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Abstract Uniaxial tensile and relaxation tests were carried out on annulus

fibrosus samples carved out in the circumferential direction. Images were shot

perpendicularly to the loading direction. Digital image correlation techniques

accurately measured the evolution of full displacement fields in both transverse

directions: plane of fibres and plane of lamellae. In the fibre plane, strains were

governed by the reorientation of fibres along the loading direction. This im-

plies strong transverse shrinkage with quasi-linear behaviour. Conversely, a

wide range of behaviour was observed in the lamella plane: from shrinkage

to swelling. Strong non-linear evolutions were generally obtained. The strain
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field in the lamella plane generally presented a central strip section with more

pronounced swelling. Our physical interpretation relies on the porous nature of

annulus tissue and its anisotropic stiffness. Indeed, the liquid overpressure gen-

erated inside the sample by the strong shrinkage in the fibre plane discharges in

the perpendicular direction since rigidity is lower in the lamella plane. Regard-

ing the strain field measured in the lamella plane, this interpretation agrees

with (a) symmetric strain distribution with respect to the longitudinal axis

of samples, (b) the reversal in behaviour from shrinkage to swelling, (c) the

decrease in strain during relaxation tests associated with outward flows. The

variety of transverse behaviours observed experimentally could result from

uncertainties regarding the initial reference state of tissue samples. Since the

mechanical behaviour is highly non-linear, experimental results underline that

a slight uncertainty concerning the pre-stress applied to samples can lead to

wide variability in the mechanical properties identified.

Keywords intervertebral disc · annulus fibrosus · mechanical behaviour ·

poro-mechanics · digital image correlation

1 Introduction

While transmitting the physiological loads along the spine, the inter-vertebral

disc (IVD) is subjected to large, multi-directional strains [Costi et al 2007,

Woods et al 2010]. The role played by the annulus fibrosus (AF) tissue is to

hold the nucleus pulposus (NP) as it undergoes overpressure. Its high me-

chanical stiffness is ensured by its particular micro-structure, i.e., a woven
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oriented structure of collagen fibres that provides adaptability to multi-axial

stresses. Furthermore, collagen fibres are embedded in a highly hydrated ma-

trix. Its large liquid phase volume fraction (60− 70%) [Rannou et al 2000] fa-

cilitates the convective and diffusive solute transport of cell nutrients through

its structure. Fluid transport is crucial to disc viscoelastic behaviour and cell

nutrition processes [Gu et al 1999,Grunhagen et al 2006,Magnier et al 2009,

Malandrino et al 2011].

Many experimental studies have underlined the anisotropic and non-linear

mechanical behaviour of AF [Baldit et al 2012,Elliott and Setton 2001,Fujita et al 1997,

Guerin and Elliott 2007,Iatridis et al 2005,Klisch and Lotz 1999,Smith et al 2008,

Wagner and Lotz 2004]. These were mainly conducted in the framework of

uni-axial tensile tests, however few authors have experimentally investigated

bi-axial behaviour [Bass et al 2004,Bruehlmann et al 2004]. Various types of

modelling of AF mechanical behaviour have been proposed in the context of

fibre-reinforced theory. Thanks to their high degree of freedom number, these

models have been successfully employed to curvefit much experimental stress-

strain data in different configurations: tension or compression on axial, radial

or circumferential samples [Guerin and Elliott 2007,Klisch and Lotz 1999,Peng et al 2006,

Wagner and Lotz 2004]. Nevertheless, these descriptions fail to represent the

hysteresis observed under loading cycles [Ambard and Cherblanc 2009,Baldit et al 2012,

Iatridis et al 1997,Tower et al 2002] considered to be related to a viscous com-

ponent. Transverse strains were generally used to estimate apparent Poisson’s

ratio while their non-linearities were not really investigated.
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Indeed, IVD tissue can be assimilated to porous media where the liquid

phase flow plays a major role in macroscopic mechanical behaviour [Huang et al 2001,

Yao and Gu 2007]. This is classically described by a poro-elastic formula-

tion and can account for coupling effects between macroscopic mechanical

strains and the viscous flow through it [Ferguson et al 2004,Silva et al 2005,

Swider et al 2010,Yao and Gu 2007]. In this framework, the porous structure

is usually described as elastic behaviour unable to capture material non-

linearities. A rheological model able to represent both non-linear behaviour

and viscous hysteresis has been proposed by [Ambard and Cherblanc 2009].

By accurately representing unidirectional stress-strain curves under loading

cycles, this model emphasizes the dependence of the AF mechanical response

on liquid phase characteristics. In our view, an appropriate mechanistic model

of the IVD cannot avoid taking into account the coupling with the liquid phase.

When attempting to characterize the mechanical behaviour of soft biologi-

cal tissue, various experimental constraints appear. Indeed, physiological con-

ditions are generally required to preserve the physical properties of material.

Thus, samples must be immersed in a thermo-regulated bath during experi-

ments which precludes the use of classical strain measurement techniques. An

alternative is to rely on image analysis methods have the advantage of being

non-invasive. To compute displacement measurement, image analysis meth-

ods need a contrasted pattern to follow markers throughout mechanical test-

ing. In the literature, these tend to be glued markers [Bruehlmann et al 2004,

Holzapfel et al 2005,O’Connell et al 2012], pins inserted through tissue thick-



Title Suppressed Due to Excessive Length 5

ness [Bass et al 2004,Wagner and Lotz 2004], stained tissue using laser or chem-

ical baths [Huyghe and Jongeneelen 2012,Michalek et al 2010] or alternatively,

digital image correlation performed on natural texture [Guerin and Elliott 2006,

Guerin and Elliott 2007,O’Connell et al 2009] or black paint speckle-coated

samples [Han et al 2012]. Nevertheless, image analysis is based on surface dis-

placement, thus physical makers and glue on soft tissue may disturb surface be-

haviour and impact strain measures even if considered negligible. Less invasive

works have used grey scale thresholding [Elliott and Setton 2001,Tower et al 2002,

Michalek et al 2009] or cell nucleus to investigate micro-structural strains [Bruehlmann et al 2004].

In all cases, the number of markers ranges from 2 to 100 [Elliott and Setton 2001].

The present contribution therefore aims at analysing the mechanical be-

haviour of AF samples subjected to uni-axial tensile tests by investigating

transverse strain fields. They are computed using a digital image correlation

(DIC) method. To avoid any perturbation, the natural pattern of AF samples

is used to determine the transverse strain fields while the sample is immersed

in a thermo-regulated bath. The experimental results underline the anisotropic

nature of AF tissue emphasizing that its mechanical behaviour clearly differs

from classical poro-elastic description. Correlating the strain fields in both

transverse directions highlights coupling effects associated with fluid transfer.

Moreover, relaxation tests are used to estimate the hydraulic permeability.

This means that the AF is essentially a porous material justifying the intro-

duction of fluid flow characteristics when modelling its mechanical behaviour.
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2 Materials and Methods

2.1 Sample preparation

Lumbar discs were harvested from cadavers of domestic pigs (≈ 160 Kg) ob-

tained from a local slaughter house. The lumbar spine was excised and stored

in a −12◦C freezer. IVD were separated from the vertebral bodies by blunt

dissection. Then, posterior, lateral and anterior quadrants were separated from

each disc using a surgical knife. From each quadrant, one parallelepiped spec-

imen was carved out using surgical tools (scalpel, scissors) (Fig 1). Thus, all

specimens were excised in anatomical cut, parallel to the horizontal plane along

the circumferential direction eθ.

The circumferential length of each specimen, Lθθ, was limited using a surgi-

cal knife to approximately 10mm. Then, to be fixed to the testing device grips,

both specimen ends were glued onto aluminium cylinders using cyano-acrylate

adhesive (Fig. 1) [Ambard and Cherblanc 2009,Fujita et al 1997,Fujita et al 2000,

Michalek et al 2009,Michalek et al 2010,O’Connell et al 2012,Skaggs et al 1994].

Before testing, specimens were stored in physiological conditions, i.e., in a

0.15 mol.l−1 NaCl solution at T = 37oC. Finally, 19 parallelepiped porcine

samples (Lzz ×Lrr ×Lθθ = 3.78± 0.95× 3.67± 0.67× 9.77± 1.44 mm3) were

prepared.
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Fig. 1: Specimen extraction and sample

2.2 Mechanical testing

Mechanical tests were carried out ex situ in physiological conditions. The test-

ing device was composed of a texture analyser (LF-Plus, Lloyd Instruments)

equipped with a 50 N load cell. Two high resolution cameras (AVT Stingray,

16 bits, 1600× 1200 pixels) were positioned perpendicularly to the tensile di-

rection, eθ, to observe both transverse planes (Fig. 2). Prime lenses (Schneider-

Krevznach xenoplan 2.8/28 − 0901) set on cameras gave a spatial resolution

of 3.65µm/pix.

To control the thermo-chemical environment and avoid sample dehydration

during experiments, a transparent bath was designed and filled with physio-

logical solution. Two glass strips (L×W ×T = 50×10×1 mm3) were used as

windows to decrease optical distortions. The bath was connected to a thermo-

regulated flow circulation to control the temperature at T = 37oC and ensure

constant solution level.
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The objective was to perform uniaxial tensile tests. To respect physiological

solicitations, we imposed a circumferential strain of Emax = 10% which has

been reported to be the maximum observed strain during physiological motions

[Costi et al 2007,Shirazi-Adl 1989]. The experimental procedure carried out

with each sample relied on four steps. First of all, the specimen was subjected

to a preload of 0.05 N . Second, a conditioning test of 10 loading cycles was

performed. During this conditioning test, the maximum imposed strain of 12%

was slightly larger than the targeted strain for tensile testing. This aimed

at, on one hand, breaking the fibres damaged during the sample preparation

and, on the other hand, controlling the quality of sample ends gluing. Third,

the sample was retained left in the bath for one hour so as to reach poro-

mechanical equilibrium. This state was henceforth considered afterwards to

be as the reference state at zero strain. The tensile test was then performed. A

displacement of 1mm was imposed at a velocity of 0.01mm.s−1 corresponding

to a strain rate of 10−3 s−1. Finally, a relaxation test was carried out by holding

the sample at maximum strain for 1000 s. During tensile and relaxation tests,

digital images were shot every 4 s in both transverse directions, ez and er.

2.3 Image analysis method

The image analysis procedure was based on a Digital Image Correlation (DIC)

method. Academic software (KelKins) was used and a detailed description of

the method can be found in [Wattrisse et al 2001]. The principle is to deter-

mine the pixel counterpart of an undistorted image in a corresponding dis-
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Fig. 2: Tensile test principle

torted one. Therefore, it provides the local displacement field at each point of

an initial 0.18mm grid. Digital images were focused in the central part of the

samples to increase pixel accuracy and avoid side effects produced by the glue

bonds on the aluminium grips. This central part represented about 60% of the

total specimen area.

Finally, the strain tensor, E, is computed from the displacement field using

a centred finite-difference formulation of the Green-Lagrange definition:

E =
1

2

(

∇uT +∇u+∇uT
· ∇u

)

(1)

where u is the local displacement vector and T mean transposed matrix.

When using DIC methods, image contrasts are generally artificially in-

creased using black paint projected onto a white surface [Han et al 2012] or

grey scale thresholding [Guerin and Elliott 2006,Guerin and Elliott 2007]. This
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leads to highly contrasted images of randomly disposed pattern. In the case

of AF tissue, a black paint speckled preparation might have disturbed the

apparent surface behaviour so we preferred to rely on the weakly contrasted

nature of tissue. The use of a 16 bit camera was an alternative to numer-

ically increase the natural contrast. Furthermore, the moving windows were

widened to 0.18×0.18 mm2 to provide better, more discriminating correlation

indicators.

The optical path crossed 4 different environments (lens, air, glass, physio-

logical solution), thus inducing optical distortions and measurement discrep-

ancies. Moreover, due to the large strains observed locally (see next section),

keeping the initial image at zero strain as the reference image for correlation

computation did not ensure a systematic DIC algorithm convergence. The

alternative was to update the reference image at each time step. Therefore,

measurement errors were cumulated over the whole experiment, i.e., over the

25 images shot during the tensile test.

To estimate the overall strain discrepancies, an AF sample was used in

testing conditions inside the thermo-regulated bath. The principle was to cre-

ate rigid body motion by imposing a controlled displacement of the sample

and compare it to the displacement measured at each point by the DIC proce-

dure. Error amplitudes obtained in both planes and both directions are given

in Tab. 1.

Using a similar procedure, strain measurement errors due to out-of-plane

displacements were evaluated. In this case, the displacement imposed was per-
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Table 1: Estimation of strain errors resulting from optical distortions.

Elamella
rr Elamella

θθ
E

fibre

θθ
E

fibre
zz

Strain error amplitude [%] [−0.37 , 0.65] [−0.82 , 0.58] [−0.22 , 0.29] [−0.44 , 0.75]

pendicular to the field of view in order to quantify the errors resulting from

transverse strains that move the sample surface closer to or further from cam-

era lens. The maximum transverse shrinkage and swelling measured on AF

samples was used to impose the corresponding out-of-plane displacement. Over

the whole set of tests, the maximal error was estimated at less than 0.09%.

The various optical errors generate measurement uncertainties well de-

scribed by a randomly distributed noise. Therefore, a filtering process was

applied to displacement fields. It was based on the Savitsky-Golay algorithm

using a quadratic function and a 5× 5 points centred window. The final num-

ber of measurement points was 303± 49 in the fibre plane and 309± 61 in the

lamella plane.

3 Experimental results

This work focuses on transverse mechanical behaviour in both directions, ra-

dial er and vertical ez. From the 19 AF samples under investigation, complete

strain fields are presented in 1 case and evolutions of average values are given

for 4 cases that cover the whole range of observed behaviours. The fibre plane

of fibres is given by circumferential and vertical directions, (eθ, ez), while the

lamella plane of refers to circumferential and radial directions, (eθ, er).
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3.1 Local strain fields

Using the image analysis procedure detailed in the previous section, an exam-

ple of the strain fields identified in both planes at the end of tensile testing

is given in Figs. 3 and 4. Strain fields computed from DIC measurements are

superimposed over sample images. The white grid gives an indication of the

overall deformation.

Note that circumferential strain fields (Fig. 3) are significantly heteroge-

neous and do not show any clear tendency. Local strain values range from 0%

to 20% even though the macroscopic imposed strain is 10%. This means that

the average value is consistent while strong localization effects take place. Sim-

ilar conclusions could be drawn for the whole set of experimental tests with

local circumferential strain increasing to 30% in some cases.

For the same experimental test presented above, Fig. 4 shows transverse

behaviours in both planes, i.e., vertical strain, Ezz, in the fibre plane and

radial strain, Err, in the lamella plane. In the fibre plane, the strain field shows

heterogeneous shrinkage similar in pattern and amplitude to that observed in

the circumferential direction (Fig. 3a). These localization effects are thought

to be associated with the complex, anisotropic micro-structure of AF tissue.

The description of such effects is not addressed here since our objective is to

analyse macroscopic homogenized behaviour.

Unlike previous strain fields, transverse behaviour in the lamella plane

reveals some macroscopic features that are not associated with the micro-

structure. The strain field given in Fig. 4b clearly reveals a vertical strip with
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(a) (b)

Fig. 3: Circumferential strain fields in the fibre plane and the lamella plane

for a macroscopic circumferential strain imposed at 10%

(a) (b)

Fig. 4: Vertical and radial strain fields for a macroscopic circumferential strain

imposed at 10%
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marked swelling in the central part. This swelling decreases monotonously

to a slight shrinkage on both sides. This strain field is roughly symmetric

with respect to the sample longitudinal axis. Strain values up to 42% can be

observed locally.

Of the 19 samples under investigation, 12 presented such behaviour. The

average value may have differed significantly from one test to another, but

the overall shape of radial strain fields showed similar features, i.e., central

part with a larger swelling or lower shrinkage and symmetric decreasing strain

values towards each side of the sample. This issue will be discussed and inter-

preted in the last section.

3.2 Evolution of average strain

However, the large amount of data provided by DIC analysis can also be a

source of difficulties. The strong heterogeneities observed in strain fields high-

light localization effects linked to the complex micro-structure of AF tissue.

Since our objective concerned macroscopic homogenized behaviour, average

strain values were more suitable. Knowing that the measurement windows

covers about 60% of the complete sample area, effective macroscopic strains

could be slightly different from the average values calculated here. This could

lead to some discrepancies in assessing macroscopic strain values.

The evolution of transverse strains, Ezz in the fibre plane and Err in the

lamella plane, is given as function of the circumferential imposed strain Eimp
θθ ,

in Fig. 5. The 4 cases presented here were chosen to give an overview of the
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variety of behaviours that can be experimentally observed. The extreme cases

represented in Figs. 5a and 5d give both limits for all experiments, while

Figs. 5b and 5c show intermediate cases. Indeed, the 4 cases presented show

specific features that are observed in the whole set of tests.

Even if the meaning of Poisson’s ratio is questionable when dealing with

non-linear material, an apparent value can be defined as:

νθz = −
Ezz

Eθθ

νθr = −
Err

Eθθ

(2)

In case A (Fig. 5a), transverse shrinkage is observed in both planes. At

the start of testing, both strain evolutions coincide. The slope at the origin of

both curves is about −0.5 (νθz ≈ νθr ≈ 0.5) corresponding to the behaviour of

an isotropic homogeneous incompressible material. This is thought to refer to

the response of the background matrix when the fibres have not yet stretched

and do not participate in the mechanical behaviour. Gradually, as the fibres

tighten and play a predominant role in macroscopic mechanical behaviour, the

curve associated with vertical strain Ezz bends towards greater values while

the radial strain Err tends to a constant value around 2%.

In case B (Fig. 5b), the bending of both curves is more pronounced and

occurs early. It leads to a positive slope in the evolution of radial strain Err

at the end of tensile test. Indeed, a reversal from shrinkage to swelling is

observed in the lamella plane. This reversal is far more apparent in case C

(Fig. 5c) where the final radial strain is positive. Finally, in case D (Fig. 5d),

the swelling previously observed in the lamella plane occurs from the start of

the experiment reaching a positive strain value of 2.5% at the end.
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Fig. 5: Vertical and radial transverse strains as functions of the circumferential

strain measured in 4 cases

These 4 cases highlight the fact that transverse behaviour in the fibre plane

was quite similar for all 19 samples. The maximum average strain measured

might have differed slightly from one sample to another, but the global evolu-



Title Suppressed Due to Excessive Length 17

tion was weakly non-linear and exhibited strong transverse shrinkage. Indeed,

apparent Poisson’s ratio was around 1 (0.8 ≤ νθz ≤ 1.1) which is outside the

classical range valid for homogeneous isotropic material. Conversely, a wide

range of transverse behaviour could be obtained in the lamella plane show-

ing strong non-linear evolutions. In particular, the reversal from shrinkage to

swelling was unusual. A key feature is that this reversal usually came with a

bending of the vertical strain curve towards greater shrinkage.

3.3 Relaxation tests

Results from relaxation tests are synthesized in Figs 6 and 7. The first part

(t < 100 s) corresponds to the tensile test already presented above while

the second part (100 s < t < 1000 s) represents the relaxation phase per

se. The time to equilibrium is fairly similar in each case while equilibrium is

reached earlier in stress curves than in strain curves. It is noteworthy that,

whatever the radial strain value obtained at the end of tensile testing (swelling

or shrinkage), the relaxation phase is systematically associated with a decrease

in radial strain.

Since vertical strain (Ezz in Fig 6) remains nearly constant during relax-

ation phase, the decrease in radial strain leads to a global shrinkage. In the

framework of poro-mechanics, this shrinkage necessarily results from a water

loss and its kinetics is governed by tissue permeability. It means that an over-

pressure diffuses from sample to surrounding bath. The background matrix is

well represented by isotropic poro-elastic behaviour. Thus, the local displace-
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Fig. 6: a) Radial and b) vertical transverse strains versus time during tensile

and relaxation tests
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Fig. 7: Circumferential stress versus time during tensile and relaxation tests

ment vector u is described by the following equation [Coussy 2004]:

∂u

∂t
+ EK∆u = 0 (3)

where E is the Young modulus of the background matrix and K its hydraulic

permeability.

Neglecting the influence of glued ends on transverse liquid flows, the prob-

lem reduces to a bi-dimensional plane strain case. Initial condition is given by

an homogeneous over-pressure and boundary conditions consist in free stress

and pressure on each side while the vertical strain Ezz is imposed to remain

constant. Analytical solution of the evolution of radial strain Err is given by

[Carslaw and Jaeger 1959]:

Err = E∞

rr +
(

E0

rr − E∞

rr

)

×

∞
∑

i=0

2
(

i+ 1

2

)2
π2

exp

[

−
1

(

i+ 1

2

)2
π2

t

τ

]

(4)
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where E0

rr and E∞

rr are the radial strain at beginning and end of relaxation

test. The characteristic time τ is defined by:

τ =
1

4EK
(

1

L2
rr

+ 1

L2
zz

) (5)

where Lrr and Lzz are the dimensions of the sample cross-section. The interest

of such approach is to identify the characteristic time of relaxation which does

not depend on initial conditions.

From the literature [Best et al 1994,Drost et al 1995,Iatridis et al 1998],

the compressive modulus of the background matrix was evaluated to E =

0.53 MPa. Using an inverse procedure based on Levenberg-Marquadt algo-

rithm, the hydraulic permeability K is determined from Eq. 4. Comparison

between experimental and numerical relaxation tests are given in Fig. 8. Av-

eraged over the 19 samples, the hydraulic permeability determined from this

approach is K = 3.29× 10−15 ± 1.66× 10−15 m4.N−1.s−1.

4 Discussion

Uniaxial tensile testing is a classical experimental technique to characterize

the mechanical behaviour of biological tissue. When dealing with complex

anisotropic material such as biological tissue, the stress/strain curve does not

bring out sufficient data to identify material properties. Results can be en-

hanced by analysing transverse behaviour. With the potential offered by image

analysis method, many difficulties can be overcome, especially those associated

with short sample size and immersion in a physiological solution. Indeed, Dig-
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Fig. 8: Comparison between experimental and numerical radial strain relax-

ation versus time

ital Image Correlation techniques are capable of extracting a large amount of

data (about 300 measurement points simultaneously in both planes) and pro-

viding bi-dimensional strain fields. The large number of measurement points

makes it possible to focus on the central area of samples and avoid the side

effects associated with irregular geometrical boundaries. Despite the weakly

contrasted aspect of the natural AF pattern, the correlation algorithms con-

verge efficiently. Taking optical distortions into account, strain absolute errors

were estimated to be lower than 0.8% locally. When compared to the 10%

circumferential strain imposed and to the [−22%, 42%] strain range measured,

DIC discrepancies cannot significantly influence the results nor hide partial in-
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formation. It therefore provides an efficient, accurate, non-invasive, low-priced

and easy to implement alternative to standard measurement methods.

The millimetric scale of strain fields (measurement points distributed over

a 0.18 mm grid) leads to heterogeneous displacement fields. Localization ef-

fects occur with a local maximum up to 30% while the global strain imposed

is 10%. The radial strain field (Fig. 4b) clearly gives prominence to a central

part with a larger swelling than on both sides, i.e., strain distribution is sym-

metric with respect to the circumferential axis. This particular feature was

observed in 12 of the 19 samples, specifically with samples showing behaviours

between cases B and D (Figs 5b and 5d). These 12 cases are characterized by

the fact that the derivative ∂Err

∂Eθθ

is positive at the end of test representing a

macroscopic tendency to swell (Fig. 5). In our view, this swelling behaviour

cannot be attributed to any heterogeneities in tissue properties. For instance,

the variation of fibre angle from external to internal AF is monotonous and

cannot lead to the strain fields presented here.

This particular behaviour directly results from the porous nature of such

biological tissue and its anisotropic stiffness. The collagen micro-structure

provides high rigidities in the plane of fibres in both directions eθ and ez

while the background matrix leads to a lower rigidity in the radial direction

[Elliott and Setton 2001,Holzapfel et al 2005]. The strong transverse shrink-

age systematically observed in the fibre plane generates liquid over-pressure

inside the samples. This over-pressure preferentially discharges in the radial

direction where rigidity is lower, making the sample swell in the lamella plane.
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Moreover, this liquid pressure also induces outward liquid flows directed to-

wards the sample free boundaries so that the pressure gradient must be sym-

metric and perpendicular to the sample sides. This leads to greater liquid

pressure in the central part of samples which agrees with the distributions of

radial strain experimentally observed (Fig. 4b).

At the beginning of tensile tests (Fig. 5a), isotropic homogeneous behaviour

was generally recovered, similar to the response of a quasi-incompressible ma-

terial. In the framework of saturated porous media, this corresponds to an

undrained test where the characteristic time of pressure diffusion is much

longer than the test duration [Coussy 2004]. Then, as the fibres uncrimp and

tighten, transverse behaviours differentiate from each other. In the fibre plane,

strain non-linearities were low and were roughly similar over the whole set of

experiments. Indeed, transverse behaviour is mainly governed by the reori-

entation of fibres along the loading direction [Ambard and Cherblanc 2009].

However, in the lamella plane, non-linearities were much more pronounced

where a reversal from shrinkage to swelling was observed in over half of the

tests. The point of reversal corresponds to the apparition of the central strip

observed in the radial strain field (Fig. 4b). This defines a transition zone from

isotropic behaviour mainly governed by the background matrix to anisotropic

behaviour controlled by the fibre network.

Poro-mechanical coupling effects were also underlined by relaxations tests

(Fig. 7). Whatever the radial strain value at the end of tensile testing, ra-

dial strain decreased during relaxation phase. This observation agrees with
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the assertion that the liquid over-pressure diffuses towards the surrounding

bath. Indeed, the greater the radial swelling the larger the strain relaxation.

Thus, characteristic time of relaxation is governed by flow characteristic and

this feature was used to estimate the tissue hydraulic permeability. The value

obtained K = 3.29× 10−15 m4.N−1.s−1 is in agreement with previous results

[Gu et al 1999,Yao et al 2002]. While being perfectible, this method is easy to

implement. Further development will require a numerical model to account for

the anisotropic micro-structure of AF tissue.

It must be recalled that these poro-mechanical couplings are transitory

processes. The strain rate of 10−3 s−1 has a strong influence on experimental

results. For instance in the literature, experimental tests carried out with AF

tissue have been performed at strain rates of 10−4 s−1 [Acaroglu et al 1995,

Bruehlmann et al 2004,Guerin and Elliott 2006,O’Connell et al 2012,Skaggs et al 1994,

Wagner and Lotz 2004], 10−3 s−1 [Han et al 2012], 2.5×10−3 s−1 [Smith et al 2008],

3×10−3 s−1 [Tower et al 2002], 5×10−3 s−1 [Fujita et al 1997], 25×10−3 s−1

[Iatridis et al 2005]. In slower experimental tests (Ėθθ = 10−4 s−1), the load-

ing phase runs over 1000 s. While the circumferential stress seems to reach

equilibrium before t = 1000 s (Fig. 7), this is not the case for radial strain

(Fig. 6a). Moreover, the characteristic time of relaxation depends on the square

of the cross-section dimensions (Eq. 4). This means that with larger samples,

as is sometimes seen in the literature, the time required for equilibrium can

be much greater. Therefore, a fair estimation of Poisson’s ratios should rely
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on a careful analysis of transverse strains to distinguish between apparent and

intrinsic values.

When dealing with non-linear material like AF tissue, mechanical charac-

terization tests are very sensitive to initial conditions. For instance, the ex-

ponential strain potential usually developed to describe mechanical behaviour

[Wagner and Lotz 2004,Bass et al 2004,Peng et al 2006,Guerin and Elliott 2007,

O’Connell et al 2012] gives a prevailing role to the initial reference state. Any

slight uncertainty concerning this initial state will have a significant impact on

the material properties identified with experimental results [Sanchez et al 2012].

In this work, meticulous attention was paid to maintaining the initial condi-

tions and imposing the same 0.05 N preload. Nevertheless, variability in sam-

ple dimensions (Lzz×Lrr×Lθθ = 3.78±0.95×3.67±0.67×9.77±1.44 mm3)

led to non negligible differences regarding initial pre-stress. Bearing this in

mind, the various curves presented can be assimilated to unique behaviour

with different initial conditions. Indeed, case A (Fig. 5a) shows the response

of an AF sample to weak pre-stress while case D (Fig. 5d) is associated to

a stronger one. The two other cases B and C (Figs. 5b and 5c) are inter-

mediate situations. This means that the uncertainties associated with initial

conditions can be greater than those resulting from intrinsic inter-human vari-

ability [Tower et al 2002]. The average transverse strain in the lamella plane

could be a fair indication of internal stress and should help to refine the defi-

nition of the initial state by proposing more discriminating criteria. Typically,
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the point where a reversal from shrinkage to swelling is observed might be

used as the initial state to start a classical tensile test.

Using transverse strain fields besides the usual stress/strain curve should

lead to enhancing the identification procedures based on numerical modelling.

In particular, it brings out the transient behaviour associated with the porous

nature. The work in progress concerns the development of an inverse procedure

to identify both the mechanical and hydraulic properties of AF tissue using a

single uniaxial tensile test.
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