the
adequacy of resolution.

The finite-volume method has been shown to reproduce correctly the dynamics of gas—liquid flows at low
to moderate Re [5,6]. In order to establish the accuracy of the finite volume code in the context of density cur-
rents here we present a resolution test. We consider a lock—exchange flow between two non-diffusive fluids of
density ratio py /pr, = 1.01. Two different Reynolds numbers of 10% and 10* are considered. The longitudinal
domain size is L = 13 H and the location of the initial lock is at Xxo = 6.5. No-slip boundary conditions are
imposed at the top and bottom walls. The computational resolution was increased four fold with the following
grids: 416 x 80, 832 x 160, 1,248 x 240 and 1,664 x 320, which will be referred to as R1, R2, R3 and R4,
respectively.

The time evolution of the front velocity at the two different Reynolds numbers for the different grid reso-
lutions is shown in Fig. 2. In all cases a slumping phase with a near constant front velocity is observed and the
approach to constant velocity is oscillatory. For Re = 103 the constant velocity obtained with grids R1, R2, R3
and R4 are 0.386, 0.390, 0.391 and 0.391, respectively. For Re = 10* the constant velocity obtained with grids
R1, R2, R3 and R4 are 0.433, 0.437, 0.439 and 0.439, respectively. With increasing resolution the constant
front velocities show convergence, but are 22 and 12% lower than Benjamin [2] prediction for Re = 103 and
Re = 10%, respectively. The difference in the higher Re case can be attributed to the effect of the top and
bottom no-slip walls, which are not taken into account in the theory [18]. Indeed, also plotted in Fig. 3b is



Table 1 Evolution of some quantities with the spatial resolution in the cases Re = 10° and Re = 10* (finite-volume code,
Sc — 00)

Mesh size ﬁ‘;fak fpeak i Eq4

Re =103
R1 (416 x 80) 0.458 0.983 0.386 0.000481
R2 (832 x 160) 0.454 0.935 0.390 0.000518
R3 (1,248 x 240) 0.452 0.931 0.391 0.000531
R4 (1,664 x 320) 0.452 0.931 0.391 0.000535

Re = 10*
R1 (416 x 80) 0.513 1.030 0.433 0.000115
R2 (832 x 160) 0.509 0.942 0.437 0.000149
R3 (1,248 x 240) 0.506 0.911 0.439 0.000167
R4 (1,664 x 320) 0.505 0.910 0.439 0.000179

—peak . o heak . - - = .
u’;,e * Maximum value of the front velocity, 7K time of maximum front velocity, iG> constant front velocity, Eq energy dissipation
measured at time 7 = 10, and scaled by the initial potential energy

the result of a simulation with free-slip boundary conditions for the resolution R2, and Re = 10*. It is clear
that at sufficiently high Reynolds number with free-slip boundary condition Benjamin’s prediction can be
recovered. We note in passing that Rottman and Simpson [32] reported a similar discrepancy of 10% between
their experimental results and Benjamin’s prediction. Also Hértel et al. [18] report front velocity to within 2%
with the theoretical prediction, for a current spreading on a free-slip bottom boundary. As can be observed
in Fig. 2, the front velocity reaches a peak before approaching the constant velocity in the slumping phase.
Table 1 presents the peak front velocity, the time instance of the peak and total dissipation within the domain
for the different grid resolutions. The slow approach to convergence illustrates the need for higher resolution
with increasing the Reynolds number.

Density contours at time f = 11.3 are plotted in Fig. 3 for the Re = 10* case at three different grid resolu-
tions. The large scale features of the flow, i.e. the front position and the roll-up of the interface into the main
vortex structures, are similar at the different resolutions. However, small scale structures continue to become
finer with increased resolution. This behavior is well evident in the thickness of the interface at the head of the
current as captured by the density contours of value from 0.05 to 0.95. The thickness of the interface continues
to decrease with increasing resolution. With no explicit diffusion in the concentration equation being solved,
the numerical resolution of the sharp interface across three grid cells provides the effective diffusivity. The
location of the rolled-up vortices and the precise manner of interaction between them shows some variation
between the different resolutions. These differences are due to the chaotic nature of the interfacial instability
and the roll up process at Re = 10*. As the heavy and light fronts propagate to the right and left, respectively,
new vortices roll up at the interface close to the propagating fronts. The onset of roll up is sensitive to the
details of the initial disturbance and to the round off errors arising from the different discretizations. As a
result, at the time instance shown in Fig. 3 differences can be observed in the state of the incipient vortex roll

Fig. 3 Contours of j obtained with the finite-volume method (S¢ — oo0) at Re = 10*. Results are for i = 11.3 with grids
a416 x 80; b 832 x 160; ¢ 1,664 x 320. The values of the plotted contours are p = 0.05 — 0.275 — 0.5 — 0.725 — 0.95. Images
are vertically stretched by a factor 2



Fig. 4 Snapshots of the head at different time instants obtained with the finite-volume method (Re = 10, S¢ — 00): a—¢
1,248 x 240 grid and d—f 1,664 x 320 grid. The time difference between snapshots is constant and the same for both grids
(A7 = 0.56). The values of the plotted contours are 5 = 0.05, 0.275, 0.5, 0.725 and 0.95. Images are vertically stretched by a
factor 2. Note that the position of the current’s front at a given time instance is identical for all the spatial resolutions

up. These subtle differences in the initial roll up process persist as differences in the precise location of the
rolled-up vortices and their interaction.

A close examination of the incipient roll up close to the current head, however, shows that this process is
statistically grid independent. This is demonstrated in Fig. 4, where a close view of the interfacial roll up close
to the heavy front at three different time instances for the two highest resolutions are shown. Note that frames
(a) and (d) are not at the same time instance. The time instances have been slightly shifted in order to extract
incipient vortices at nearly similar stage in their development. The non-dimensional time gap between frames
(a), (b) and (c) is chosen to be the same as between frames (d), (e) and (f). It can be observed that although the
periodic initiation of roll up is sensitive and shows subtle variation in timing between the different resolutions,
the process of interfacial roll up, vortex formation and interaction is robust and grid independent. The above
complexity seen in the concentration field is largely mitigated in the velocity field owing to the finite Re. This
can be verified in the convergence of front velocity and the energy dissipation statistics shown in Table 1.

3 Results
3.1 Interface thickness

We consider first the case of a low-Re Boussinesq density current for Re = 102, In Fig. 5 we present contours
of p at f = 12.7 obtained for four different Schmidt numbers, namely Sc = 1, 10, 102, and oco. At this low
Reynolds number, there is no vortex roll up of the interface whatever the Schmidt number. The most striking
difference is in the thickness of the interface, while its shape remains nearly the same. Although subtle, another
difference is in the small depression that can be observed close to the head of the front at high Sc. The thickness
of the interface measured normal to the interface along the body of the current is expected to vary according to
hy/H ~ (ScRe)™ 1/2 This scaling relation can be derived from an order-of-magnitude analysis of the terms in
the continuity equation (2.3), and by balancing the strain and diffusion effects (see e.g. [4,24]). The thickness
of the interface can be defined as the normal distance measured between contours of p =@ and p = 1 — «,
and thus can be expected to depend on the choice of «. In the Appendix (Fig. 17) it is shown that the above
scaling relation for the interface thickness is satisfied to within 4% accuracy, independent of the choice «.

Density currents at four different Reynolds numbers, namely Re = 102,317,103, 104, are shown in Fig. 6.
Only the results for Sc = 1 and S¢ — o0 are shown so that comparisons can be made between these two
limiting cases. As already observed in Fig. 5, no vortex structure is observed at the lowest Re considered (cases
c and d of Fig. 6) but above a critical Re, the interface becomes unstable with growing Kelvin—Helmholtz
instability, resulting in the roll up of the interface into coherent vortex structures and leading to strong con-
vective mixing. These vortex structures are observed at Re = 10° and 10% in the cases S¢ = 1 and S¢ — oo,
respectively. The characteristic thickness of the interface along the body of the current is not constant anymore
but varies with the local flow structures.

A quantitative comparison of the topology of the interface is provided in Fig. 7. Based on the work of
Pawlak and Armi [30], who measured mixing and entrainment in developing stratified currents, we estimate



Fig. 5 Contours of § at 7 = 12.7 (Re = 10?). Results fora Sc = 1, b S¢ = 10, ¢ Sc = 10? and d S¢ — oo. Frames a to
¢ are from the spectral code for which the grid resolution is 1,024 x 80 on a 32H x H over-all domain. Frame d is from the
finite-volume code for which the grid resolution is 1,600 x 160 on a 25H x H domain. The values of the plotted contours are
p =0.05—-0.275 - 0.5 — 0.725 — 0.95. Images are vertically stretched by a factor 3.33

an averaged density thickness & o as the inverse slope of the best-fit line through the normalized density profiles

between 15 and 85% values,
1 [ 0p B
§,=— [ (22 dx. 3.1
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The integral corresponds to spatial averaging along the horizontal direction inside the body of the current (the
length of the body of the current is referred to as Ly,). Here the body of the current is defined to exclude the
head of the heavy and light fronts. The head region is taken to be one dimensionless height from the front
position and thus the average is only over the interior of the interface.

The temporal evolution of Sp is plotted in the inset of Fig. 7 for four cases: two Schmidt numbers of
Sc =1, Sc — oo and two Reynolds numbers of Re = 317 and Re = 10*. In the two lower dashed curves,
which correspond to S¢ — oo, the averaged density thickness increases at early times to reach a plateau
of nearly constant value for f > 8. In the two upper curves, which correspond to Sc¢ = 1, Sp progressively
increases during the entire period of spreading and the increase is more significant for the smaller Re case.
The time-averaged value of § o (averaged over the range 8 < 7 < 20) is plotted for currents of varying Re and
Sc in Fig. 7. The time-averaged density thickness for the finite Schmidt number (Sc¢ = 1) currents decreases
as Re increases, while Sp of the non-diffusive currents (S¢ — 00) increases with Re. For high-Sc currents, Sp
remains very small for Reynolds numbers up to 10°. The corresponding density thickness of the finite Schmidt
number currents at low Reynolds numbers is significantly larger. With increasing the Reynolds number, the
ratio between the time-averaged density thickness of the Sc = 1 current and that of the S¢ — oo current
(Sp(Sc = 1)/Sp(Sc — 00)) sharply decreases and reaches a value of about 1.3 at Re = 10*. The O(1) value
of Sp(Sc = 1)/59(Sc — 00) suggests that convective mixing is significant in the high Reynolds number
regime. Therefore, Fig. 7 indicates that the interfacial layer is less sensitive to the Schmidt number variations
at high Re. However, molecular diffusion still has a quantifiable effect in high-Re low-Sc currents, since 8 p 18
30% larger in the diffusive currents than in the non-diffusive currents. The manifestation of diffusion is also
observable through the slight increase in 8 o With time for the S¢ = 1 high-Re current, as observed in the inset
of Fig. 7.




Fig.6 Contours of patf = 12.7 of density currents for varying Re. Results with Sc = 1 and Sc¢ — oo are from the spectral method
and finite-volume method, respectively. a Re = 10 b Re = 10%; ¢ Re = 317;d Re = 102. For each Re, the upper (bottom) pic-
ture corresponds to currents of S¢c = 1 (S¢ — 00). The values of the plotted contours are p = 0.05 —0.275—-0.5—-10.725—0.95.
Images are vertically stretched by a factor 3.33

Pawlak and Armi [30] studied the spatially developing region of a steady downslope current in transition
from hydraulically controlled wedge. This configuration is quite different from ours and thus a direct com-
parison with the present results is not fruitful. However, in order to verify that conclusions drawn from the
analysis of the density thickness are insensitive to the choice of the indicator chosen to quantify mixing, we
also compute 150 as a simple measure of mixing volume fraction,

2Hxp .
0

H L
9, = ! / / F(p)dxdz, (3.2)
0
where F is a box filter deﬁned~as F(p) ={1if B <p <1—p8; 0otherwise}. Here 8 is a small threshold
taken to be equal to 0.01, and ¥, is scaled by the volume 2Hxr , which represents the portion of the channel
crossed by the current at the time considered. Figure 7 also shows ¥, plotted for currents of varying Re and
Sc and the behavior is very close to that of §,.



Fig.7 Evolution of the time-averaged density thickness Sp with the Reynolds number. Solid line: Sc = 1. Dashed line: S¢c — oo.

The error bars represent the range of variation in gp during 8 < f < 20. The inset shows the temporal evolution of Sp at Re = 10%
(without symbol) and Re = 317 (squares), and Sc = 1 (solid lines) and Sc — 00 (dashed lines). For comparison we also plot

the evolution of 15/, (Eq. 3.2) for Sc = 1 (downward triangles) and S¢ — 0o (upward triangles)

3.2 Characteristics of the head

Several high-resolution spectral simulations of density currents with S¢c = O (1) have been performed during
the last decade [3,9,13,18,25,29]. However to our knowledge, simulations of high-Sc density currents have
been rare. In the following we analyse the shape of the head of high-Sc density current for varying Reynolds
number.

The shape of the head of the density current for four different Re is shown in Fig. 6. At low Reynolds num-
bers, the current head is differentiated from the body by a pronounced depression. This is a feature of the high
Schmidt number as it is not observed at S¢ = O (1). We observe that this depression is not stationary and that
its existence is dependent on Re. It is observed only at low and moderate Reynolds numbers. At low Reynolds
numbers (Re < 0(102)) the surface depression gradually moves from the lock position to the head of the
current and eventually shrinks (see the position of the depression just before shrinkage, in the lower snapshot
of Fig. 6d; the depression reaches the front at f ~ 14 in this case). At high Reynolds numbers (Re > 0 (10%)),
Kelvin—Helmholtz instabilities grow rapidly and the vortex structures have moved sufficiently close to the
head that a clear independent surface depression is not observable anymore. Interestingly, in the intermediate
Re range the depression is still present but, after traveling to the vicinity of the front, the depression exhibits a
periodic evolution. As can be seen in Fig. 8, the depression successively grows, gets detached from the body
of the current and results in a small blob of low density fluid which is entrained into the high density head
(a similar symmetric behavior is observed at the other end in the head of the light front). Note that during
this process, the length of the head progressively decreases while the height remains roughly constant. Owing
to near immiscibility, the light fluid does not quickly mix with the surrounding heavy fluid. This scenario is
repeated as long as the current spreads forward, resulting in complex strands of unmixed fluid entrained into
the current head.

3.3 Roll-up of the interface

An interesting observation that can be made in Fig. 6 for Re = 107 is that while the interface for the high-Sc
current remains stable, instability and coherent vortex structures are observed for the S¢ = 1 current. This indi-
cates the dependence of local Richardson number defined as Ri = —g(dp/dz)/(p(du/dz)%) on the Schmidt
number [14]. Here, du/0z is the local vertical gradient of the streamwise velocity component and dp/0dz is
the corresponding density gradient. We can consider both the high- and low-Sc density currents to experience
roughly a similar magnitude of shear (see Fig. 9 for a quantitative comparison). However, the interface is
sharper and the density gradient across the interface is higher in the S¢ — oo case. Therefore, the stabilizing
effect of stratification is expected to be stronger.



Fig. 8 Time evolution of the current head for the S¢ — 00, Re = 103 case. The first snapshot is at f = 13 and the time interval
between successive views is At = 1.6 (reading from fop to bottom)

Fig. 9 Velocity profiles for the various Sc and Re cases, at 7 = 12.7 and at location X = X. Dashed-dotted line: Sc — 00, Re =
102; solid line: Sc¢ — 00, Re = 317; dashed line: Sc — 00, Re = 103; dotted line: Sc = 1, Re = 317. Note that the profiles of
the S¢ = 1 and S¢ — oo currents almost superimpose. The inset shows the variation of the velocity gradient with the Reynolds
number (the gradients are computed at the Z-location corresponding to the position of the inflexion point in the velocity profiles).
Circles correspond to velocity gradients computed from velocity profiles located at X = X( and crosses correspond to velocity
gradients computed at X = Xo + 1.25. Note that the results are independent of the choice of x

In the following, we attempt to obtain an estimate of the Richardson number based on the global parameters
of the flows. The analysis will be more general for currents of arbitrary density ratio, and not limited to Bous-
sinesq currents. For this purpose, we choose the velocity scaling to be /g At H, where the Atwood number
is defined as Ar = (pg — pL)/(pr + pr). This rescaling allows the characteristic velocity to remain finite
at high density ratio. In the limit A+ — 1, the characteristic velocity reduces to\/g H, which is of the same
order of magnitude as that predicted by the shallow-water theory for the dam-break problem [31]. Rewriting
Richardson number in non-dimensional terms,

Ri = (0p/02) 1 _ o
(3i/97)> (1 — A1) )2+ At p




Fig. 10 Ri* computed as in (3.5) versus /Sc/Re for the numerical and experimental data detailed in Table 2. The solid line is
the criterion Ri* = 0.25

Estimating the density gradient tobe 85/8% ~ (ScRe)!/?, and the velocity gradient to be i1 /dZ ~ (iiyy + iiz)
Re'2(iiy and iif being the generalized non-dimensional velocities of the heavy and light fronts), the Rich-
ardson number can be expressed as

) 1 Sc 2
Ri ~ \ o -, (3.4)
(ig + i)~V Re (1 — At) +2Atp

The estimate for the velocity gradient is verified in Fig. 9 in which the vertical velocity profiles at the center
of the currents (x = Xp) are plotted for the different Re and Sc cases. The evolution of the corresponding
non-dimensional velocity gradient, measured at the interface is plotted in the inset as a function of Re!/?. It
is observed that, in agreement with the aforementioned scaling, velocity gradient is nearly independent of the
Schmidt number, and is proportional to the square-root of the Reynolds number. The estimate of the velocity
gradient has been repeated at other horizontal locations within the current and the results are insensitive to the
actual choice of location.

In the limit of a Boussinesq current (Ar — 0), Richardson number is independent of the precise value
of p, while in the limit of large contrast (Ar — 1) Ri varies as 1/p. In order to get an estimate of the
bulk Richardson number that is independent of the precise location inside the current, we assume p ~ 0 in
Eq. (3.4), and define a bulk Richardson number Ri* as follows,

" 1 Se 2
Ri*= ———— /> . (3.5)
(ng +ur) Re 1 — At

We plot in Fig. 10 the value of Ri* corresponding to various computed density currents as a function of
(Sc/Re) 172 Also included are the numerical and experimental results of Hértel et al. [18], Cantero et al. [8]
for Boussinesq currents, and Birman et al. [3] and Lowe et al. [26] for non-Boussinesq currents of density ratio
2.5. In all these cases Sc, Re, iy and it are known and these values are presented in Table 2. All the density
currents reported by the aforementioned authors exhibit strong vortex structures.

For parallel flows of a stratified fluid, there exist a local stability threshold, Ric = 0.25, below which
Kelvin—Helmholtz instabilities are amplified [11,14]. It is observed that all the currents observed to be unsta-
ble (resp. stable) have a Ri*™ below (resp. above) the critical value of Ric = 0.25. Therefore the threshold
Ric = 0.25 appears to provide a good estimate of interfacial instability and roll up in gravity currents when
used in conjunction with the bulk Richardson number Ri*.

3.4 Front velocity

Here we examine the influence of the Schmidt number on the front velocity of the density currents. The velocity
of the front, scaled by /g’ H, is computed as iy = |d)EF/dt~|. The front position Xr is determined as the



Table 2 Data used in Fig. 10 to study the stability of the interface of gravity currents

Reference Legend Type of data Sc PH/PL ur uy Re

Unstable interface

Lowe et al. [26] * Experiments ~ 700 1.47 0.380 0.404 1.92 x 10°
Birman et al. [3] [ ] 2D-spectral 1 2.5 0.266 0.392 6.325 x 103
Hirtel et al. [18] X 2D-spectral 0.71 ~1 0.460 0.460 1.26 x 10°
Hiirtel et al. [18] + 2D-spectral 0.71 ~ 1 0.450 0.450 5.66 x 10*
Hiirtel et al. [18] | | 3D-spectral 0.71 ~ 1 0.403 0.403 3.464 x 103
Cantero et al. [8] * 3D-spectral 0.71 ~ 1 0.424 0.424 8.945 x 103
Present study > 2D-spectral 1 ~ 1 0.423 0.423 104

Present study A 2D-spectral 1 ~ 1 0.339 0.339 103

Present study v 2D-spectral 5 ~ 1 0.372 0.372 103

Stable interface

Present study N 2D-spectral 1 ~ 1 0.212 0.212 3.17 x 102
Present study A 2D-spectral 1 ~ 1 0.091 0.091 102

Present study v 2D-spectral 5 ~ 1 0.250 0.250 3.17 x 102
Present study > 2D-spectral 100 ~ 1 0.115 0.115 102

Present study O 2D-finite-volume 0(10%)2 1.01 0.384 0.384 103

The front velocities of the present results are measured at # = 20. Here velocity is scaled by +/ge H, and Re is defined as in
Eq. (2.8). According to the velocity scaling used in Sect. 3.3, the value of ii; and iy are to be multiplied by (1 + pg/0r)" 2
and Re is to be multiplied by (1 + pg /pr)~"/? in order to obtain the values of Ri* and /Sc/Re plotted in Fig. 10

2 We used the value Sc = 10? as estimated in Appendix, for the finite-volume method (S¢ — oc)

location where the vertically integrated dimensionless height of the current, &, becomes smaller than a small

threshold § = 0.01 (see Cantero et al. [8] for a discussion of the choice of this parameter). Here h is defined
as [3,27,34],

1
i (5.0) = / 5 dz. (3.6)
0

As the current spreads it goes through acceleration, slumping, inertial and viscous phases of evolution [23].
In the slumping phase, the planar current moves at a nearly constant speed. Provided Re is sufficiently large,
the flow then enters an inertial self-similar phase of deceleration [32], in which the current moves under the
balance of buoyancy and inertial forces [20,23]. The speed of the planar gravity current in this inertial phase
evolves as r~!/3 [15]. At later times, when viscous effects become important the current transitions to the
viscous phase [20,21]. Based on shallow-water theory, two rate of spreading have been proposed depending
on the nature of the dominant friction. If the viscous effects are primarily due to the interface shear, u evolves
as 1=5/8 [20]. If they are primarily due to the friction at the bottom wall, u evolves as =%/ [21].

Figure 11 shows the temporal evolution of the front velocity of the low-Re Boussinesq currents displayed
in Fig. 5. The front velocity continuously increase from the lower curve for the low Schmidt number case
(Sc¢ = 1) to the upper curve for the non-diffusive case (S¢c — 00). In the low Schmidt number cases after
an initial acceleration phase that extends for about one dimensionless time unit the front velocity smoothly
decreases.

In the case of highly miscible fluids (low-Sc) at low Reynolds numbers the question of how to define
appropriately the front location and its velocity arises [7]. As can be observed in Figs. 5 and 6, the width of the
front as indicated by the different density contours is quite thick for S¢ = 1 at Re = 102. The definition of the
front location and as a result the front velocity become strongly dependent on the value of p used in demarking
the two fluids. With increasing the Reynolds number contours of p close to O cluster at the heavy front and
those close to 1 cluster at the light front, thus reducing the uncertainty in clearly defining a front location. The
dominant role of diffusion at low Re can be quantified. Under pure diffusion, the thickness of the interface
between two miscible fluids can be estimated to increase with time as v/7/ScRe. Figure 12 displays the front
velocity, i, of the heavy current as identified by the time evolution of the velocity of the most forward position
of the contour p = « in the lower half of the domain, for three different values of « = 0.05, 0.5 and 0.95 for
the case of Re = 10% and Sc = 1. Also plotted in the figure are lines corresponding to £1/+/ScRe 7. At very
early times (/ < 1) buoyancy dominates and the front as identified by all three contours propagate forward in



Fig. 11 Time evolution of the front velocity (Re = 10%) for varying Sc. Thin solid line: Sc¢ = 1; dotted line: Sc = 5; dashed-
dotted line: S¢ = 10; dashed line: Sc¢ = 102; thick solid line: S¢ — oo. Computations of S¢ = 1,5, 10 and 10? are with the
spectral code while the computation of S¢ — oo current is with the finite-volume code. The spatial resolutions are the same as
in Fig. 5

Fig. 12 Time evolution of the front velocity, iy, of the heavy current as identified by the velocity of the most forward position
of the contour p = « in the lower half of the domain, for three different values of « for the case of Re = 102 and Sc¢ = 1. Time
evolution of i, of some density contours p = « in a diffusive current (Sc¢ = 1, Re = 102). Solid line: o = 0.05; dashed line:

a = 0.5; dash-dotted line: « = 0.95. The dotted lines represent +=1/+/Sc Re f. At late times, the spreading of the interface is
mostly due to diffusive effect

the same direction as dictated by the pressure gradient. After this short phase of acceleration, diffusive effects
become significant and the contours decelerate accordingly (1 < 7 < 8) to eventually spread as a dominantly
diffusive interface (f > 20).

The behavior for the high-Sc currents is somewhat more complicated (upper curves in Fig. 11). Even with
the numerical diffusion [estimated as an effective Schmidt number of O (103)], the above effect of diffusion on
the smearing of the interface is more than an order of magnitude weaker. For the S¢ — oo case, following the
initial acceleration and deceleration, a tendency towards a constant velocity slumping phase can be observed
(3 < f < 4). The Reynolds number at release is sufficiently low that transition from slumping to viscous phase
occurs early without any inertial phase in between. In Fig. 11 the time evolution of front velocity exhibits an
inflection point for the high-Sc currents at 7 &~ 14. This time corresponds to the time at which the depression
reaches the front of the density current (not shown here).

In Fig. 13, the time evolution of front velocities is plotted for currents of Re = 102, 317, 103 and 10%.
The thin and thick lines correspond to density currents of S¢ = 1 and S¢ — o0, respectively and the behavior



Fig. 13 Time evolution of the front velocity of density currents of various Schmidt number and Reynolds number. The thick and
thin lines correspond to density currents of S¢ — oo and S¢ = 1, respectively. Dashed-dotted lines: Re = 10%; dotted lines:
Re = 317; dashed lines: Re = 10°; solid lines: Re = 10*. The horizontal dotted line is Benjamin [2] prediction. The spatial
resolutions are the same as in Fig. 6

for all other intermediate Schmidt numbers is bounded in between. The velocity difference between the low-
and high-Sc currents continuously decreases as Re increases. For instance, the velocity difference at f ~ 5.7
is 23.0, 13.3, 5.4 and 2.3% for Re = 10%, 317, 103 and 10%, respectively. With increasing Re the transition to
viscous phase is observed to be delayed. The front velocity steadily increases with increasing Re and even at
the largest Reynolds number considered the front velocity is noticeably lower than the theoretical prediction
of Benjamin [2]. It may be argued that in reality the coherent vortices observed upstream of the front may
undergo instability and become three-dimensional, which might influence the velocity of the front. It has been
shown that in the slumping phase the speed of the current is nearly the same in both two-dimensional and
three-dimensional simulations [9]. Clearly the finite O(1)-value of the Schmidt number often employed in
such computations is not the source of discrepancy, since even the front velocity of the non-diffusive current is
lower than the theoretical limit. The difference is in the use of no-slip boundary conditions. Instead if free-slip
boundary conditions are employed the theoretical limit is approached to within 2% in the steady slumping
phase at sufficiently large Re [18].

3.5 Effect on three-dimensionality

We now proceed to address the effect of the Schmidt number on the onset of three-dimensional structures
observed in both experimental and computed density currents [8, 18,35]. We first perform a three-dimensional
computation of the lock—exchange flow under the same conditions as in Fig. 2 of Hirtel et al. [18], i.e. at
Re = 3464. The only difference is that while Hirtel et al. [18] imposed Sc¢c = 0.71, here we consider a
non-diffusive current of S¢ — oo and thus the role of three-dimensionality of the current can be ascertained.
We use a modest grid of 480 x 60 x 80 points along the streamwise, spanwise and wall-normal directions
(x,y,z) with a domain of size 15H x 1.5H x H(L = 15H). This resolution is equivalent to that used in
Fig. 3a and is sufficient to accurately capture the essential large-scale instabilities and features of the flow.
Free-slip boundary conditions are imposed along the streamwise boundaries, no-slip conditions are enforced
along the top and bottom walls and periodic conditions are imposed along the spanwise direction. The flow
is started from rest and a small random disturbance is superimposed on the density field. Note that with the
present grid, the total variation of the overall mechanical energy, due to numerical dissipation stemming from
spatial discretization, is less than 0.02% during the entire duration of the simulation.

At low Sc, Hartel et al. [18] and Cantero et al. [8] observed instabilities at the bottom foremost part
of the current and the instability grows rapidly to form a pattern of lobes and clefts. They also observed
three-dimensional vortex structures along the body of the current due to three-dimensional instabilities of the
Kelvin—Helmholtz vortices at the interface between the light and heavy fluid. Figure 14 shows the time evo-
lution of three-dimensionality as visualized by a surface of constant density (o = 0.5). The vortex structures



Fig. 14 Three-dimensional high-Sc Boussinesq density current in lock—exchange configuration at Re = 3464 and Sc — oo
(visualization of the surface p = 0.5). Time interval between successive views is A7 = 5. The size of the (¥, ¥, Z) domain is
15x1.5x%x1

at the interface along the body of the current are somewhat smaller than the ones reported for O(1) Schmidt
number by the aforementioned authors. We can see the lobe and cleft pattern at the head of the current. Hértel
et al. [18] and Cantero et al. [8] reported a non-dimensional front velocity of 0.403 for the O(1) Schmidt
number case, while we observe a velocity of 0.417 for the present high-Sc current. The difference is small
and is less than 3.5%. As already mentioned in Sect. 3.4, this confirms that the front velocity is only weakly
dependent on Sc at sufficiently high Re.

Hirtel et al. [19] performed a linear stability analysis of the flow at the head of a low-Sc two-dimensional
density current for a wide range of Re (10> < Re < 1.4 x 10%). They were able to predict the spanwise wave-
length, A, of the most unstable three-dimensional instability responsible for the formation of lobe and cleft
pattern. For instance, they obtained A = 0.157H at Re ~ 2830. From Fig. 14, we can estimate the wavelength
of the lobe and cleft instability by counting the number of lobes over time. The number of lobes is observed
to remain approximately constant and equal to 10 over the period 7 = 5 to 7 = 10. This leads to an estimated
spanwise wavelength of A = 0.15H, which is in good agreement with the finite O (1) Schmidt number result
of 0.157 H. We also performed similar analysis for currents of different Reynolds number, namely Re = 103
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Fig. 15 Shadowgraph images of moderate to high-Sc gravity currents. a,c From the experiments of Schmidt [33]; b, d, f, g from
the present three-dimensional computations with the finite volume method (Re = 317, 103, 3,464 and 10*, respectively); e from
the experiments of Thorpe [37] at Re =~ 2970. In frames (a) and (c) the current is due to temperature differences of AT = 0.5°C
and 1.5°C in air, respectively. In e the current is due to a density difference in salted water of Ap = 3.34 x 10~>gm/cm?. In b,
d, f, g the density field is averaged along the spanwise direction and the grid resolution is the same as in Fig. 14. Snapshots b, d,
f, g show the currents at a time when the current has advanced about 6 H. Fictitious boundaries are added in a, ¢, e for clarity,
dotted lines are used when the position of the actual boundary is unknown
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and Re = 10%, and similar agreement with O(1) Schmidt number cases is observed. This indicates that the
underlying mechanisms responsible for the lobe and cleft formation are relatively insensitive to the Schmidt
number.

Figure 15 shows qualitative evolution of the topology of moderate to high-Sc density currents with the
Reynolds number. The results shown are obtained from the present three-dimensional simulations, which are
compared against the experimental data of Schmidt [33] and Thorp [37]. In Schmidt’s experiments the den-
sity variation is due to temperature difference in air, so the estimated Schmidt number is approximately 0.7.
However, the precise conditions of the experiments are not known, therefore comparison is only qualitative. In
Thorpe’s experiments the density variation is due to salt in water, leading to a Schmidt number of 700 approx-
imately, and the Reynolds number is 2,970. In general, qualitative agreement is observed between present
simulations and above experiments. For example, at the lowest Re considered the gentle slope of the interface
with a pronounced depression that separates the body from the head can be observed both in the experimental
and the computational results. The depression can be observed at the intermediate Reynolds number as well,
however, the head of the current has grown in size and the body of the current shows small undulations, which
can be observed both in the experimental and computational results. At the highest Reynolds number shown the
interface is turbulent. Since the flow is three dimensional, frames (f) and (g) show span-averaged results. When
compared with the corresponding two-dimensional results shown in figure 6a, the effect of three-dimension-
ality is clear. The strong coherent Kelvin—Helmholtz vortices at the interface are broken by three-dimensional
instability and upon span-average the interface shows a relatively smooth structure. The span-averaged results
are in better agreement with the high Reynolds number experimental results of Thorpe [37] and Schmidt [33].

The three-dimensional structure of the current, and in particular the details of the surface depression, is
shown in Fig. 16. In line with the observations made for the two-dimensional currents in Figs. 5 and 6, the
current head is differentiated from the body by a pronounced surface depression at the lowest Reynolds num-
ber under consideration. The depression exhibits some three-dimensionality with small undulation along the
spanwise direction. A closer look suggests that the average wavelength of these undulations compared well



Fig. 16 Three-dimensional structure of the interface in high-Sc currents at different Re (visualization of the surface p = 0.5).
a Re = 103, b Re = 3464; ¢ Re = 10*. The corresponding time of the snapshots is identical to those in Fig. 15

with that of the lobes and cleft structure formed at the front. Also the spanwise location of the undulation
crests and troughs coincide with the location of lobes and clefts. At Re = 103, three-dimensionality is limited
to the head of the current and the body remains relatively flat. At Re = 3464, the depression of the interface



that separates the head from the body is still visible and its three-dimensionality correlates well with the lobe
and cleft structure of the head. The body of the current is however observed to be strongly three dimensional.
With further increase in the Reynolds number, the interface takes a fully turbulent structure (Fig. 16c) and
the spanwise wavelength of the lobes and clefts decreases, in agreement with the trend found in the stability
analysis by Hirtel et al. [19]. Furthermore, the head of the current is not well demarcated from the body and
strong three-dimensionality can be observed to penetrate right up to the nose of the current.

4 Summary and conclusions

We carried out a numerical investigation of Boussinesq density currents of various Schmidt number and Rey-
nolds number. The goal was to investigate in greater detail the role of Sc on the structure and dynamics of
lock—exchange flows. For this purpose we used two complementary approaches, namely a spectral method
and a finite-volume interface capturing method that allow us to explore a wide range of Schmidt number
1 < Sc¢ < oo and Reynolds number 10° < Re < 10%.

A quantitative comparison of the size of the mixing region is made. It is observed that at large Reynolds
numbers, say Re > 0(104), the size of the mixing region in diffusive and non-diffusive currents is of the
same order of magnitude. This confirms that in this regime, mixing that occurs at the interface is mainly due to
strong advection generated by the Kelvin—Helmholtz vortices and the smaller scale instabilities. Nevertheless,
diffusive effects are still observable in low-Sc currents and account for the somewhat larger size of the mixing
region.

In contrast, the size of the mixing region in viscous density currents is strongly dependant on Sc. When
diffusion is dominant the thickness of the mixing region has been verified to scale as (ScRe) ~'/2. Additionally,
the Schmidt number is observed to affect the shape of the current head. A depression that separates the head
from the body of the current is observed at high-Sc, while such a depression of the interface is not detected
at low-Sc. This depression is non-stationary since it can either move along the body of the current, reach the
head and eventually shrink or exhibit an oscillatory behavior, depending on the value of the Reynolds number.

Three-dimensional simulations of high-Sc current suggest that the lobes and clefts patterns are relatively
independent of the Schmidt number. On the contrary the formation of vortex structures along the body of the
currents is observed to be dependent on Sc. We developed a simple definition of a bulk Richardson number Ri*
and observed Kelvin—Helmholtz instabilities at the interface to grow and form coherent vortices only when
Ri* < 0.25. Above this threshold interfacial instabilities are suppressed.

The computation of the front velocity of diffusive versus non-diffusive currents reveals that the Schmidt
number has only a weak influence on the dynamics of the currents at Re > O (10%). In this regime, the velocity
of the front is observed to be almost independent (within a few percent) of Sc in the range 1 < Sc¢ < oco. At
low Reynolds number, the velocity of diffusive currents is a strong function of the contour level chosen for
defining the interface between the heavy and light fluids. Thus, caution needs to be exercised when comparing
results between different computations and experiments of low-Re diffusive currents.
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Appendix: estimate of the effective Schmidt number for the finite-volume code

Here we estimate an effective Schmidt number for the present finite-volume method, based on the scaling
relation for the interface thickness obtained with the finite Sc simulations. As mentioned in Sect. 2.2.2 the
evolution equation for the density solved in the finite-volume code is hyperbolic, but the numerical thickness
of the interface is not strictly zero as it is typically resolved over three grid cells [6]. This thickness corresponds
to an effective Schmidt number which depends on the degree of spatial resolution.

In order to get an estimate of the effective Schmidt number for the finite volume code, we first establish
the scaling law for the interface thickness to be (ScRe)~!/? using the interface data obtained from the finite
Schmidt number spectral simulations (Fig. 5a—c, and the upper frame of Fig. 6¢). We measure the values of
the interface thickness Ay, (for two different values of @ = 0.05 and 0.245) for currents of varying Re and Sc
obtained from the spectral simulations. Here £, is defined as the thickness where @ < p < 1 — «. The results
are plotted in Fig. 17. By fitting the data points, we obtain a direct relation between £, and Sc. For the present



Fig. 17 Variation of h, with (ScRe)~ /2, where hy is computed at 7 = 12.7. Circles: @ = 0.05; squares: a = 0.275. The circles
correspond to currents (in increasing order of 4y ) of S¢c = 100, 10, 1, 5, 1 and Re = 102, 102, 103, 102, 317, respectively. The
squares correspond to currents (in increasing order of iy) of S¢ = 10,5, 1, 1 and Re = 102, 102, 317, 102, respectively. Lines
are included to show near linearity

resolution (equivalent to R2) we obtain /g os/H ~ 13.00 x (ScRe)~'/? and hg 175/ H ~ 4.24 x (ScRe)~1/2,
respectively.

The numerical thicknesses /¢ g5 and hg 275 of the interface for the finite-volume code were then obtained
from Fig. 5d. Which, in conjunction with the above scaling relations for the interface thickness, yield effective
Schmidt numbers of S¢ &~ 6600 and 5800 for « = 0.05 and & = 0.275, respectively. Therefore a conservative
estimate of the effective Schmidt number for the present finite-volume method at the present spatial resolution
can be estimated to be of 0 (103).
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