
One Class Random Forests

Chesner Désir, Simon Bernard, Caroline Petitjean, Laurent Heutte

Universit́e de Rouen, LITIS EA 4108
BP 12 - 76801 Saint-Etienne du Rouvray, France

firstname.lastname@univ-rouen.fr

Abstract

One class classification is a binary classification task for which only one class of
samples is available for learning. In some preliminary works, we have proposedOne
Class Random Forests(OCRF), a method based on a random forest algorithm and an
original outlier generation procedure that makes use of classifier ensemble randomiza-
tion principles. In this paper, we propose an extensive study of the behavior of OCRF,
that includes experiments on various UCI public datasets and comparison to reference
one class algorithms – namely, gaussian density models, Parzen estimators, gaussian
mixture models and One Class SVMs – with statistical significance. Our aim is to
show that the randomization principles embedded in a randomforest algorithm make
the outlier generation process more efficient, and allow in particular to break the curse
of dimensionality.One Class Random Forestsare shown to perform well in comparison
to other methods, and in particular to maintain stable performance in higher dimension,
while the other algorithms may fail.

Keywords:
One class classification, supervised learning, decision trees, ensemble methods,
random forests, outlier generation, outlier detection

1. Introduction

One class classification (OCC) is a binary classification task for which only one class
of objects, the target class or positive class, is availablefor learning. Little knowledge
or even no prior information about the other class, the outlier class or negative class, is
available during the learning stage, most of time because these data are either difficult
or impossible to collect [1]. However, such data may occur during the prediction phase.
Application examples include authorship verification [2],typist or speaker recognition
[3, 4], mobile-masquerader detection [5], intrusion detection [6, 7], medical diagnosis
[8]. We refer the reader to [9, 10] for a more exhaustive list of OCC applicative fields.

In the OCC literature, two main types of approaches are usually proposed: (i) meth-
ods using only positive samples to learn the target concept;(ii) methods generating or

Preprint submitted to Elsevier February 22, 2013

ocrf.tex
Click here to view linked References

http://ees.elsevier.com/pr/viewRCResults.aspx?pdf=1&docID=11741&rev=1&fileID=754600&msid={F36F46D8-3DA4-4C68-8031-BA7788DD09CC}

simulating negative samples so that existing multi-class classification methods may be
used. The first type of approaches aims at estimating the probability density function
by fitting a statistical distribution, such as a Gaussian, tothe target data, and predict-
ing as outlier any instance that exhibits a low probability of appearing. However, these
methods are sensitive to an increasing number of features: an intractable amount of
training samples is required in order to provide a good estimate of the distribution, even
in reasonably sized feature spaces [11, 12]. The second typeof approaches consists in
extrapolating the missing samples so that the resulting binary classification problem can
be learnt with standard (discriminative) classifiers. Thisextrapolation may be ensured
by artificially generating outliers during training [3]. Inthis case, outliers are often as-
sumed to be uniformly distributed, so as to cover the whole domain of variation of the
feature space. This implies to generate an exponential and thus expensive amount of
outliers with respect to the dimension of the feature space.

One solution to tackle this issue may be to use randomizationprinciples offered by
classifier ensemble approaches. These approaches, although popular, have not been ex-
ploited very much for OCC problems [13]. In some preliminaryworks [8, 14], we have
shown that randomization principles may be used in a one-class classification task for
generating outliers quite efficiently. This first solution for OCC, called One Class Ran-
dom Forests (OCRF), is based on a random forest (RF) algorithm [15] and an original
outlier generation procedure that makes use of the ensemblelearning mechanisms of-
fered by RF algorithms to reduce both the number of artificialoutliers to generate and
the size of the feature space in which they are generated. Promising but preliminary
results obtained on a real-world medical problem [8] and on afew UCI datasets [14]
have led us to investigate more deeply this new OCC method. Wethus propose in this
paper an extensive study of the behavior of OCRF, that includes experiments on various
UCI public datasets and comparison to reference one class algorithms – namely, gaus-
sian density models, Parzen estimators, gaussian mixture models and One Class SVMs
– with statistical significance. Our aim is to confirm that therandomization principles
embedded in the random forest algorithm make the outlier generation process more
efficient, and allow in particular to break the curse of dimensionality. One Class Ran-
dom Forestsare shown to perform equally well or better than the state-of-the-art OCC
methods, and in particular to maintain stable performance in higher dimension feature
spaces, while the other algorithms may fail.

The remainder of the paper is organized as follows. In Section 2, we present related
works on OCC. In Section 3, the One Class Random Forest methodis detailed. Sec-
tion 4 is devoted to the experimental protocol while resultsare reported in Section 5.
Conclusions and future works are drawn in Section 6.

2

2. Related works in one class classification

Numerous reviews presenting OCC state-of-the-art have been proposed in the past
decade [13, 16, 5]. Some of them specifically address OCC variants such as outlier de-
tection [17, 9], anomaly detection [10] and novelty detection [18, 19]. In the following,
we divide existing OCC methods into methods learning from available target samples
only, and methods requiring the extrapolation of outlier samples. We finally conclude
this brief overview by focusing on one class classifier ensemble based approaches in
order to introduce and justify our contribution.

2.1. Learning from available target samples only

Learning from the available target samples only means that the classifier does not
require any hypothesis on the outlier data to estimate the decision boundary. Genera-
tive methods are straightforwardly applicable to OCC as thetarget class may directly
be modeled from the available training instances, by formulating some hypothesis on
the underlying target distribution. For this reason, generative methods are the most
used methods for OCC [20], even though they generally require the estimation of a
large number of parameters. Generative methods include: (i) density-based methods,
such as gaussian and Mixture of Gaussians estimators, (ii) distance-based approaches,
such as Nearest Neighbor density estimator andk-means clustering, (iii) reconstruction
approaches that encode the target data, and (iv) SVM-based data description (SVDD)
[16, 19, 21].

Density-based methods aim at estimating the probability density function of the
underlying distribution of the target data. The main difficulties reside in finding an
appropriate model for the distribution of the training dataand providing an accurate
and adapted threshold on the output probability for deciding to accept or reject an in-
put sample. Furthermore, density-based approaches require a large number of training
data to obtain a reliable estimate of the probability model,in particular when the data
dimensionality is high [19, 22, 12]. Well-known density-based approaches are Parzen
windows and Mixture of Gaussians [23, 24, 25, 16, 26, 27]. A Parzen classifier is a
non-parametric density estimator that consists in computing an identical kernel for each
example of the training set and then defining a linear combination of these kernels to
estimate the probability density function of the data. A gaussian kernel is generally used
and the width parameter can be estimated with a leave-one-out procedure [28, 29]. As
Parzen is a non parametric density estimator, the output score of a test input is better
predicted when the training set is large, but high computational resources are then re-
quired. Because of the large computational cost of Parzen estimator, Mixture of Gaus-
sians (MoG) are generally preferred. The MoG approach consists in building several
density functions (kernels) to model the entire available target data set. Parameters of the

3

mixture are estimated on the training data: the number of gaussian kernels and the stan-
dard parameters of each kernel are estimated by maximizing the log-likelihood of the
training data for the model, using standard techniques likeExpectation-Maximization
algorithm [30, 31, 32, 33]. However, when a small amount of data is available, the
choice of the number of kernels for the MoG classifier becomescritical and a unimodal
normal distribution is often used [16, 19].

Distance-based approaches, such as Nearest Neighbor (NN) methods, have also been
proposed for non-parametric density estimation. The one class NN, a modified version
of the classical NN, consists in computing the distance of aninput x to the nearest
neighborNN(x) and comparing to the distance of the nearest neighbor to its nearest
neighbor (NN(NN(x))) [19, 34]. If the first distance is larger than the second, then the
input example is considered as outlier. Ak-NN approach is also proposed, where a new
data is considered as an outlier data if the average distanceof its k nearest neighbors is
above a predefined threshold. The main difficulty of the NN approach lies in its high
computational cost for large sized datasets as the whole training set has to be stored
and entirely evaluated. Furthermore, it has theoreticallyand empirically been shown
in [35] that in a broad set of conditions such as i.i.d. assumption, the distance to the
nearest neighbor of an input becomes closer to the distance to the farthest neighbor as
dimensionality increases (beyond roughly 10-15 dimensions). These observations limit
the use of these methods in high dimensional problems. Otherapproaches include also
clustering [36, 37]. For example, in the one classk-means algorithm,k clusters are first
computed from the target data, and the minimum distance of a test input to the nearest
cluster is compared to a predefined threshold in order to decide whether or not the test
input is rejected.

Reconstruction methods aim at encoding the target data, i.e. mapping the input data
onto the output of the classifier by learning a more compact representation of the tar-
get data. The optimization routine aims at minimizing the reconstruction error on the
training target data. Thus, at prediction time, an example having high reconstruction
error is likely to be an outlier instance. Auto-encoder networks are one of the most used
reconstruction methods [38, 39, 27, 40]. In [40], the authors propose a Diabolo network
where a hidden layer is composed of a very low number of units,creating a bottleneck
that is expected to compress the available information by mapping the target class in
the hidden layer. Thus, inputs that have low projection on this layer will produce high
reconstruction error.

Finally SVM-based approaches have also been proposed for OCC. Support Vector
Data Description (SVDD) [34] is a generative approach derived from the Support Vec-
tor Machine classifier (SVM) [41]. It aims at minimizing the volume (i.e. its radius) of

4

an hypersphere covering the target data. The data description can be made more flexible
by applying the kernel trick instead of the rigid hypersphere. Results show that SVDD
performance are comparable to Gaussian, Parzen density estimators and Nearest Neigh-
bor method.

Note that density-based methods and SVDD may assume that a fraction of legitimate
target data are outlier data. This allows to automatically set a threshold on the probabil-
ity density function for density-based methods and it makesthe data description more
flexible by optimizing the regularization of the cost parameter for SVDD [34, 19].

2.2. Learning from both target samples and artificial outliers

In this category of methods, the aim is to learn directly fromthe training data set the
decision boundary to support both the target and the outlierclasses. Therefore, these
methods require either the presence of outlier data in the training set or a strong hy-
pothesis on their distribution so that the outlier data can be taken into account during
the learning phase [5]. Heuristics have been proposed in order to adapt standard multi-
class discriminative methods to the one class problem: (i) generating outlier data based
on hypothesis concerning their distribution, their quantity, and their location [3, 6], (ii)
considering strong assumptions on the outlier data distribution without generating them
in the training set [42, 43], or (iii) modifying the inner workings of existing standard
multi-class boundary estimators in order to adapt them to OCC without generating out-
lier data [44]. We now review these three possibilities.

The first approach consists in augmenting the training set with outlier data, that are
generated according to a predefined distribution. The outlier data are commonly as-
sumed to be either uniformly distributed in the entire feature space, or located in sparse
regions of the target domain, i.e regions where the target data are either absent or iso-
lated from the rest of the data. Note that any standard multi-class method can be used,
since the one class problem has been turned into a classical two-class classification prob-
lem, i.e. target versus outlier. In [3] for example, the authors combine such an outlier
generation method with a tree-based class probability estimation to obtain a model of
the target distribution. Firstly, the outlier data are generated following a normal distri-
bution estimated directly from the target data. Secondly, class probability estimates are
induced with the decision tree learner, with the training set composed of generated out-
lier data and target data. Lastly, by using the Bayes’ rule, the authors combine the class
probability estimates with the outlier density function toobtain an estimate of the target
density function. In [6], the authors propose to generate outliers close to the target data
by constraining the learning algorithm to form an accurate boundary between known
classes and anomalies. To generate an outlier data, the authors randomly change the
value of one feature of a target instance while leaving otherfeatures unchanged. One
property of this approach is that the authors identify locations in the feature space that

5

are poorly populated with target data. Indeed, by analyzingthe frequencies of target
data values for each dimension of the feature space, sparse regions are found and con-
sequently more outlier data are generated in these regions.Major drawbacks of most
of outlier generation approaches are the impossibility to generate a sufficient amount of
outlier data in high dimensional situations due to the curseof dimensionality, and the
fact that the strong assumptions about the outlier data distribution may be violated in
real datasets [20].

The second approach consists in taking into account the possible presence of outlier
data during the training phase while these data are not physically present in the training
set, i.e. these data are not generated. Thus, strong hypotheses have to be stated, such
as a uniform distribution of outliers in the entire feature space or in some identified and
delimited sub-regions of the target region. In [43] for example, the authors have pro-
posed to identify specific subspaces of the target domain using a sparsity coefficient that
measures how the target data populate the selected regions,under the strong assumption
of uniform distribution of outlier data. The main difficultyof the algorithm resides in
the search and selection of these valuable regions For this purpose, the authors present
an evolutionary search algorithm that is able to quickly findhidden combinations of
dimensions resulting in sparsely populated regions. The sparsely populated subsets can
be seen as a partition of the data that highlight possible outlier patterns, relaxing the
need for a classifier. In [42], the authors propose a decisiontree induction procedure
to perform clustering tasks. In order to define clusters of target data points, outlier data
points are simulated and not generated, as they are not needed physically to compute the
partitioning criterion at each node of the decision tree. The method has initially been
proposed to tackle clustering tasks with a supervised learner, but it can be easily shifted
to a one class classification task by labeling initial clustered data as target and identified
empty regions as outlier.

The third approach consists in modifying a standard two-class or multi-class classi-
fier to make it learn from the target training set only, i.e. without generating outlier data.
An example of such method has been proposed in [44] as the One Class SVM (OCSVM)
or ν-SVM. OCSVM is derived from the traditional SVM algorithm [41] with a modi-
fied objective function and may be trained with a unique class. Its main principle is to
separate the target class from the origin, considered as theunique instance of the outlier
class, with an hyperplane. The algorithm maximizes the margin between the hyperplane
and the origin. The frontier separating the target data fromthe origin can be made more
flexible using the kernel trick. The authors show that SVDD and OCSVM coincide in
their decision function for a particular choice of kernel functions such as the gaussian
kernel but differ for other choices. However, as the underlying principle of these two
approaches is different, these two methods are categorizeddifferently in this paper.

6

2.3. Classifier ensemble based methods

Ensemble methods have been poorly exploited for the design of OCC methods
[13, 12, 45, 46]. Yet, ensemble methods offer more versatility to learn from the available
data than a single algorithm and have been shown to outperform individual classifiers
[47]. Examples of ensembles of one class classifiers are presented in [12], where the
authors’ goal is to propose some guidelines for the induction of one class classifier
combination systems. They have studied various multiple classifier systems, several
combination rules with distance-based learners (k-Means,k-Center), reconstruction-
based learners (auto-encoder network), generative model SVDD and density-based one
class classifiers (Gauss, MoG, Parzen), using different feature sets. In [45], the authors
present a bagging OCSVM in which a pool of OCSVM classifiers are combined. Each
OCSVM classifier is constructed from a bootstrap sample of the available target data.
The authors show that the ensemble method improves performance compared to the in-
dividual and rather unstable OCSVM, but requires higher computational resources than
the OCSVM alone.

Although these methods adopt a multiple classifier architecture and apply it to an
OCC task, they use existing OCC approaches instead of fully exploiting all the mecha-
nisms offered by classifier ensemble theory to build an OCC ensemble. Yet, this family
of learning methods embed some interesting randomization principles [48], like bag-
ging, random feature selection and random subspaces, that can be used to tackle issues
specific to one class classification. In particular, these three methods can be used to over-
come the exponential amount of outlier data to generate, by reducing both the number
of artificial outliers to generate and the size of the featurespace in which they are gener-
ated. We propose to tackle the one class classification task with a Random Forest (RF)
based method, as (i) it allows to benefit from several of the aforementioned randomiza-
tion principles that are naturally embedded in RF algorithms, and (ii) it uses tree-based
classifiers that have shown to perform well with these randomization principles [15]. In
the following section, we present such a one class random forest method.

3. One class random forests

The One Class Random Forest is an ensemble learning approachbased on a random
forest algorithm. Let us recall that the RF principle is one of the most successful and
general purpose ensemble techniques [49, 50], and has been shown to be competitive
with state-of-the-art classifiers like SVM and Adaboost [15, 51, 52]. It uses random-
ization to produce a diverse pool of individual tree-based classifiers. Particularly, it has
been shown in [15, 53] that the forest error rate depends on the correlation between
any pair of trees in the forest and on the strength (or performance) of individual trees:
minimizing the correlation between trees and maximizing their individual accuracy both
contribute to decreasing the forest error rate. In the standard RF learning algorithm [15],

7

two powerful randomization processes are used: bagging [54] and random feature se-
lection (RFS). The first principle, bagging, consists in training each individual tree on a
bootstrap replica of the training set. It is typically used to create the expected diversity
among the individual classifiers and is particularly effective with unstable classifiers,
like decision trees, in which small changes in the training set result in large changes in
predictions. The second principle, RFS, is a randomizationprinciple specifically used
in tree induction algorithms. It consists, when growing thetree, in randomly selecting
at each node of the tree a subset of features from which the splitting test is chosen. RFS
contributes to the reduction of the dimensionality and has been shown to significantly
improve RF accuracy over bagging alone [55, 56].

3.1. Artificial outlier generation and related issues
Our OCRF algorithm integrates an artificial outlier generation process in order to

transform the OCC task into a binary classification problem.When generating such
outliers, one faces the difficulty to generate both enough and representative outliers
to obtain quite good performance. These artificial outliersneed to cover the ”entire”
feature space and are expected to be sufficiently dense for being well separated from
target data during training. This implies to determine:

• the outlier distribution: the distribution of the outlier data is unknown a priori.
Generally, outlier data are supposed to be uniformly distributed in the entire fea-
ture space [57, 27].

• the outlier sampling: the number of outliers and their rangeof values must be
defined according to the available target samples; in practice, the domain may be
set as an hyperbox or an hypersphere surrounding the target data [57, 43].

Once a distribution is chosen, the number of outliers to generate in order to keep the
same sparsity among the outlier data increases drasticallyaccording to the dimension
of the feature space [43]. Indeed, considering a uniform distribution of outlier data in
a rectangular domain of the whole feature space (hypercube), the volume of the outlier
domain is:

Vhypercube(c) = cM (1)

wherec is the side of the hypercube andM the dimension of the feature space. If
we consider a rectangular grid covering the hypercube domain in which we generate
exactly one outlier data in each cell, the amount of outlier data is given by:

Noutliers(c) =
Vhypercube

Voutlier
=

cM

(10−p)M (2)

where 10−p is the value of the side of the individual rectangular cells of the grid or, in
other words, the desired precision on the values of the outlier data. Considering a unite

8

hypercube for example, we haveNoutliers=
1

10−pM = 10pM, e.g tens of billions of outliers
have to be generated for reasonable values of precisionp=2 and dimensionM = 5. This
phenomenon thus makes it almost impossible to adopt the uniform distribution strategy,
even for low-sized feature spaces such asM = 10.

3.2. Our solution for efficient outlier generation

The rationale behind OCRF is to generate outliers, without following a uniform dis-
tribution. The first idea of OCRF is to use some randomizationprinciples of ensemble
learning methods to subsample the number of features and thenumber of training target
instances in order to make possible the generation of outliers from a computation point
of view. To subsample the number of features, we use the random subspace method
(RSM) [58]. This well-known randomization principle of ensemble learning consists
in training each individual classifier of the ensemble on a random subspace of features:
K unique features are randomly selected from the initial feature set; the training sam-
ples are then projected in the subspace formed by theseK features, and a component
tree classifier is trained on the new resulting set. This process is repeatedL times to
form an ensemble ofL component classifiers, each one trained on a different,K-sized
feature space. RSM may be used to subsample the feature space, while controlling its
dimension through the parameterK, making thus possible to reduce the amount of out-
liers to generate as desired. To subsample the training set and therefore the number of
outliers to generate, we use bagging [54]. It consists in training each individual tree
classifier on a bootstrap replica of the training dataset. These bootstrap replicas are
formed by randomly selecting with replacement a subset of training samples. These
two randomization principles combined together provide a natural solution to overcome
the exponential amount of outliers that would be needed otherwise to reach good per-
formance.

The second idea of the OCRF method is to make use of the information given by
the target samples in order to adapt accordingly the outlierdistribution. As mentioned
above, if outliers were generated following a uniform distribution throughout the entire
domain of definition, the amount to generate would be exponential regarding the number
of features. Additionally, it would mean that outliers could be generated in areas where
target instances are already densely located, leading to produce useless outliers that may
introduce confusion in the learning process. One way to avoid generating these useless
outliers is to generate more outliers where the target data points are sparsely located in
the feature space, and conversely to generate fewer outliers in areas containing a lot of
target samples. The distribution of outliers is thus designed to be complementary to the
distribution of targets.

To summarize, the outlier generation process of OCRF is based on three key mecha-
nisms: (i) the RSM process allows to reduce the dimension of the feature space in which
outliers are generated; (ii) the bagging principle allows to subsample the target data so
that less outliers are needed; (iii) the outlier distribution estimation is complementary

9

to the target distribution so that it avoids the generation of confusing and useless out-
liers. These three mechanisms altogether allow to transform one complex (and often
impossible to solve) outlier generation problem into several easier and more efficient
ones.

3.3. The OCRF algorithm

The whole OCRF procedure, illustrated in Figure 1, is made ofthe following steps.
First, we build as many bootstrap replicas of the training set as the numberL of trees of
the random forest, each component tree being trained in a randomly selected subspace.
Second, using sparsity information extracted from the initial training setT, we generate
for each component tree the artificial outliers according toa distribution designed to be
complementary to the distribution of the target samples. Third, each component tree is
trained on the binary dataset made up of the projected targetsamples and the artificial
outliers, and is then added to the ensemble. The OCRF learning procedure is detailed in
Algorithm 1.

Training setT

BootstrapT2 +
RSMprojection

BootstrapT1 +
RSMprojection

. . . BootstrapTL +
RSMprojection

Outlier generation Outlier generation . . . Outlier generation

Tree 1 Tree 2 . . . Tree L

Combination rule for final decision

Sparsity
information
extraction

Figure 1: Overview of the OCRF induction. Additional procedures, in comparison to a traditional RF, are
highlighted (in green and boldface).

In summary, the OCRF method takes advantage of: (i) combining a diverse ensem-
ble of weak and unstable classifiers, which is known to be accurate and to increase
the generalization performance over single classifiers, and (ii) subsampling the training
dataset, in terms of training samples and features, in orderto efficiently generate outliers
by controlling their location and their number.

10

Algorithm 1 OCRF training algorithm
Require: a training setT, the number of outliers to be generatedNoutlier, the domain of

definition for the generation of outliersΩoutlier, the number of trees in the forestL,
the parameter of RSMKRSM

Ensure: a one class random forest classifier

1: (A) Prior information extraction
2: ComputeHtarget the normalized histogram of the target data
3: ComputeHoutlier the normalized histogram of the outlier data, so thatHoutlier is the

complementary ofHtarget, i.e. Houtlier = 1−Htarget

4: (B) Outlier generation and forest induction
5: for l = 1 to L do
6: (i) Draw a bootstrap sampleTl from the training set
7: (ii) Project this bootstrap sample onto a random subspace of dimensionKRSM

8: (iii) GenerateNoutlier outliers according to the complementary histogramHoutlier

in the domainΩoutlier, so that the probability that a generated outlier falls in a bin
of the histogramHoutlier is proportional to the value associated to that bin

9: (iv) Train a random tree on the augmented dataset composed of thetarget data
and the newly generated outlier data

10: end for
11: return a one class random forest model

4. Experimental protocol

In this section, we present the public datasets, the evaluation metrics, the one class
methods used in our comparison study, and the parameters fixed for the experiments.

4.1. Datasets

By definition, negative instances for OCC applications are rare and/or unevenly
spread in the feature space for being correctly sampled. Therefore, genuine one class
datasets, with representative positive and negative samples, are also rare. In order to
test OCC methods, authors generally transform multi-classproblems into several bi-
nary ”target versus outlier” classification tasks and adopta ”one versus rest” strategy,
for each class of the dataset. Some authors select one class as target and label the re-
maining classes as outliers [57, 3, 44], while some other do the opposite, i.e. select one
class as outlier and consider the remaining classes as one single target class [59, 37]. As
a consequence, elaborating fair comparisons with other works based on such datasets
is difficult as there is no consensus on a clear and single protocol. We will use in our
experiment the first approach that is the most frequently used in the literature, with one
class as target and the others as outliers.

11

We tackle in our experiments several problems of the literature, taken from the rec-
ognized UC Irvine Machine Learning public repository (see Table 1). We have se-
lected these 13 datasets as they are often used for OCC comparison. Themfeatprob-
lem (multiple feature dataset) [12] is computed for 5 different feature spaces extracted
from scanned handwritten numerals, resulting in five different datasets; these feature
spaces are Fourier coefficients, Karhunen-Loeve coefficients, morphological features,
raw pixels values, Zernike moments and factor correlations. Two datasets from the
mfeatproblem, namelymfeat-pixelandmfeat-fourierare not included in this paper due
to the parameterization optimization of standard density estimators that have failed on
these datasets. Datasetglassincludes originally 7 classes, describing different kindsof
glasses commonly found on criminal scenes. Sinceglasstype 4 is not represented at all
and type 6 has only 9 elements, these two classes have not beentaken into account and
type 6 data have been merged into the outlier cases.

Datasets have feature space sizes ranging from 4 to 216, number of classes ranging
from 2 to 10 and number of instances from 150 to 11000. Our experiments thus cover
a wide range of conditions. As one class is selected in turn for the target class and the
others gathered for the outlier class, we have conducted experiments on 78 datasets in
total, according to Table 1. In our experiments, the data were not preprocessed, i.e.
there was no normalization, nor principal component reduction.

Table 1: Description of the datasets taken from the UC Irvinerepository [60]
Total number of

Datasets attributes classes instances
sonar 60 2 208
glass 9 5 214
ionosphere 34 2 351
optdigits 64 10 5620
iris 4 3 150
musk 166 2 6598
breast cancer wisconsin (bcw) 9 2 699
pendigits 16 10 10994
diabetes 8 2 768
mfeat-factors 216 10 2000
mfeat-karhunen 64 10 2000
mfeat-zernike 47 10 2000
mfeat-morphological 6 10 2000
Total number of one class datasets 78

12

4.2. Evaluation criteria

It is difficult to fairly compare between OCC methods as classical evaluation mea-
sures may not be adapted nor accurate enough for the proposedtask, influenced by
the nature of the dataset sample and/or the nature of the domain studied. Indeed, a
wide range of measures has been proposed in the literature among which global ac-
curacy, sensitivity, specificity, precision and recall, ROC curves, Area Under the ROC
curve (AUC), weighted AUC or other averaging methods that aim at summarizing the
performance of a given classifier [61]. But there is no consensus for the performance
computation of one class algorithms nor for their comparison because each one of these
measures is more or less biased by the imbalanced ratio between the two classes.

In spite of this bias, results of our experiments will be presented in terms of global
accuracy, target and outlier recognition rates, as these measures will allow for an analy-
sis of the ”target vs outlier performance” trade-off. However, as these evaluation mea-
sures do not take into account the imbalanced nature of OCC datasets [61], we will use
an additional measurement,i.e. the Matthews correlation coefficient (MCC) or ”phi co-
efficient“ [62]. It is often used in combination with precision and sensitivity measures
in biomedical applications, where datasets are known to be particularly imbalanced. As
we will show in Section 5, this coefficient is more suitable for one class studies than
standard accuracy measures [61, 36].

MCC uses the contingency table from the confusion matrix andis given by:

MCC=
TP×TN−FP×FN

√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(3)

whereTP (true positive) is the number of correctly identified targetdata,TN (true
negative) the number of correctly identified outlier data,FN (false negative or non-
detection) the number of legitimate target data that have been misclassified andFP
(false positive or false alarm) the number of misclassified legitimate outlier data. MCC
measures the degree of correlation between the observed classes and the outputs of the
classifier. It ranges from -1 if all predictions are wrong to +1 for perfect classification.
Null values indicate that either predictions are completely random or one of the two
classes has not been correctly classified at all, i.e. the classifier always predicts only one
of the two classes.

Results will thus be presented in terms of MCC, global accuracy, target and outlier
recognition rates. For the evaluation process, we computedfor each dataset a 10-fold
stratified cross validation repeated 5 times. The 10-fold cross-validation method is com-
monly considered as a good estimate of the mean of the classification error and is a good
compromise in case of small datasets [63, 64]. The classifierperformance are then av-
eraged over the different runs.

13

4.3. Statistical comparison

It is not a straightforward task to evaluate and compare multiple classifiers on mul-
tiple datasets as pointed out in [65, 66] and developed in a comprehensive study of this
issue [67, 68, 69]. Several techniques have been proposed tocompare classifiers like
statistical tests [70] for pairwise comparisons (pairwiset-test with re-sampling evalua-
tion schemes, t-test with 10-folds, corrected t-test [71] taking into account overlapping
issues, 5x2CV, McNemar test) or ranking methods like average ranks [72]. There have
been many discussions about the right tests to apply for general comparison purposes
[70, 73, 74]. But methods for fairly comparing multiple classifiers on multiple datasets
are rare and often totally ignored [69]. Two approaches are suggested in [69]: the well-
known ANOVA [75] and the non-parametric Friedman statistical test [76, 77] associated
to the Nemenyi post-hoc test [78]. ANOVA is based on assumptions that are not always
granted in typical machine learning studies, i.e. the performance samples must be drawn
from a normal distribution and the random variables must have equal variance. There-
fore we eschewed the ANOVA test in favor of the Friedman test,that better suits the
characteristics of our experimental protocol (as suggested in [69]).

The Friedman test is a statistical test that uses the rank of each algorithm on each
dataset. The null hypothesis states that the compared algorithms are not significantly
different. Fork classifiers andN datasets, ifRj is the mean rank of classifierj among
all datasets, the Friedman statistic is given by:

χ2
F =

12N
k(k+1)

(

k

∑
j=1

R2
j −

k(k+1)2

4

)

(4)

with k−1 degrees of freedom. An improved version of this test has been proposed by
Iman and Davenport [79] with a less conservative correctionof χ2

F :

FF =
(N−1)χ2

F

N(k−1)−χ2
F

(5)

distributed according to theF-distribution with(k−1) and(k−1)(N−1) degrees of
freedom.

If the null hypothesis is rejected, a post-hoc test is carried out like the Nemenyi test
[78], which is used when all classifiers are compared to each other or the Bonferroni
Dunn test [80], which is used when comparing one control algorithm to the other ones.
We use in this study the Nemenyi statistical test given by theCritical Difference (CD):

CD= qα

√

k(k+1)
6N

(6)

whereqα is the critical tabulated value for this test [78].

14

4.4. State-of-the-art OCC methods and parameterization

The OCRF algorithm is compared to four state-of-the-art OCCalgorithms, namely
the One Class SVM [44] taken from the LibSVM toolbox and threedensity estima-
tors, Gaussian estimator (Gauss), Parzen windowing (Parzen) and Mixture of Gaussians
models (MoG) taken from the Pattern Recognition Toolbox (PRTools) [81, 82].

The OCSVM algorithm is computed using the default parametersettings taken from
the LibSVM toolbox (i.e. cost coefficientC = 1, radial basis function for the kernel
choice,γ = 1

dimension for the kernel bandwidth), except for theν coefficient, a lower
bound on the fraction of support vectors that we set to a more frequently cited value
ν = 0.1 (instead ofν = 0.5 in LibSVM). Similarly, the three other algorithms (Gauss,
Parzen and MoG) are run with their default parameters definedin PRTools. In particular,
MoG is computed by default with 5 clusters, the position, size and priors of each of
the clusters being optimized using the conventional Expectation-Maximization (EM)
algorithm. Likewise, the bandwidth parameterh in Parzen is by default optimized by
maximizing the likelihood on the training data using leave-one-out [81]. Note also
that for these three density estimators PRTools defines the parameterf racre j = 0.05,
corresponding to the fraction of legitimate target cases that will be considered as outliers
in the training phase of the algorithm. This trick allows in particular to compute a
threshold on the outputs of the density estimator. All thesedefault parameter settings
are discussed in [3, 83, 57, 44].

Regarding the OCRF parameterization, standard values for the parameters are also
used:

• the number of trees in the random forest isL= 200, a value commonly considered
as sufficient in practice to ensure statistical convergenceof the algorithm [55, 53];

• trees are fully developed as it is proven to be more efficient in RF [15].

• the number of attributes for the Random Subspace Method is empirically set to
KRSM= 10 orKRSM=M if M < 10, whereM is the dimension of the feature space
[58];

• the number of attributes for the Random Feature Selection isKRFS=
√

KRSM, as
suggested in [55, 53].

Finally, the generation of outliers during training requires to define their number and
the range of their values. We have chosen the generation domain of outliers to be 1.2
times greater than the target domain estimated through the training set, assuming that
the outlier domain needs to cover the whole target domain. The number of outliers to
generate is empirically set toNoutlier = 10·Ntarget whereNtarget is the sample size of the
bootstrap replica (see Algorithm 1).

15

5. Experimental results

In this section, we report the results obtained according tothe experimental protocol
described in the preceding section. We first discuss the overall performance of each
OCC method mainly according to the ”outlier versus target” trade-off. We then show
that OCRF method compares favorably to standard OCC algorithms (OCSVM, Gauss,
Parzen, MoG), according to the test of statistical significance.

5.1. Analysis of classifier performance

In order to show the interest of using the MCC for performanceanalysis, we discuss
the results of Table 2. In this table, results for three OCC classifiers (namely OCRF,
OCSVM and Gauss) are presented on two illustrative datasets(namelyopdigits and
mfeat-factors) in terms of averaged MCC, accuracy, target and outlier recognition rates.
We recall that this coefficient enables to take into account the imbalanced nature of
OCC datasets: the closer to +1 the MCC, the better the performance of the classifier;
a null value of MCC usually indicates that the classifier predicts only one of the two
classes, the other class is never classified correctly; the closer to -1 the MCC, the worst
the performance of the classifier. Results show that MCC better predicts the behavior
of an OCC classifier than the accuracy rate, as shown in Table 2where three different
cases can be identified:

(i) MCC and accuracy both have a high value (e.g. OCRF onoptdigits0)

(ii) MCC and accuracy both have a low value (e.g. OCRF onoptdigits1)

(iii) MCC value is null or very low while accuracy is high (e.g. OCSVM on all datasets
in this table)

In the latter case, one can see that accuracy rates fail to indicate that either target or out-
lier data are poorly, or even not at all, recognized by the classifier whereas MCC better
highlights this phenomenon by providing a value close to zero. Thus the remainder of
the result analysis will be conducted using the MCC indicator.

For sake of clarity, the averaged MCC values are presented for all datasets and all
classifiers in Appendix A. A synthesis of these results is presented in Table 3. In the
forthcoming analysis, our aim is (i) to focus on the global performance of OCRF on all
datasets and (ii) to give some insights on local behaviors incomparison with the four
other state-of-the-art OCC methods.

Table A.7 and Table 3 show that OCRF performs generally well on most of the
datasets, as more than half of its MCC values are high (typically above 0.5 for 45
datasets over 78). This illustrates the ability of the method to correctly handle the ”tar-
get vs outlier” trade-off for a large range of OCC problems, in spite of their imbalanced

16

OCRF OCSVM Gauss

opt 0

MCC 0,776 0,165 0,954
Acc 0,94 0,90 0,99
T 0,99 0,04 0,92
O 0,94 1,00 1,00

opt 1

MCC 0,147 0,054 0,937
Acc 0,26 0,90 0,99
T 1,00 0,01 0,90
O 0,18 1,00 1,00

opt 2

MCC 0,143 0,000 0,953
Acc 0,26 0,90 0,99
T 1,00 0,00 0,92
O 0,18 1,00 1,00

opt 3

MCC 0,121 0,000 0,914
Acc 0,22 0,90 0,98
T 1,00 0,00 0,92
O 0,13 1,00 0,99

opt 4

MCC 0,077 0,000 0,905
Acc 0,16 0,90 0,98
T 1,00 0,00 0,92
O 0,06 1,00 0,99

opt 5

MCC 0,041 0,000 0,954
Acc 0,12 0,90 0,99
T 1,00 0,00 0,92
O 0,02 1,00 1,00

opt 6

MCC 0,410 0,026 0,956
Acc 0,70 0,90 0,99
T 1,00 0,00 0,92
O 0,67 1,00 1,00

opt 7

MCC 0,264 0,000 0,933
Acc 0,48 0,90 0,99
T 1,00 0,00 0,91
O 0,42 1,00 1,00

opt 8

MCC 0,043 0,000 0,719
Acc 0,12 0,90 0,94
T 1,00 0,00 0,91
O 0,02 1,00 0,94

opt 9

MCC 0,077 0,000 0,860
Acc 0,15 0,90 0,97
T 1,00 0,00 0,90
O 0,06 1,00 0,98

OCRF OCSVM Gauss

fact 0

MCC 0,844 0,000 0,737
Acc 0,97 0,90 0,96
T 0,86 0,00 0,58
O 0,98 1,00 1,00

fact 1

MCC 0,873 0,000 0,712
Acc 0,98 0,90 0,95
T 0,79 0,00 0,54
O 1,00 1,00 1,00

fact 2

MCC 0,879 0,000 0,740
Acc 0,98 0,90 0,96
T 0,85 0,00 0,58
O 0,99 1,00 1,00

fact 3

MCC 0,887 0,017 0,695
Acc 0,98 0,90 0,95
T 0,87 0,00 0,51
O 0,99 1,00 1,00

fact 4

MCC 0,884 0,000 0,743
Acc 0,98 0,90 0,96
T 0,82 0,00 0,58
O 1,00 1,00 1,00

fact 5

MCC 0,843 0,013 0,738
Acc 0,97 0,90 0,96
T 0,82 0,00 0,58
O 0,99 1,00 1,00

fact 6

MCC 0,910 0,068 0,770
Acc 0,98 0,90 0,96
T 0,85 0,02 0,62
O 1,00 1,00 1,00

fact 7

MCC 0,879 0,017 0,841
Acc 0,98 0,90 0,97
T 0,83 0,00 0,73
O 1,00 1,00 1,00

fact 8

MCC 0,613 0,000 0,647
Acc 0,91 0,90 0,94
T 0,83 0,00 0,45
O 0,91 1,00 1,00

fact 9

MCC 0,866 0,026 0,751
Acc 0,98 0,90 0,96
T 0,85 0,01 0,60
O 0,99 1,00 1,00

(a) (b)

Table 2: Case study for results of OCRF, OCSVM and Gauss on (a)optdigit(opt N) and (b)mfeat-factors
(fact N) datasets. Best MCC results for each dataset are indicated in bold face.

17

OCRF OCSVM Gauss Parzen MoG
of MCC negative val-
ues

0 1 2 2 1

of MCC null values 0 32 0 37 12
of MCC values supe-
rior to 0.5

45 12 60 8 39

of occurences of 1st
rank wrt MCC values

23 7 35 4 9

Table 3: Synthesis of the results extracted from Table A.7 inAppendix A

nature. This observation will be confirmed in the following section, with a statistical
analysis based on the rank values of each classifier on all datasets. Another observation
is that OCRF is the best OCC method on 23 datasets among 78, whereas MoG is the
best one on only 9 datasets, OCSVM on 7 and Parzen on 4 datasets, in terms of MCC
values. Gauss is the best of the five OCC methods, since it has the highest MCC values
on 35 datasets over the 78. According to these results, Gaussand OCRF clearly outper-
form the three other OCC methods. This will be also confirmed in the next section with
the statistical comparison.

Another remarkable result is that OCRF never exhibits null values of MCC, contrary
to the four other state-of-the-art OCC methods: Parzen has null values on 37 datasets,
OCSVM on 32, MoG on 12 and Gauss none. Let us recall that a null MCC value
indicates that the classifier either predicts completely randomly or always predicts only
one of the two classes. Such cases may be found in Table A.7 where OCSVM and
Parzen for example both always predict the outlier class onpendigits, optdigits and
mfeat-zernike, as 90% of the test data are outliers. Similarly, Parzen and MoG always
predict the target class only onmfeat-factor, as 10% of the test data are targets. These
latter results confirm that OCSVM, Parzen and MoG are less able to handle the ”target
vs outlier” trade-off than OCRF and Gauss. Note finally that afew negative values are
obtained for all four state-of-the-art methods whereas OCRF does not exhibit any. Let
us recall that a negative MCC value indicates that the classifier behaves worst than a
random predictor. Nevertheless, these behaviors seem to bemarginal.

In summary, even if these experiments highlight that OCRF isnot always the best
OCC method over all the datasets, they reveal that OCSVM, Parzen and sometimes
MoG may have very unstable behaviors, being the best one on some datasets and the
worst in some others. This is not the case of OCRF neither Gauss, which appear to be
good classifiers for OCC tasks.

5.2. Classifier ranking and statistical significance

In this section, our aim is to rank the OCC algorithms to allowfor a better com-
parison of the five OCC methods. We use the statistical test presented in section 4.3 to

18

evaluate the significance of these comparisons.
For each dataset, the five OCC methods have been ranked from 1 (highest MCC

value) to 5 (lowest MCC value). The mean rank over the 78 datasets is provided in Table
4, with corresponding standard deviation values. One can observe that the best method
in average is Gauss, as it exhibits the lowest mean rank (1.90) and that the second best
one is OCRF (2.43). The MoG method is ranked in average right after OCRF, with a
mean rank of 2.79, while the two remaining methods, OCSVM andParzen, are clearly
outperformed by the three others.

Additional statistics on the rank values are provided in Figure 2, under the form of
boxplots. Red lines correspond to the median values, boxes to the half of the rank values
and black segment to the minimum and maximum ranks of each method. One can see
that OCRF is ranked in the Top 3 best methods for 75% of the datasets (i.e. 52 over 78).
However, it does not outperform Gauss that is ranked either first or second on 75% of
the datasets, and that exhibits ranks always inferior or equal to 3. These plots confirm
that OCSVM and Parzen have the worst performance, with ranksbetween 3 and 5 for
75% of the datasets.

OCRF OCSVM Gauss Parzen MoG
Mean rank 2.43±1.16 4.04±1.28 1.90±1.15 3.83±1.12 2.79±1.08

Table 4: Mean rank values (± standard deviation) of OCC methods over the 78 datasets

Figure 2: Boxplots of rank values of the OCC methods over the 78 datasets. Red segments correspond to
the median values. The boxes indicates the repartition of half of the ranks around the median and black
segments indicate minimum and maximum ranks.

Figure 3 is another way to gain some insight on the ranking of the 5 methods. It

19

shows the ratio of the datasets for which a given method is among then first ranked
methods,n ranging from 1 to 5. For instance, Gauss is the first ranked method for 50%
of the datasets, while OCRF is ranked first for 30% of the datasets. We can clearly
distinguish two groups of methods: the first one is made of Gauss, OCRF and MoG,
that are in the Top 3 for more than 70% of the datasets, while the second one is made of
OCSVM and Parzen, that are in the Top 3 methods for less than 30% of the datasets. We
can thus assume that this gap of performance between these two groups is significant
enough, but it seems less obvious how methods compare to one another inside each
group. This hypothesis is now tested using the Friedman testpresented in section 4.3.

Figure 3: Statistics on rank values obtained over the 78 datasets: ratio of datasets associated to the
cumulative rank values for all classifiers (the higher the ratio, the better; the lower the rank value, the
better).

Let us recall that the Friedman test has been applied on MCC values. Using Equation
4 with N = 78 datasets andk= 5 classifiers, we haveχ2

F = 104.48. Applying the Iman
and Davenport improvement, we obtainFF = 38.768 from Equation 5. From common
tabulated values, we read that the critical value for the F-distribution withk−1= 4 and
(k−1)(N−1) = 308 degrees of freedom and under the riskα = 0.05 is F(4,308) ≈
2.37< 38.768. This indicates that the null hypothesis is rejected, concluding that the

20

given ranks are significantly different. We can now use the post-hoc Nemenyi test for
the method ranking. From Equation 6, we obtainCD= 0.690. From this value, we can
conclude that, under the risk of 5%, OCRF performs significantly better than Parzen
(asRParzen−ROCRF= 3.83−2.43>CD) and OCSVM (asROCSVM−ROCRF= 4.04−
2.43>CD). On the contrary, nothing can be said about OCRFvsGauss nor OCRFvs
MoG as the differences between their mean ranks are smaller thanCD. Using the same
calculus, one can conclude that Gauss performs better than MoG, Parzen and OCSVM;
MoG performs significantly better than OCSVM and Parzen. Table 5 summarizes all the
duels results. It clearly shows that the two groups identified in the previous figures are
indeed statistically different in terms of MCC results, i.e. Parzen and OCSVM are both
statistically outperformed by the three other methods. However, these results barely
allow to conclude about the differences between the methodsinside these two groups:
(i) Parzen and OCSVM can not be distinguished from their MCC values; (ii) even if
Gauss statistically outperforms MoG, it is difficult to establish a ranking between these
two methods and OCRF, since the two remaining duels are not conclusive. More data
would be of course required to reliably compare these three classifiers.

Note finally that our OCRF method is quite surprisingly oftenoutperformed by a
simple parametric density estimator such as Gauss. It couldbe thus inferred that target
samples are normally distributed in a majority of the datasets of our experiments since
the Gaussian estimator would particularly suit to those cases. We report in the next
subsection the results of our investigation on this issue.

Gauss OCRF MoG Parzen OCSVM
Gauss 0 + + +
OCRF 0 0 + +
MoG - 0 + +
Parzen - - - 0
OCSVM - - - 0

Table 5: Duels between the methods, in terms of statistical significance. A ’+’ (resp. ’-’) indicates that
the method in the corresponding line statistically outperforms (resp. is outperformed by) the method in
the corresponding column. A ’0’ indicates that no conclusion may be drawn from the statistical test.

5.3. OCRF vs Gauss: multi-normality of target samples

As mentioned above, the Gaussian estimator is the classifierthat most often out-
performs the other methods, leading to infer that target samples may be normally dis-
tributed in the corresponding datasets. In order to test themulti-normality of these
datasets, we have used the classical Mardia’s test of multivariate skewness and kurtosis
[84]. This test is considered as one of the best method to assess the degree to which mul-
tivariate data deviate from multi-normality [85]. The testuses two statistical moments,

21

the multivariate skewness (third moment) and kurtosis (fourth moment) in order to test
independently if these measures are consistent with the assumption of multi-normality.
Data are assumed to conform to a multi-normal distribution only if the null hypothesis
of multi-normality has not been rejected for both tests,i.eno significant skew in the data
and no significant deviation of kurtosis from expectancy.

The sample measure of multivariate skewness is given by :

γ1,d =
1

N2 ∑
i≤N, j≤N

m3
i j (7)

and the measure of kurtosis by :

γ2,d =
1
N ∑

i≤N
m2

ii (8)

where N is the sample size, d the dimension of the feature space, mi, j = (xi −
x̄)TS−1(x j − x̄), xi a data vector, ¯x the sample mean andS the sample covariance matrix.

The first part of the Mardia’s test leans on the fact that, under the assumption of
multi-normality, the statisticN · γ1,d/6 asymptotically follows a chi-square (χ2) distri-
bution with d(d+1)(d+2)/6 degrees of freedom. Hence, if the estimation given by
equation 7 significantly deviates from the corresponding reference value in theχ2 dis-
tribution table, one can conclude that the underlying data is not likely to come from a
multi-normal distribution. In the same manner, the second part of the test is based on
the fact that the statisticγ2,d is asymptotically normally distributed with meand(d+2)
and variance 8d(d+2)/N. The (centered reduced)γ2,d value estimated from equation
8 can thus be compared to the corresponding critical value from the normal distribution
table.

All those values, obtained with equations 7 and 8, and from the normal andχ2

distribution tables, are provided in table B.8. They indicate that among 78 datasets, the
multi-normality hypothesis is rejected for 58 datasets andaccepted for 3. For 17 datasets
no result could be obtained due to singular variance-covariance matrix for each dataset
causing computational issues when computing for instance the Mahalanobis distance or
mi, j values aforementioned.

Nonetheless, these results show that a vast majority of the tested datasets do not
match the assumption of multi-normality, in particular on those datasets for which the
Gaussian estimator exhibits the best performance (Sonar and MFeat-zernike datasets
for example). It seems therefore that the good results of Gauss over OCRF cannot be
explained by the multi-normality of these datasets and thatfurther investigations are
needed to better understand why OCRF is often outperformed by Gauss.

22

5.4. Robustness with respect to dimensionality

One of the main advantages of OCRF over the other state-of-the-art OCC methods
is its robustness regarding the number of dimensions. To assess the rather good behavior
of OCRF with an increasing size of the feature space, we have performed the additional
experiments detailed below.

Note first that it is still an issue to generate artificial datasets for ”high” dimensional
spaces due to the curse of dimensionality. In some preliminary experiments, we have
noticed that above about 10 features, OCC methods often exhibit MCC values equal to
either 1 or 0, depending on the distribution of both positiveand negative samples. As
shown in [86, 87], the difficulty of generating well representative distributions can be
explained by empty space phenomenons or concentration of measures. On the other
hand, real-world high-dimensional datasets are very oftenbuilt with a lot of uninfor-
mative or sparse features, as it is the case in gene analysis or text categorization for
example. Such amounts of non discriminant or non informative features may strongly
bias the results and the analysis as explained in [86, 87].

Therefore, we have rather turned towards designing a dedicated experimental pro-
tocol by creating a quite high-dimensional artificial dataset from the real-world MFeat
datasets: a feature space has been created with discriminant features by concatenating
the differentMFeat feature vectors. Let us recall that the four datasetsMFeat-Factors,
MFeat-Karhunen, MFeat-ZernikeandMFeat-Morphologicalhave been built from the
same data instances representing single digits between 0 and 9, but for which different
descriptors have been extracted. We have thus created a new dataset, calledMFeat-
FKZM, by concatenating factors, karhunen, zernike and morphological descriptors in
the same feature vector, leading for each sample to a 333-feature vector. Then, 10 dif-
ferent OCC datasets, called”digit X” whereX is the digit used as the target class, have
been extracted following the previously used ”1-versus-rest” strategy. The five OCC
classifiers have been tested on the 10digit X datasets several times with different sizes
of the feature space: on eachdigit X dataset,m features have been randomly sampled
from 333 features, for allm∈ {2, 3, 5, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200,
225, 250, 275, 300, 325, 333}; each time, 10 random subsets ofm features have been
sampled so that averaged MCC values over these 10 replicas have been obtained on each
digit X and for each value ofm, along with their standard deviations.

Full MCC results for each of the 10 datasets and for each classifier are presented in
Figure 5 as curves of mean MCC values with respect tom. To give the precise values
of MCC means and standard deviations, a detailed example ondigit 1 dataset is also
given in Table 6. For clarity concerns, onlydigit 1 dataset is presented in this table and
enlarged in Figure 4, but as it can be seen on Figure 5, similarresults have been obtained
for the 9 other datasets.

From Figure 5, one can clearly observe that OCRF exhibits very stable behaviors

23

as the size of the feature space increases, contrary to the four other methods that fail to
maintain their performance obtained on lower dimensions. As for previously presented
MCC results, it is important to note that some classifiers like OCSVM exhibits several
zero MCC values as they predict only one of the two classes foralmost all samples.
These stable behaviors are assessed by the evolution of MCC values, but are also con-
firmed by standard deviations, as shown in Table 6 and Figure 4for thedigit 1 dataset.
OCRF exhibits quite low values of standard deviation (i.e. lower than or equal to 0.05)
for all sizes above 50, contrary to Gauss for example, that shows standard deviations
up to 0.14 for the same sizes. Even if the Gauss method sometimes outperforms OCRF
in terms of averaged MCC values, these results show that it may be at the expense of
rather unstable performance for larger dimensions.

As a conclusion, these additional experiments give better insights on how OCRF
manage to handle OCC problems, for which state-of-the-art methods often exhibit very
unstable performance. They confirm as expected that randomized ensemble principles
make the OCRF method more robust than the other methods to an increasing size of the
feature space.

Figure 4: MCC values with respect to the number of features for OCRF, OCSVM, Gauss, Parzen and
MoG classifiers, obtained on thedigit 1 dataset.

24

Table 6: Performances of OCRF compared with OCSVM, Gauss, Parzen, MoG classifiers on MFeat-
FKZM dataset for digit 1

m OCRF OCSVM Gauss Parzen MoG
2 0.15 (± 0.09) 0.53(± 0.16) 0.10 (± 0.06) 0.13 (± 0.05) 0.12 (± 0.05)
3 0.20 (± 0.13) 0.39(± 0.31) 0.11 (± 0.09) 0.17 (± 0.12) 0.15 (± 0.10)
5 0.39(± 0.09) 0.00 (± 0.00) 0.19 (± 0.07) 0.30 (± 0.10) 0.26 (± 0.06)
10 0.59(± 0.13) 0.00 (± 0.00) 0.34 (± 0.09) 0.23 (± 0.12) 0.56 (± 0.11)
15 0.70(± 0.08) 0.00 (± 0.00) 0.46 (± 0.14) 0.11 (± 0.07) 0.66 (± 0.09)
20 0.68 (± 0.09) 0.00 (± 0.00) 0.56 (± 0.14) 0.00 (± 0.00) 0.69(± 0.07)
25 0.71(± 0.09) 0.00 (± 0.00) 0.69 (± 0.13) 0.00 (± 0.00) 0.67 (± 0.12)
50 0.80 (± 0.03) 0.00 (± 0.00) 0.88(± 0.02) 0.00 (± 0.00) 0.36 (± 0.18)
75 0.80 (± 0.05) 0.00 (± 0.00) 0.84(± 0.05) 0.00 (± 0.00) 0.25 (± 0.14)
100 0.79(± 0.04) 0.00 (± 0.00) 0.76 (± 0.07) 0.00 (± 0.00) 0.00 (± 0.00)
125 0.80(± 0.04) 0.00 (± 0.00) 0.72 (± 0.07) 0.00 (± 0.00) 0.00 (± 0.00)
150 0.82(± 0.03) 0.00 (± 0.00) 0.69 (± 0.07) 0.00 (± 0.00) 0.00 (± 0.00)
175 0.80(± 0.04) 0.00 (± 0.00) 0.64 (± 0.07) 0.00 (± 0.00) 0.00 (± 0.00)
200 0.79(± 0.05) 0.00 (± 0.00) 0.53 (± 0.13) 0.00 (± 0.00) 0.00 (± 0.00)
225 0.80(± 0.04) 0.00 (± 0.00) 0.50 (± 0.13) 0.00 (± 0.00) 0.00 (± 0.00)
250 0.77(± 0.03) 0.00 (± 0.00) 0.38 (± 0.14) 0.00 (± 0.00) 0.00 (± 0.00)
275 0.80(± 0.04) 0.00 (± 0.00) 0.37 (± 0.08) 0.00 (± 0.00) 0.00 (± 0.00)
300 0.80(± 0.02) 0.00 (± 0.00) 0.35 (± 0.05) 0.00 (± 0.00) 0.00 (± 0.00)
325 0.79(± 0.04) 0.00 (± 0.00) 0.27 (± 0.04) 0.00 (± 0.00) 0.00 (± 0.00)
333 0.79(± 0.04) 0.00 (± 0.00) 0.28 (± 0.05) 0.00 (± 0.00) 0.00 (± 0.00)

25

(a) Digit 0 (b) Digit 1 (c) Digit 2

(d) Digit 3 (e) Digit 4 (f) Digit 5

(g) Digit 6 (h) Digit 7 (i) Digit 8

(j) Digit 9

Figure 5: MCC values vs. the number of features (ranging from0 to 333) for OCRF (×), OCSVM (△),
Gauss (◦), Parzen (+) and MoG (⋆) classifiers on MFeat-FKZM dataset for all digits

26

6. Conclusion and future works

One-Class Random Forest is a discriminative OCC method based on the reference
random forest algorithm combined with an original procedure for generating artificial
outliers. Generating outliers is often used with discriminative learning methods to coun-
terbalance the absence of outlier data during the training phase but is difficult to imple-
ment since the number of outliers to generate for having reasonably good performance
is exponential with respect to the dimension of the feature space, and may also increase
as the number of available training samples increases. We have shown that the random
principles used in traditional RF can be powerful tools to overcome this issue: by sub-
sampling the training set for each component classifier of the ensemble, through the
selection of both the training samples (with bagging) and the features (with random
feature selection and random subspace method), and by then combining all of them,
we reduce the minimum number of outliers to generate and increase the generalization
accuracy of the ensemble.

To assess the efficiency of our method, experiments have beenconducted on sev-
eral public datasets from the UCI repository and OCRF has been statistically compared
to four of the most used OCC algorithms, namely one-class SVM, Gaussian estima-
tor, Parzen windowing and Mixture of Gaussians models. On most of these datasets
and using the default parameterization of each method, results have shown that OCRF
performs equally well or better than these state-of-the-art OCC algorithms. Besides,
OCRF performance appears to be rather stable even in relatively high dimensional
space, whereas other OCC method accuracy rates decrease.

Room for improvement is still left in our OCRF framework. Indeed, the OCRF
method depends on two parameters whose values have not been investigated nor tuned
for these experiments: (i) the ratio of outliers to be generated according to the number
of available target samples and (ii) the range of each feature value of these artificial
outliers. Although standard values for these parameters give satisfying results for most
of the datasets, preliminary experiments conducted on someparticular datasets have
shown that these parameters could have optimal values. A deeper study on the influ-
ence of these parameters according to the target distribution could help choosing their
appropriate values automatically.

Appendix A. Matthews correlation coefficient (MCC)

Dataset OCRF OCSVM Gauss Parzen MoG
iris versicolour 0,579 (81,5) 0,897 (95,3) 0,903(95,6) 0,685 (85,6) 0,607 (82,9)
iris virginica 0,614 (82,7) 0,900(95,5) 0,813 (90,9) 0,716 (87,3) 0,604 (82,5)
iris setosa 0,722 (87,1) 0,903 (95,6) 0,921(96,4) 0,799 (90,9) 0,643 (83,3)
bcw benign* 0,919(96,2) 0,848 (92,1) 0,902 (95,3) 0,709 (83,2) 0,867 (93,3)

results continued on next page

27

Dataset OCRF OCSVM Gauss Parzen MoG
bcw malignant* 0,629(81,3) 0,208 (68,2) 0,179 (46,3) 0,273 (69,1) 0,084 (49,6)
ionospheregood 0,683 (83,3) 0,785(89,5) 0,781 (89,3) 0,180 (40,8) 0,584 (75,4)
ionospherebad 0,169(56,7) -0,348 (28,2) -0,410 (26,0) 0,106 (64,7) -0,346 (33,2)
musk0 0,071 (84,6) 0,103 (21,0) 0,264(83,6) 0,180 (30,6) 0 (84,6)
musk1 0,306 (49,3) 0,049 (84,7) 0,818(95,1) 0,495 (88,9) 0 (15,4)
sonarmines 0,048 (53,3) 0,882(93,6) 0,342 (65,9) 0 (46,2) 0,222 (47,8)
sonarrocks 0,179 (59,0) 0,889(94,0) 0,120 (56,3) 0 (53,8) 0,274 (56,1)
diabetespositive 0,139 (46,4) 0 (65,2) 0,147 (35,2) 0,188 (55,3) 0,219(39,2)
diabetesnegative 0,241(68,7) 0 (34,8) -0,046 (66,5) 0,064 (53,9) 0,020 (68,3)
pendigits0 0,976(99,6) 0 (89,6) 0,970 (99,4) 0,100 (89,7) 0,961 (99,3)
pendigits1 0,585 (85,8) 0 (89,6) 0,652 (90,0) 0,212 (90,1) 0,835(96,6)
pendigits2 0,835 (96,3) 0 (89,6) 0,957(99,2) 0 (89,6) 0,956 (99,2)
pendigits3 0,918 (98,5) 0 (90,4) 0,969(99,5) 0,092 (90,4) 0,949 (99,1)
pendigits4 0,961 (99,3) 0 (89,6) 0,969(99,4) 0 (89,6) 0,953 (99,1)
pendigits5 0,756 (94,1) 0 (90,4) 0,880 (97,8) 0,092 (90,4) 0,942(99,0)
pendigits6 0,985(99,7) 0 (90,4) 0,970 (99,5) 0 (90,4) 0,954 (99,2)
pendigits7 0,887 (97,6) 0 (89,6) 0,887 (97,7) 0 (89,6) 0,937(98,8)
pendigits8 0,634 (89,3) 0 (90,4) 0,716 (93,2) 0 (90,4) 0,951(99,2)
pendigits9 0,577 (85,9) 0 (90,4) 0,577 (86,9) 0,093 (90,4) 0,936(98,9)
optdigits0 0,776 (94,2) 0,165 (90,5) 0,954(99,2) 0 (90,1) 0,745 (95,9)
optdigits1 0,147 (26,2) 0,054 (89,9) 0,937(98,9) 0 (89,8) 0,803 (96,7)
optdigits2 0,143 (25,8) 0 (90,1) 0,953(99,2) 0 (90,1) 0,755 (96,0)
optdigits3 0,121 (21,7) 0 (89,8) 0,914(98,4) 0 (89,8) 0,727 (95,5)
optdigits4 0,077 (15,6) 0 (89,9) 0,905(98,3) 0 (89,9) 0,766 (96,1)
optdigits5 0,041 (11,5) 0 (90,1) 0,954(99,2) 0 (90,1) 0,738 (95,8)
optdigits6 0,410 (70,3) 0,026 (90,1) 0,956(99,2) 0 (90,1) 0,778 (96,3)
optdigits7 0,264 (48,2) 0 (89,9) 0,933(98,8) 0 (89,9) 0,777 (96,3)
optdigits8 0,043 (11,7) 0 (90,1) 0,719(93,6) 0 (90,1) 0,696 (95,2)
optdigits9 0,077 (15,2) 0 (90,0) 0,860(97,4) 0 (90,0) 0,739 (95,7)
mfeat-factors0 0,844(97,2) 0 (90,0) 0,737 (95,8) 0 (10,0) 0 (10,0)
mfeat-factors1 0,873(97,8) 0 (90,0) 0,712 (95,4) 0 (10,0) 0 (10,0)
mfeat-factors2 0,879(97,9) 0 (90,0) 0,740 (95,8) 0 (10,0) 0 (10,0)
mfeat-factors3 0,887(98,0) 0,017 (90,0) 0,695 (95,1) 0 (10,0) 0 (10,0)
mfeat-factors4 0,884(98,0) 0 (90,0) 0,743 (95,8) 0 (10,0) 0 (10,0)
mfeat-factors5 0,843(97,3) 0,013 (90,0) 0,738 (95,8) 0 (10,0) 0 (10,0)
mfeat-factors6 0,910(98,5) 0,068 (90,2) 0,770 (96,2) 0 (10,0) 0 (10,0)
mfeat-factors7 0,879(97,9) 0,017 (90,0) 0,841 (97,3) 0 (10,0) 0 (10,0)
mfeat-factors8 0,613(90,6) 0 (90,0) 0,647 (94,5) 0 (10,0) 0 (10,0)
mfeat-factors9 0,866(97,6) 0,026 (90,1) 0,751 (96,0) 0 (10,0) 0 (10,0)
mfeat-karhunen0 0,807(96,4) 0,363 (91,6) 0,784 (96,5) 0 (90,0) 0,302 (90,1)
mfeat-karhunen1 0,750 (95,5) 0,248 (90,9) 0,765(96,1) 0 (90,0) 0,247 (90,3)
mfeat-karhunen2 0,755 (95,5) 0,222 (90,7) 0,776(96,3) 0 (90,0) 0,213 (90,1)
mfeat-karhunen3 0,703 (93,8) 0,239 (90,8) 0,759(96,0) 0,213 (90,1) 0,213 (90,1)

results continued on next page

28

Dataset OCRF OCSVM Gauss Parzen MoG
mfeat-karhunen4 0,813(96,5) 0,192 (90,6) 0,794 (96,6) 0 (90,0) 0,257 (90,1)
mfeat-karhunen5 0,622 (91,6) 0,167 (90,5) 0,730(95,7) 0,213 (90,1) 0,229 (90,2)
mfeat-karhunen6 0,684 (93,8) 0,255 (90,9) 0,790(96,5) 0,224 (90,2) 0,232 (90,2)
mfeat-karhunen7 0,864(97,7) 0,532 (93,2) 0,849 (97,5) 0,213 (90,1) 0,257 (90,4)
mfeat-karhunen8 0,407 (78,5) 0,030 (90,1) 0,713(95,4) 0 (90,0) 0,213 (90,0)
mfeat-karhunen9 0,752 (95,4) 0,315 (91,2) 0,770(96,2) 0,213 (90,1) 0,220 (90,1)
mfeat-zernike0 0,697 (93,5) 0 (90,0) 0,944(99,0) 0 (90,0) 0,637 (94,4)
mfeat-zernike1 0,663 (92,7) 0 (90,0) 0,908(98,4) 0 (90,0) 0,686 (95,0)
mfeat-zernike2 0,679 (93,5) 0 (90,0) 0,903(98,3) 0 (90,0) 0,512 (93,0)
mfeat-zernike3 0,365 (77,3) 0,017 (90,0) 0,674(91,8) 0,213 (90,1) 0,617 (94,2)
mfeat-zernike4 0,461 (84,2) 0 (90,0) 0,908(98,3) 0 (90,0) 0,653 (94,6)
mfeat-zernike5 0,322 (72,4) 0,013 (90,0) 0,721(94,1) 0,213 (90,1) 0,535 (93,2)
mfeat-zernike6 0,413 (79,7) 0,068 (90,2) 0,551(86,3) -0,036 (86,4) 0,321 (87,4)
mfeat-zernike7 0,796 (96,5) 0,013 (90,0) 0,925(98,7) 0,213 (90,1) 0,647 (94,6)
mfeat-zernike8 0,548 (87,3) 0 (90,0) 0,908(98,4) 0 (90,0) 0,598 (93,9)
mfeat-zernike9 0,455 (83,5) 0,026 (90,1) 0,578(87,5) -0,045 (86,6) 0,337 (87,6)
mfeat-morph0 0,698 (91,6) 0,136 (90,4) 0,682 (91,6) 0,765(94,5) 0,764 (94,5)
mfeat-morph1 0,304 (56,5) 0 (90,0) 0,345 (65,2) 0,375 (82,2) 0,395(71,3)
mfeat-morph2 0,291 (54,0) 0 (90,0) 0,400 (71,9) 0,457(81,2) 0,407 (72,9)
mfeat-morph3 0,335(63,5) 0,030 (90,1) 0,326 (63,0) 0,298 (71,5) 0,328 (63,2)
mfeat-morph4 0,294 (56,8) 0 (90,0) 0,432 (75,4) 0,443(87,2) 0,430 (75,3)
mfeat-morph5 0,378 (67,4) 0,013 (90,0) 0,468 (78,6) 0,388 (86,5) 0,468(78,7)
mfeat-morph6 0,637(88,7) 0,057 (90,1) 0,397 (71,7) 0,398 (75,6) 0,416 (74,0)
mfeat-morph7 0,398 (70,0) 0,026 (90,1) 0,524 (82,8) 0,505 (88,0) 0,540(84,0)
mfeat-morph8 0,943(98,9) 0,013 (90,0) 0,682 (91,6) 0,666 (91,7) 0,645 (89,9)
mfeat-morph9 0,456(76,7) 0,013 (90,0) 0,389 (70,9) 0,395 (74,1) 0,398 (71,9)
glass1 0,403 (66,2) 0,896(95,4) 0,465 (67,0) 0,484 (77,7) 0,509 (77,8)
glass2 0,229 (56,5) 0,880(94,4) 0,212 (49,7) 0,322 (64,8) 0,365 (65,5)
glass3 0,064 (69,0) 0,908(98,6) 0,179 (73,7) 0,145 (92,1) 0,091 (92,6)
glass5 0,498 (90,9) 0,465 (96,6) 0,964(96,1) 0,307 (94,1) 0,823 (94,4)
glass7 0,813 (95,0) 0,703 (95,4) 0,308 (67,2) 0,877(96,4) 0,749 (93,1)

Table A.7: Matthews correlation coefficient (MCC) obtainedon all datasets for all one-class classifiers;
accuracy rate is indicated in parenthesis. Best MCC resultsare indicated in bold face. *bcw refers to the
breast cancer wisconsindataset.

Appendix B. Multi-normality test results

Detailed results for the Mardia’s multinormality test are given in Table B.8. The
hypothesis of multinormality is accepted (A) only if both the absolute value of the sta-
tistical measure for Mardia’s skewness test (Ms) and Mardia’s kurtosis test (Mk) are
smaller than their respective critical values (CVs and CVk). Otherwise, the hypothesis
is rejected (R). We have used the publicly available implementation of A. Trujillo-Ortiz
and R. Hernandez-Walls [88].

29

Dataset Gauss OCRF M Hs Hk Ms CVs Mk CVk
iris versicolour 0.903 0.579 A A A 23.70 31.41 -1.03 1.64
iris virginica 0.813 0.614 A A A 24.73 31.41 -0.34 1.64
iris setosa 0.921 0.722 A A A 24.22 31.41 0.81 1.64
bw benign 0.902 0.919 R R R 17792 195.97 262.98 1.64
bw malignant 0.179 0.629 R R A 379.05 195.97 0.19 1.64
ionospheregood 0.781 0.683 - - - - 7337.70 - 1.64
ionospherebad -0.410 0.169 - - - - 7337.70 - 1.64
musk0 0.264 0.071 R R R 7427800 778270 759.52 1.64
musk1 0.818 0.306 R R R 2510300 778270 400.30 1.64
sonarmines 0.342 0.048 R R R 46219 38274 11.72 1.64
sonarrocks 0.120 0.179 R R R 42422 38274 4.29 1.64
diabetespositive 0.147 0.139 R R R 834.50 146.57 16.28 1.64
diabetesnegative -0.046 0.241 R R R 2036.70 146.57 35.90 1.64
pendigits0 0.970 0.976 R R R 35883 883.57 276.09 1.64
pendigits1 0.652 0.585 R R R 25181 883.57 145.08 1.64
pendigits2 0.957 0.835 R R R 29982 883.57 181.53 1.64
pendigits3 0.969 0.918 R R R 93759 883.57 501.62 1.64
pendigits4 0.969 0.961 - - - - 883.57 - 1.64
pendigits5 0.880 0.756 R R R 9777 883.57 47.19 1.64
pendigits6 0.970 0.985 R R R 79284 883.57 423.84 1.64
pendigits7 0.887 0.887 R R R 16781 883.57 72.32 1.64
pendigits8 0.716 0.634 R R R 15720 883.57 71.33 1.64
pendigits9 0.577 0.577 R R R 22974 883.57 117.02 1.64
optdigits0 0.954 0.776 - - - - 46259 - 1.64
optdigits1 0.937 0.147 - - - - 46259 - 1.64
optdigits2 0.953 0.143 - - - - 46259 - 1.64
optdigits3 0.914 0.121 - - - - 46259 - 1.64
optdigits4 0.905 0.077 - - - - 46259 - 1.64
optdigits5 0.954 0.041 - - - - 46259 - 1.64
optdigits6 0.956 0.410 - - - - 46259 - 1.64
optdigits7 0.933 0.264 - - - - 46259 - 1.64
optdigits8 0.719 0.043 - - - - 46259 - 1.64
optdigits9 0.860 0.077 - - - - 46259 - 1.64
mfeat factors0 0.737 0.844 R A R 1182300 1706100 -197.80 1.64
mfeat factors1 0.712 0.873 R A R 1294000 1706100 -181.54 1.64
mfeat factors2 0.740 0.879 R A R 1307400 1706100 -174.76 1.64
mfeat factors3 0.695 0.887 R A R 1274800 1706100 -190.40 1.64
mfeat factors4 0.743 0.884 R A R 1292000 1706100 -182.07 1.64
mfeat factors5 0.738 0.843 R A R 1403200 1706100 -122.57 1.64
mfeat factors6 0.770 0.910 R A R 1261500 1706100 -203.41 1.64
mfeat factors7 0.841 0.879 R A R 1322600 1706100 -172.74 1.64
mfeat factors8 0.647 0.613 R A R 1313900 1706100 -172.14 1.64

Mardia’s results continued on next page

30

Dataset Gauss OCRF M Hs Hk Ms CVs Mk CVk
mfeat factors9 0.751 0.866 R A R 1259600 1706100 -199.69 1.64
mfeatkarhunen0 0.784 0.807 R R R 60984 46259 21.57 1.64
mfeatkarhunen1 0.765 0.750 R R R 62413 46259 23.83 1.64
mfeatkarhunen2 0.776 0.755 R R R 59144 46259 17.76 1.64
mfeatkarhunen3 0.759 0.703 R R R 63683 46259 23.30 1.64
mfeatkarhunen4 0.794 0.813 R R R 62594 46259 23.28 1.64
mfeatkarhunen5 0.730 0.622 R R R 56194 46259 12.32 1.64
mfeatkarhunen6 0.790 0.684 R R R 63072 46259 24.79 1.64
mfeatkarhunen7 0.849 0.864 R R R 70505 46259 38.11 1.64
mfeatkarhunen8 0.713 0.407 R R R 54754 46259 9.40 1.64
mfeatkarhunen9 0.770 0.752 R R R 59354 46259 18.11 1.64
mfeatzernike0 0.944 0.697 R R R 45559 18741 65.53 1.64
mfeatzernike1 0.908 0.663 R R R 52521 18741 81.09 1.64
mfeatzernike2 0.903 0.679 R R R 31692 18741 32.08 1.64
mfeatzernike3 0.674 0.365 R R R 39827 18741 54.49 1.64
mfeatzernike4 0.908 0.461 R R R 42016 18741 59.67 1.64
mfeatzernike5 0.721 0.322 R R R 33583 18741 36.38 1.64
mfeatzernike6 0.551 0.413 R R R 42811 18741 65.64 1.64
mfeatzernike7 0.925 0.796 R R R 34880 18741 42.32 1.64
mfeatzernike8 0.908 0.548 R R R 38553 18741 52.73 1.64
mfeatzernike9 0.578 0.455 R R R 45975 18741 71.96 1.64
mfeatmorph0 0.682 0.698 - - - - 74.47 - 1.64
mfeatmorph1 0.345 0.304 R R R 10122 74.47 218.95 1.64
mfeatmorph2 0.400 0.291 R R R 10030 74.47 201.90 1.64
mfeatmorph3 0.326 0.335 - - - - 74.47 - 1.64
mfeatmorph4 0.432 0.294 R R R 7960.40 74.47 168.16 1.64
mfeatmorph5 0.468 0.378 - - - - 74.47 - 1.64
mfeatmorph6 0.397 0.637 R R R 12871.00 74.47 300.58 1.64
mfeatmorph7 0.524 0.398 - - - - 74.47 - 1.64
mfeatmorph8 0.682 0.943 R R R 4434.20 74.47 90.45 1.64
mfeatmorph9 0.389 0.456 R R R 10504 74.47 248.09 1.64
glass1 0.465 0.403 R R R 1005.50 195.97 18.55 1.64
glass2 0.212 0.229 R R R 1397.60 195.97 28.80 1.64
glass3 0.179 0.064 R A R 143.56 195.97 -2.33 1.64
glass5 0.964 0.498 R A R 109.14 195.97 -3.25 1.64
glass7 0.308 0.813 R R R 314.42 195.97 2.74 1.64

Table B.8: Details for Mardia’s multivariate skewness and kurtosis statistical test, reported with the MCC
values of Gauss classifier and OCRF; M is the Mardia’s test result, Hs the result for the skewness test,
Hk for the kurtosis tests (the hypothesis of multi-normality is either rejected (R) or accepted (A)), Ms the
statistical value for Mardia’s skewness test, Mk the measure for Mardia’s kurtosis test, CVs the critical
value for the skewness test and CVk for the kurtosis test. Missing values are indicated with an hyphen;
they are related to computational issues due to singular variance-covariance matrix.

31

References

[1] M. Moya, D. Hush, Network constraints and multi-objective optimization for one-
class classification, Neural Networks 9 (3) (1996) 463–474.

[2] M. Koppel, J. Schler, Authorship verification as a one-class classification problem,
in: International Conference on Machine Learning, ACM, 2004, p. 62.

[3] K. Hempstalk, E. Frank, I. Witten, One-class classification by combining density
and class probability estimation, Machine Learning and Knowledge Discovery in
Databases (2008) 505–519.

[4] A. Brew, M. Grimaldi, P. Cunningham, An evaluation of one-class classification
techniques for speaker verification, Artificial Intelligence Review 27 (4) (2007)
295–307.

[5] O. Mazhelis, One-class classifiers: A review and analysis of suitability in the con-
text of mobile-masquerader detection, South African Computer Journal (SACJ),
ARIMA & SACJ Joint Special Issue on Advances in End-User Data-Mining Tech-
niques 36 (2006) 29–48.

[6] W. Fan, M. Miller, S. Stolfo, W. Lee, P. Chan, Using artificial anomalies to de-
tect unknown and known network intrusions, Knowledge and Information Systems
6 (5) (2004) 507–527.

[7] K. Wang, S. Stolfo, One-class training for masquerade detection, in: Workshop on
Data Mining for Computer Security, 2003, pp. 19–22.

[8] C. Desir, S. Bernard, C. Petitjean, L. Heutte, A random forest based approach for
one-class classification in medical imaging, 3rd MICCAI International Workshop
on Machine Learning in Medical Imaging (MLMI), Nice, France7588 (2012)
250–257.

[9] V. Hodge, J. Austin, A survey of outlier detection methodologies, Artificial Intel-
ligence Review 22 (2) (2004) 85–126.

[10] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection:A survey, ACM Com-
puting Surveys (CSUR) 41 (3) (2009) 1–58.

[11] R. Duda, P. Hart, Pattern classification and scene analysis, John Wiley and sons,
1973.

[12] D. Tax, R. Duin, Combining one-class classifiers., in: J. Kittler, F. Roli (Eds.),
Multiple Classifier Systems, Vol. 2096 of LNCS, Springer, 2001, pp. 299–308.

32

[13] S. Khan, M. Madden, A survey of recent trends in one classclassification, Artifi-
cial Intelligence and Cognitive Science (2010) 188–197.

[14] C. Desir, S. Bernard, C. Petitjean, L. Heutte, A new random forest method for one-
class classification, in: IAPR International Workshop on Statistical Techniques in
Pattern Recognition (SPR), Hiroshima, Japan, Vol. 7626 of LNCS, 2012, pp. 282–
290.

[15] L. Breiman, Random forests, Machine Learning Vol. 45 (1) (2001) 5–32.

[16] B. Ng, Survey of anomaly detection methods, Lawrence Livermore National Lab-
oratory. Livermore, CA, 2006.

[17] V. Chandola, A. Banerjee, V. Kumar, Outlier detection:A survey, ACM Comput-
ing Surveys (2009) 1–72.

[18] S. Marsland, Novelty detection in learning systems, Neural computing surveys 3
(2003) 157–195.

[19] M. Markou, S. Singh, Novelty detection: a review–part 1: statistical approaches,
Signal Processing 83 (12) (2003) 2481–2497.

[20] N. Abe, B. Zadrozny, J. Langford, Outlier detection by active learning, in: ACM
SIGKDD International Conference on Knowledge discovery and data mining,
2006, pp. 504–509.

[21] D. Tax, R. Duin, Outlier detection using classifier instability, LNCS (1998) 593–
601.

[22] A. Nairac, T. Corbett-Clark, R. Ripley, N. Townsend, L.Tarassenko, Choosing
an appropriate model for novelty detection, in: Artificial Neural Networks, Fifth
International Conference on (Conf. Publ. No. 440), IET, 1997, pp. 117–122.

[23] J. Toivola, M. Prada, J. Hollmén, Novelty detection inprojected spaces for struc-
tural health monitoring, Advances in Intelligent Data Analysis IX (2010) 208–219.

[24] L. Tarassenko, D. Clifton, P. Bannister, S. King, D. King, Novelty detection, En-
cyclopedia of Structural Health Monitoring.

[25] G. Cohen, H. Sax, A. Geissbuhler, Novelty Detection using One-class Parzen
Density Estimator. An Application to Surveillance of Nosocomial Infections, in:
EHealth Beyond the Horizon: Get It There: Proceedings of MIE2008 the XXIst
International Congress of the European Federation for Medical Informatics, Ios Pr
Inc, 2008, p. 21.

33

[26] L. Tarassenko, P. Hayton, N. Cerneaz, M. Brady, Noveltydetection for the identi-
fication of masses in mammograms, in: Fourth International Conference on Arti-
ficial Neural Networks, 1995, pp. 442–447.

[27] C. Bishop, Novelty detection and neural network validation, IEE Proceedings-
Vision, Image and Signal processing 141 (4) (1994) 217–222.

[28] R. Duin, On the choice of smoothing parameters for Parzen estimators of proba-
bility density functions, Computers, IEEE Transactions on100 (11) (1976) 1175–
1179.

[29] M. Kraaijveld, R. Duin, A criterion for the smoothing parameter for parzen-
estimators of probability density functions, Tech. rep., Delft University of Tech-
nology (1991).

[30] C. M. Bishop, Neural Networks for pattern recognition,Clarendon Press Oxford,
1995.

[31] T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning,
Springer Verlag, 2001.

[32] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete
data via the em algorithm, J. Royal Statisfical Society Vol. 39(1) (1977) pp. 1–38.

[33] S. Roberts, L. Tarassenko, A probabilistic resource allocating network for novelty
detection, Neural Computation 6 (2) (1994) 270–284.

[34] D. Tax, R. Duin, Support vector data description, Machine learning 54 (1) (2004)
45–66.

[35] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, Whenis ”nearest neighbor”
meaningful?, Database Theory-ICDT 99 (1999) 217–235.

[36] M. Yousef, N. Najami, W. Khalifa, A comparison study between one-class and
two-class machine learning for microrna target detection,Journal of Biomedical
Science and Engineering.

[37] F. Ratle, M. Kanevski, A. Terrettaz-Zufferey, P. Esseiva, O. Ribaux, A comparison
of one-class classifiers for novelty detection in forensic case data, Intelligent Data
Engineering and Automated Learning-IDEAL 2007 (2007) 67–76.

[38] M. Markou, S. Singh, Novelty detection: a review–part 2: Neural network based
approaches, Signal Processing 83 (12) (2003) 2499–2521.

34

[39] M. Desforges, P. Jacob, J. Cooper, Applications of probability density estimation
to the detection of abnormal conditions in engineering, Proceedings of the Institu-
tion of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science
212 (8) (1988) 687–703.

[40] N. Japkowicz, C. Myers, M. Gluck, A novelty detection approach to classification,
in: International Joint Conference on Artificial Intelligence, Vol. 14, 1995, pp.
518–523.

[41] V. Vapnik, Statistical Learning Theory, Wiley Interscience, 1998.

[42] B. Liu, Y. Xia, P. Yu, Clustering through decision tree construction, in: Proceed-
ings of the ninth international conference on Information and knowledge manage-
ment, ACM New York, NY, USA, 2000, pp. 20–29.

[43] C. Aggarwal, P. Yu, Outlier detection for high dimensional data, in: ACM SIG-
MOD International Conference on Management of Data, 2001, p. 46.

[44] B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, R. Williamson, Estimating
the support of a high-dimensional distribution, Neural computation 13 (7) (2001)
1443–1471.

[45] A. Shieh, D. Kamm, Ensembles of one class support vectormachines, Multiple
Classifier Systems (2009) 181–190.

[46] P. Evangelista, M. Embrechts, B. Szymanski, Taming thecurse of dimensional-
ity in kernels and novelty detection, Applied Soft Computing Technologies: The
Challenge of Complexity (2006) 425–438.

[47] T. Dietterich, Ensemble methods in machine learning.,in: J. Kittler, F. Roli (Eds.),
Multiple Classifier Systems, Vol. 1857 of LNCS, Springer, 2000, pp. 1–15.

[48] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley,
2004.

[49] R. Genuer, J. Poggi, C. Tuleau, Random forests: some methodological insights,
Arxiv preprint arXiv:0811.3619.

[50] G. Biau, Analysis of a random forests model, Arxiv preprint arXiv:1005.0208.

[51] M. Robnik-Sikonja, Improving random forests, MachineLearning: ECML 2004
(2004) 359–370.

[52] L. Kuncheva, J. Rodrı́guez, An experimental study on rotation forest ensembles,
Multiple Classifier Systems (2007) 459–468.

35

[53] S. Bernard, L. Heutte, S. Adam, Influence of hyperparameters on random forest
accuracy, Multiple Classifier Systems (2009) 171–180.

[54] L. Breiman, Bagging predictors, Machine Learning 26(2) (1996) 123–140.

[55] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomizedtrees, Machine Learning
63 (1) (2006) 3–42.

[56] S. Bernard, L. Heutte, S. Adam, Forest-rk: A new random forest induction method,
Advanced Intelligent Computing Theories and Applications. With Aspects of Ar-
tificial Intelligence (2008) 430–437.

[57] D. Tax, R. Duin, Uniform object generation for optimizing one-class classifiers,
The Journal of Machine Learning Research 2 (2002) 155–173.

[58] T. Ho, The random subspace method for constructing decision forests, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20 (8)(1998) 832–844.

[59] D. Tax, A. Ypma, R. Duin, Support vector data description applied to machine
vibration analysis, in: Proc. 5th Annual Conference of the Advanced School for
Computing and Imaging (Heijen, NL), 1999.

[60] C. Blake, C. Merz, UCI Repository of machine learning databases [http://www.
ics. uci. edu/˜ mlearn/MLRepository. html]. University ofCalifornia, Department
of Information and Computer Science 55.

[61] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, H. Nielsen, Assessing the accu-
racy of prediction algorithms for classification: an overview, Bioinformatics 16 (5)
(2000) 412–424.

[62] B. Matthews, Comparison of the predicted and observed secondary structure of t4
phage lysozyme, Biochimica et Biophysica Acta (BBA)-Protein Structure 405 (2)
(1975) 442–451.

[63] T. Hastie, R. Tibshirani, J. Friedman, J. Franklin, Theelements of statistical learn-
ing: data mining, inference and prediction, The Mathematical Intelligencer 27 (2)
(2005) 83–85.

[64] R. Kohavi, Wrappers for performance enhancement and oblivious decision graphs,
Tech. rep., Stanford University, Stanford, CA (1996).

[65] Z. Zheng, A benchmark for classifier learning, in: Proceedings of the Sixth Aus-
tralian Joint Conference on Artificial Intelligence, 1993,pp. 281–286.

36

[66] R. Duin, A note on comparing classifiers, Pattern Recognition Letters 17 (5)
(1996) 529–536.

[67] D. Hand, Classifier technology and the illusion of progress, Statistical Science
21 (1) (2006) 1–14.

[68] A. Jamain, D. J. Hand, Mining supervised classificationperformance studies: A
meta-analytic investigation, J. Classif. 25 (2008) 87–112.

[69] J. Demsar, Statistical comparisons of classifiers overmultiple data sets, The Jour-
nal of Machine Learning Research 7 (2006) 1–30.

[70] T. G. Dietterich, Approximate statistical tests for comparing supervised classifica-
tion learning algorithms, Neural Computation 10 (7) (1998)1895–1924.

[71] C. Nadeau, Y. Bengio, Inference for the generalizationerror, Machine Learning
52 (3) (2003) 239–281.

[72] P. Brazdil, C. Soares, A comparison of ranking methods for classification algo-
rithm selection, Machine Learning: ECML 2000 (2000) 63–75.

[73] J. Menke, T. Martinez, Using permutations instead of student’s t distribution for
p-values in paired-difference algorithm comparisons, in:IEEE International Joint
Conference on Neural Networks, Vol. 2, 2004, pp. 1331–1335.

[74] R. Banfield, L. Hall, K. Bowyer, W. Kegelmeyer, A comparison of decision tree
ensemble creation techniques, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 29 (1) (2007) 173–180.

[75] S. Fisher, Statistical methods and scientific inference, Vol. 1959, Oliver and Boyd,
1959.

[76] M. Friedman, The use of ranks to avoid the assumption of normality implicit in
the analysis of variance, Journal of the American Statistical Association 32 (200)
(1937) 675–701.

[77] M. Friedman, A comparison of alternative tests of significance for the problem of
m rankings, The Annals of Mathematical Statistics 11 (1) (1940) 86–92.

[78] P. Nemenyi, Distribution-free multiple comparisons,Ph.D. thesis, Princeton Uni-
versity (1963).

[79] R. Iman, J. Davenport, Approximations of the critical region of the friedman statis-
tic, Tech. rep., Sandia Labs., Albuquerque, NM & Texas Tech Univ., Lubbock
(USA) (1979).

37

[80] O. Dunn, Multiple comparisons among means, Journal of the American Statistical
Association (1961) 52–64.

[81] R. Duin, PRTools version 3.0: A matlab toolbox for pattern recognition, in: Proc.
of SPIE, Citeseer, 2000.

[82] D. Tax, DDtools, the Data Description Toolbox for Matlab, version 1.7.3 (Dec
2009).

[83] L. M. Manevitz, M. Yousef, One-class svms for document classification, J. Mach.
Learn. Res. 2 (2002) 139–154.

[84] K. Mardia, Applications of some measures of multivariate skewness and kurto-
sis in testing normality and robustness studies, Sankhya: The Indian Journal of
Statistics, Series B (1974) 115–128.

[85] A. Von Eye, G. Bogat, Testing the assumption of multivariate normality, Psychol-
ogy Science 46 (2004) 243–258.

[86] M. Verleysen, et al., Learning high-dimensional data,Nato Science Series Sub
Series III Computer And Systems Sciences 186 (2003) 141–162.

[87] D. Donoho, Aide-memoire. High-dimensional data analysis: The curses and bless-
ings of dimensionality, American Math. Society Lecture - Math Challenges of the
21st Century.

[88] A. Trujillo-Ortiz, R. Hernandez-Walls., Mskekur: Mardia’s multivariate skewness
and kurtosis coefficients and its hypotheses testing. A MATLAB file (2003),
http://www.mathworks.com/matlabcentral/fileexchange/3519.

38

