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Abstract— This paper presents a new software which can 

generate in full-symbolic or numeric-symbolic form the Y, Z, H, 

and fundamental parameters of a two-port structure. Our 

procedure can also determine all the resonant frequencies of any 

two-port configuration as functions of the two-port circuit 

parameters. The procedure is based on the modified nodal 

equations in full-symbolic form. A new software called 

ANCSYANP (Analog Circuit Symbolic Analysis Program) was 

elaborated. This is an interactive tool that combines symbolic and 

numeric computational techniques, and which uses the facilities 

of the symbolic simulator Maple to manipulate the symbolic 

expressions. An illustrative example is done. 

Keywords-component; symbolic analysis; two-port circuit; 

coupled oscillator; Y, Z, H parameters 

I.  INTRODUCTION  

In the last years the coupled oscillators are used to control 
the phase in microwave antenna arrays. These devices produce 
oscillatory output signals of high frequency [1-9]. The radiation 
pattern of a phased antenna array is steered in a particular 
direction by controlling the phase gradient existing between the 
signals applied to adjacent elements of the array. The required 
inter-element phase shift can be obtained by detuning the free-
running frequencies of the outermost oscillators in the array 
[2]. Furthermore, in [4] it is shown that the resulting inter-stage 
phase shift is independent of the number of oscillators in the 
array.  

The aim of this paper is to present the symbolic analysis of 
the array of two coupled Van der Pol oscillators, considering 
the coupling circuit as a passive two-port circuit. Therefore, a 
new software which can generate in full-symbolic or numeric-
symbolic form  the Y, Z, H, and fundamental parameters of any 
two-port structure was developed. The procedure is based on 
the modified nodal equations of the entire circuit formulated in 
full-symbolic form.  

The paper is organized as follows: a system of two Van der 
Pol oscillators coupled through a RLC circuit is presented in 
section II. In section III, the symbolic generation of the 
coupling circuit parameters with the new software is described 
followed by conclusions.  

II. TWO COUPLED VAN DER POL OSCILLATORS 

The theory of coupled microwave oscillators is the subject 
of increasing research activity. Simple Van der Pol oscillators, 
coupled through a resonant network that produces a constant 
magnitude and phase delay between the oscillators, provided a 
satisfactory model for a lot of applications [3]. 

Fig. 1,a illustrates a system of two Van der Pol oscillators 
coupled through a complex two-port circuit shown in Fig. 1,b. 

 

(a) 

 

(b) 

Figure 1.  a) Two Van der Pol oscillators coupled through the circuit in Fig. 

1, b; b) Structure of the coupling circuit. 
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 The choice of this model is justified by its simplicity 

regarding the analytical calculations, as presented in [5, 6].  

The active parts of the two Van der Pol oscillators are 

modeled by two voltage-controlled nonlinear resistors. The 

nonlinear characteristics of the two voltage-controlled 

nonlinear resistors are expressed as follows: 
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where a is the negative conductance necessary to start the 
oscillation and b a parameter used to model the saturation 
phenomenon. 

Assuming a perfect oscillation so that    tcos.Atv 0      

and according to (1), the expressions of the currents through 

the two nonlinear resistors can be written as: 
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Therefore, the two Van der Pol oscillators in Fig. 1, b can 
be modeled by a quasi-linear representation, replacing the two 
nonlinear resistors by the following conductances: 
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where A1 and A2 are the magnitudes of voltages v1 and v2.  

Performing a Spice simulation in transient behavior we get 
the magnitudes values A1 = 1.6032 V, A2 = 2.4431 V, and the 
synchronization frequency fs = 1.1512 GHz, for the initial 
conditions v1(0) = 2.0 V and v2(0) = 1.0 V. Thus, in sinusoidal 
behavior the two voltage-controlled nonlinear resistors can be 
substituted by two linear resistors having negative slopes. In 
this case the circuit in Fig. 1 can be analyzed by the complex 
representation method [10, 11]. 

III. SYMBOLIC GENERATION OF THE COUPLING CIRCUIT 

PARAMETERS 

The aim of this section is to generate in full-symbolic or 
numeric-symbolic form the Y, Z, H, and fundamental 
parameters of the coupling circuit of the two Van der Pol 
oscillators. To this end the coupling circuit is represented by a 
passive linear two-port circuit, as shown in Fig. 2. 

 

Figure 2.  General scheme of two coupled oscillators. 

In these conditions, the equations in complex admittances 
of the passive linear two-port are expressed as follows: 
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where the transfer admittances are defined in the expressions 
below: 

.   ; 

  ;   ;

02

2
d

22

01

2
d

21

02

1
d

12

01

1
d

11

12

12

oo

V

oi

V

io

V

ii

V

Y
V

I
YY

V

I
Y

Y
V

I
YY

V

I
Y








 

 

(5) 

Furthermore, the equations in complex impedance of a 
passive linear two-port can be written as: 
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where the transfer impedances are defined as follows: 
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In H parameters the equations are: 
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and the definitions of the parameters are: 

.   ; 

 ;   ;

02

2
d

22

01

2
d

21

02

1
d

12

01

1
d

11

12

12

oo

I

oi

V

io

I

ii

V

Y
V

I
HB

I

I
H

A
V

V
HZ

I

V
H








 

 

 

(9) 

If the fundamental (transfer) complex parameters are of 
interest, the equations have the form: 
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and the parameters are defined as: 
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In order to automatically generate (in symbolic or numeric-
symbolic form) all the above parameters associated to the two-
port used to model the coupling circuit, we adapted the general 
software - ANCSYANP (Analog Circuit Symbolic Analysis 
Program) [10, 11]. The new analysis tool based on the 
modified nodal analysis (MNA) generates, starting from the 
circuit netlist, the Y, Z, H, and fundamental parameters, for any 
linear and/or nonlinear (in any driving point) time-invariant 
two-port analog circuit, in symbolic form. The excess elements 
are also taken into account. It is an interactive tool that 
combines symbolic and numeric computational techniques, and 
which uses the facilities of symbolic simulator Maple to 
manipulate the symbolic expressions. 

Let us now remember the equations in Laplace domain 
corresponding to the MNA: 
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where: Yn-1,n-1(s) is the operational admittance matrix of size (n-

1)(n-1); Bn-1,m(s) represents a matrix of size (n-1)m with 
entries -1, 0, 1 and the current transfer factor (gain) of the 

current-controlled current sources; Am,n-1(s) is a m(n-1) matrix 
with entries -1, 0, 1 and the voltage transfer factor (gain) of the 
voltage-controlled voltage sources; Zm,m(s) represents a square 

matrix of mm size which contains the operational trans-
impedances of the current-controlled voltage sources and the 
operational inductor impedances with negative sign; Isc,n-1(s) is 
the operational short-circuit current vector injected in n-1 
independent nodes (including the ones resulted from the 
independent sources which simulate the initial conditions) and 
Em,m(s) represents the vector of the Laplace transforms (with 
negative sign) of the electromotive forces corresponding to the 
ideal independent voltage sources and of the electromotive 
forces corresponding to the ideal independent voltage sources 
which simulate the inductor initial conditions. The unknown 
vector contains the Laplace transform vector of the electrical 
potentials corresponding to the n - 1 independent circuit nodes, 
Vn-1(s), and the Laplace transform vector of the branch currents 
non-compatible with the nodal analysis, Im(s). 

Based on the definition of the circuit parameters we apply 
suitable ideal independent sources to the input ports of the 
circuit in Fig. 2. Describing the circuit behavior by MNM the 
program computes in symbolic form the desired parameters.  

ANCSYANP has the following capabilities: 

 Automatic generation in full symbolic, partially 
symbolic and/or numeric form of the modified nodal 
equations (MNE) for the linear and/or nonlinear 
circuits; 

 Full symbolic, partially symbolic and/or numeric 
computation of all branch currents and voltages; 

 Computation of the numeric value of the system matrix 
determinant; 

 Computation of the poles and zeros and representation 
of the natural frequencies in the complex plane; 

 Generation in full symbolic, partially symbolic or 
numeric form of the two-port parameters;  

 Computation of the sensitivities with respect to any 
circuit parameter and the 3D representation; 

In general, Y parameters are important in the analysis of 
two oscillators coupled through a passive linear two-port 
circuit. For the circuit in Fig. 1, a, the equations in complex 
form, when the two voltage-controlled nonlinear resistors are 
substituted by two linear resistors according to (3), can be 
written as: 
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Running ANCSYANP all transfer admittances in full 
symbolic form are obtained. Because the expressions of these 
admittances are too large, we shall present only Y11 expression:  
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If we denote 21
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the circuit parameters from Fig. 1, with a = 0.0085, b = 
0.00071, A1 = 1.6032 V, and A2 = 2.4431 V, then (13) becomes 

a system of two equations with two unknowns, X and , so 
that: 
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Performing a Spice simulation we get: 

6566.0SpiceX ;  0.36_21 Spice  

9
102295.7  Spice  [rad/s]. 

(17) 

We can remark the good agreement between these results. 

In order to determine the transfer impedances (Z 
parameters) for a two-port passive linear circuit, we connected 
to the input port (0 – 1) and to the output port (0 – 4) the ideal 
independent current source J1 (J1(s)) and J2 (J2(s)), 
respectively, with arbitrary current values, as it shows in Fig. 3. 



 

Figure 3.  The equivalent two-port circuit for Z parameter computing 

According to the Fig. 2, the transfer impedances are 
computed with the following relations: 
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Running ANCSYANP all transfer impedances in full 
symbolic form are obtained. Because the expressions of these 
impedances are too large, we shall present only Z12 expression:  
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The resonant frequencies corresponding to the four transfer 
impedances have the following expression: 
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12_ Zrf  GHz; 

0188.1
21_ Zrf  GHz; 92058.0

22_ Zrf  GHz. 
(20) 

 We denote that the resonant frequencies for Z11 and Z22 (Z12 
and Z21) transfer impedances are very closed. 

The resonant frequencies for the four transfer admittances 
have the following expression: 
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                   (21) 

We denote that the resonant frequencies corresponding to the 
Y11 and Y22 (Y12 and Y21) transfer admittances are identical. 

IV. CONCLUSIONS 

Using a suitable software we performed the symbolic 
analysis of an antenna array in order to compute in symbolic 
form the coupling circuit parameters. 

The existing software was enhanced with dedicated 
routines for generating Y (admittance), Z (impedance), H and 
fundamental parameters of the coupling network, which is 
modeled by a passive linear two-port circuit. 

The procedure developed can determine all the resonant 
frequencies of any two-port configuration as functions of the 
two-port circuit parameters. 

The symbolic expressions of the coupling circuit 
parameters are useful in writing the equations in the sinusoidal 
behavior (when the nonlinear resistors can be substituted by the 
linear resistors) of an array of coupled oscillators for the 
automatic design of these devices.  

The program can be used also for a complete analysis in 
order to compute the phase shift and the synchronous 
frequency of the antenna array.  

The values of the phase shift and the synchronous 
frequency (analytic expressions) obtained by this approach are 
in a good agreement with the values obtained by Spice 
simulation. 
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