
HAL Id: hal-00862645
https://hal.science/hal-00862645

Submitted on 30 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-dimensional sparse structured signal
approximation using split bregman iterations

Yoann Isaac, Quentin Barthélemy, Cedric Gouy-Pailler, Jamal Atif, Michèle
Sebag

To cite this version:
Yoann Isaac, Quentin Barthélemy, Cedric Gouy-Pailler, Jamal Atif, Michèle Sebag. Multi-dimensional
sparse structured signal approximation using split bregman iterations. ICASSP 2013 - 38th IEEE
International Conference on Acoustics, Speech and Signal Processing, May 2013, Vancouver, Canada.
pp.3826-3830. �hal-00862645�

https://hal.science/hal-00862645
https://hal.archives-ouvertes.fr


MULTI-DIMENSIONAL SPARSE STRUCTURED SIGNAL APPROXIMATION

USING SPLIT BREGMAN ITERATIONS

Yoann Isaac1,2, Quentin Barthélemy1, Jamal Atif2, Cédric Gouy-Pailler1, Michèle Sebag2
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ABSTRACT

The paper focuses on the sparse approximation of signals

using overcomplete representations, such that it preserves the

(prior) structure of multi-dimensional signals. The underlying

optimization problem is tackled using a multi-dimensional

extension of the split Bregman optimization approach. An

extensive empirical evaluation shows how the proposed ap-

proach compares to the state of the art depending on the

signal features.

Index Terms— Sparse approximation, Regularization,

Fused-LASSO, Split Bregman, Multidimensional signals

1. INTRODUCTION

Dictionary-based representations proceed by approximating

a signal via a linear combination of dictionary elements, re-

ferred to as atoms. Sparse dictionary-based representations,

where each signal involves but a few atoms, have been thor-

oughly investigated for 1D and 2D signals for their good prop-

erties, as they enable robust transmission (compressed sens-

ing [1]) or image in-painting [2]. The dictionary is either

given, based on the domain knowledge, or learned from the

signals [3].

The so-called sparse approximation algorithm aims at

finding a sparse approximate representation of the considered

signals using this dictionary, by minimizing a weighted sum

of the approximation loss and the representation sparsity (see

[4] for a survey). When available, prior knowledge about

the application domain can also be used to guide the search

toward “plausible” decompositions.

This paper focuses on sparse approximation enforcing a

structured decomposition property, defined as follows. Let

the signals be structured (e.g. being recorded in consecutive

time steps); the structured decomposition property then re-

quires that the signal structure is preserved in the dictionary-

based representation (e.g. the atoms involved in the approx-

imation of consecutive signals have “close” weights). The

structured decomposition property is enforced through adding

a total variation (TV) penalty to the minimization objective.

In the 1D case, the minimization of the above overall ob-

jective can be tackled using the fused-LASSO approach first

introduced in [5]. In the case of multi-dimensional signals1

however, the minimization problem presents additional dif-

ficulties. The first contribution of the paper is to show how

this problem can be handled efficiently, by extending the (1D)

split Bregman fused-LASSO solver presented in [6], to the

multi-dimensional case. The second contribution is a com-

prehensive experimental study, comparing state-of-the-art al-

gorithms to the presented approach referred to as Multi-SSSA

and establishing their relative performance depending on di-

verse features of the structured signals.

The section 2 introduces the formal background. The pro-

posed optimization approach is described in section 3.1. Sec-

tion 4 presents our experimental setting and reports on the re-

sults. The presented approach is discussed w.r.t. related work

in section 5 and the paper concludes with some perspectives

for further research.

2. PROBLEM STATEMENT

Let Y = [y1, . . . ,yT ] ∈ R
C×T be a matrix made of T C-

dimensional signals, Φ ∈ R
C×N an overcomplete dictionary

of N atoms (N > C). We consider the linear model

yt = Φxt + et, t ∈ 1, . . . , T , (1)

in which X = [x1, . . . ,xT ] ∈ R
N×T stands for the decompo-

sition matrix and E = [e1, . . . , eT ] ∈ R
C×T is a zero-mean

Gaussian noise matrix.

The sparse structured decomposition problem consists of ap-

proximating the yi, i ∈ {1, . . . , T} by decomposing them on

the dictionary Φ, such that the structure of the decompositions

xi reflects that of the signals yi. This goal is formalized as

1Our motivating application considers electro-encephalogram (EEG) sig-

nals, where the number of sensors ranges up to a few hundreds.



the minimization2 of the objective function

min
X

‖Y − ΦX‖22 + λ1‖X‖1 + λ2‖XP‖1 , (2)

where λ1 and λ2 are regularization coefficients and P encodes

the signal structure (provided by the prior knowledge) as in

[7]. In the remainder of the paper, the considered structure is

that of the temporal ordering of the signals, i.e. ‖XP‖1 =
∑T

t=2
‖Xt −Xt−1‖1.

3. OPTIMIZATION STRATEGY

3.1. Algorithm description

Bregman iterations have shown to be very efficient for ℓ1 reg-

ularized problem [8]. For convex problems with linear con-

straints, the split Bregman iteration technique is equivalent

to the method of multipliers and the augmented Lagrangian

one [9]. The iteration scheme presented in [6] considers an

augmented Lagrangian formalism. We have chosen here to

present ours with the initial split Bregman formulation.

First, let us restate the sparse approximation problem

minX ‖Y − ΦX‖22 + λ1‖A‖1 + λ2‖B‖1
s.t. A = X

B = XP

. (3)

This reformulation is a key step of the split Bregman method.

It decouples the three terms and allows to optimize them sep-

arately within the Bregman iterations. To set-up this iteration

scheme, Eq.(3) must be transform to an unconstrained prob-

lem

minX,A,B ‖Y − ΦX‖22 + λ1‖A‖1 + λ2‖B‖1
+µ1

2
‖X −A‖22 +

µ2

2
‖XP −B‖22

. (4)

The split Bregman iterations could then be expressed as [8]

(Xi+1, Ai+1, Bi+1) = argminX,A,B ‖Y − ΦX‖22
+λ1‖A‖1 + λ2‖B‖1 (5)

+µ1

2
‖X −A+Di

A‖
2
2

+µ2

2
‖XP −B +Di

B‖
2
2

Di+1

A = Di
A + (Xi+1 −Ai+1) (6)

Di+1

B = Di
B + (Xi+1P −Bi+1) (7)

Thanks to the split of the three terms realized above, the min-

imization of Eq.(5) could be realized iteratively by alterna-

tively updating variables in the system

Xi+1 =argminX ‖Y − ΦX‖22 +
µ1

2
‖X −Ai +Di

A‖
2
2

+µ2

2
‖XP −Bi +Di

B‖
2
2 (8)

Ai+1 =argminA λ1‖A‖1 +
µ1

2
‖Xi+1 −A+Di

A‖
2
2 (9)

Bi+1 =argminB λ2‖B‖1 +
µ2

2
‖Xi+1P −B +Di

B‖
2
2(10)

2‖A‖p = (
∑

i

∑
j |Ai,j |

p)
1

p . The case p = 2 corresponds to the clas-

sical Frobenius norm

Only few iterations of this system are necessary for conver-

gence. In our implementation, this update is only performed

once at each iteration of the global optimization algorithm.

Eq.(9), Eq.(10) could be resolved with the soft-thresholding

operator

Ai+1 = SoftThresholdλ1

µ1
‖.‖1

(Xi+1 +Di
A) (11)

Bi+1 = SoftThresholdλ2

µ1
‖.‖1

(Xi+1P +Di
B) . (12)

Solving Eq.(8) requires the minimization of a convex differ-

entiable function which can be performed via classical opti-

mization methods. We proposed here to solve it determin-

istically. The main difficulty in extending [6] to the multi-

dimensional signals case rely on this step. Let us define H

from Eq.(8) such as

Xi+1 = argminX H(X) . (13)

Differentiating this expression with respect to X yields

d

dX
H = (2ΦTΦ+ µ1I)X +X(µ2PPT )− 2ΦY (14)

+µ1(D
i
A −Ai) + µ2(D

i
B −Bi)PT , (15)

where I is the identity matrix. The minimum X̂ = Xi+1

of Eq.(8) is obtained by solving d
dX

H(X̂) = 0 which is a

Sylvester equation

WX̂ + X̂Z = Ci , (16)

with W = 2ΦTΦ + µ1I , Z = µ2PPT and C = −U i +
2ΦY +µ1A

i +(µ2B
i −V i)PT . Fortunately, in our case, W

and Z are real symmetric matrix. Thus, they can be diagonal-

ized as follow:

W = FDwF
T (17)

Z = GDzG
T (18)

and Eq.(16) can then be rewritten

DwX̂
′ + X̂ ′Dz = Ci′ , (19)

with X̂ ′ = FT X̂G and Ci′ = FTCiG. X̂ ′ is then obtained

by

∀s ∈ {1, . . . , S} X̂ ′(:, s) = (Dw +Dz(s, s)I)
−1Ci′(:, s)

where the notation (:, s) indices the column s of matrices.

Going back to X̂ could be performed with: X̂ = FX̂ ′GT .

W and Z being independent of the iteration (i) considered,

theirs diagonalization is done only once and for all as well

as the computation of the terms (Dw + Dz(s, s)I)
−1 ∀s ∈

{1, . . . , S}. Thus, this update does not require heavy compu-

tation. The full algorithm is summarized below.



3.2. Algorithm sum up

1: Input: Y , Φ, P
2: Parameters: λ1, λ2, µ1, µ2, ǫ, iterMax, kMax
3: Init D0

A, D0
B and X0

4: A0 = X0P , B0 = X0, Y = 2ΦTΦ+ µ1I , Z = µ2PPT

5: Compute Dw, Dz , F and G.

6: i = 0
7: while i ≤ iterMax and

‖Xi−Xi−1‖2
‖Xi‖2

≥ ǫ do

8: k = 0
9: Xtemp = Xi; Atemp = Ai; Btemp = Bi

10: while k ≤ kMax do

11: C = FT (2ΦTY − µ1(D
i
A − Atemp) − µ2(D

i
B −

Btemp)PT )G
12: for s → S do

13: Xtemp(:, s) = (Dy +Dz(s, s)I)
−1C(:, s)

14: end for

15: Xtemp = FXtempGT

16: Atemp = SoftThresholdλ1

µ1
‖.‖1

(Xtemp +Di
B)

17: Btemp = SoftThresholdλ2

µ2
‖.‖1

(XtempP +Di
B)

18: k = k + 1
19: end while

20: Xi+1 = Xtemp; Ai+1 = Atemp; Bi+1 = Btemp

21: Di+1

A = Di
A + (Xi+1

−Bi+1)
22: Di+1

B = Di
B +Xi+1P −Ai+1)

23: i = i+ 1;

24: end while

4. EXPERIMENTAL EVALUATION

The following experiment aims at assessing the efficiency of

our approach in decomposing signals built with particular reg-

ularities. We compare it both to algorithms coding each sig-

nal separately, the Orthogonal Matching Pursuit [10] and the

LARS [11] (a LASSO solver) and to methods performing the

decomposition simultaneously, the simultaneous OMP and

FISTA [12] a proximal method solving a group-LASSO prob-

lem only composed of a l1,2 penalty.

4.1. Data generation

From a fixed random overcomplete dictionary Φ, a set of K

signals having piecewise constant structures have been cre-

ated. Each signal is synthesized from the dictionary and a

pre-determined decomposition matrix.

The TV penalization of the fused-LASSO regularization

makes him more suitable to deal with data having abrupt

changes. Thus, the decomposition matrices of signals have

been built as linear combinations of activities. This writes as

follows:

Pind,m,d(i, j) =







0 if i 6= ind

H(j − (m− d×T
2

))
−H(j − (m+ d×T

2
)) if i = k.

(20)

where P ∈ R
N×T , H is the Heaviside function, ind ∈

{1, . . . , N} is the index of an atoms, m is the center of the

activity and d it’s duration. A decomposition matrix X could

then be written:

X =
M
∑

i=1

aiPindi,mi,di
(21)

where M is the number of activities appearing in one signal

and ai stands for an activation weight. An example of such

signal is given in the figure (4.1) below.

Fig. 1. Built signal

4.2. Experimental setting

Each method has been applied to the previously created sig-

nals. Then the distance between the decomposition matrices

obtained and the real ones have been computed as follow:

dist(X, X̂) =
‖X − X̂‖F

‖X‖F
(22)

The goal was to understand the influence of the number

of activities (M ) and the range of durations (d) on the effi-

ciency of the fused-LASSO regularization compared to oth-

ers sparse coding algorithms. The scheme of experiment de-

scribed above has been carried out with the following grid of

parameters:

• M ∈ {20, 30, . . . , 110},

• d ∼ U(dmin, dmax)
(dmindmax) ∈ {(0.1, 0.15), (0.2, 0.25), . . . , (1, 1)}

For each point in the above parameters grid, two set of sig-

nals has been created: a train set allowing to determine for

each method the best regularization coefficients and a test set

designed for evaluate them with these coefficients.

Other parameters have been chosen as follows:

Model Activities

C = 20 m ∼ U(0, T )
T = 300 a ∼ N (0, 2)
N = 40 ind ∼ U(1, N)
K = 100

Dictionaries have been randomly generated using Gaussian

independent distributions on individual elements.



Fig. 2. Mean distances on the grid of parameters. On the left: Fused Lasso, in the middle: Fused Lasso vs LARS, on the right:

Fused Lasso vs Group Lasso-Solver . The white mask corresponds to non-significant values.

4.3. Results and discussion

In order to evaluate the proposed algorithm, for each point

(i, j) in the above grid of parameters, the mean of the previ-

ously defined distance has been computed for each method

and compared to the mean obtained by our algorithm. A

paired t-test (p < 0.05) has then been performed to check

the significance of these results.

Results are displayed in Figure 4.3. In the ordinate axis, the

number of patterns increases from the top to the bottom and

in the abscissa axis, the duration grows from left to right. The

left image displays the mean distances obtained with our algo-

rithm. The middle and right one present its performance com-

pared to other methods by displaying the difference (point to

point) of mean distances in grayscale. This difference is per-

formed such that, negative values (darker blocks) means that

our method outperform the other one. The white mask corre-

sponds to zone where the difference of mean distances is not

significant and methods have similar performances. Results

of the OMP and the LARS are very similar as well as those of

the SOMP and the group-Lasso solver. Thus, we only display

here the matrix comparing the our method to the LARS and

the group-LASSO solver.

Compared to the OMP and the LARS, our method obtains

same results as them when only few atoms are active at the

same time. It happens in our artificial signals when only few

patterns have been added to create decomposition matrices

and/or when the pattern durations are small. On the contrary,

when many atoms are active simultaneously, the OMP and

LARS are outperformed by the above algorithm which use

inter-signal prior informations to find better decompositions.

Compared to the SOMP and the group-LASSO solver, results

depends more on the duration of patterns. When patterns are

long and not too numerous, theirs performances is similar

to the fused-LASSO one. The SOMP is outperformed in all

other cases. On the contrary, the group-LASSO solver is

outperformed only when patterns are short.

5. RELATION TO PRIOR WORKS

The simultaneous sparse approximation of multi-dimensional

signals has been widely studied during these last years [13]

and numerous methods developed [14, 15, 16, 17, 4]. More

recently, the concept of structured sparsity has considered the

encoding of priors in complex regularization [18, 19]. Our

problem belongs to this last category with a regularisation

combining a classical sparsity term and a Total Variation one.

This second term has been studied intensively for image de-

noising as the in the ROF model [20, 21].

The combination of these terms has been introduced as the

fused-LASSO [5]. Despite its convexity, the two ℓ1 non-

differentiable terms make it difficult to solve. The initial pa-

per [5] transforms it to a quadratic problem and uses standard

optimization tools (SQOPT). Increasing the number of vari-

ables, this approach can not deal with large-scale problem. A

path algorithm has been developed but is limited to the par-

ticular case of the fused-LASSO signal approximator [22].

More recently, scalable approaches based on proximal sub-

gradient methods [23], ADMM [24] and split Bregman itera-

tions [6] have been proposed for the general fused-LASSO.

To the best or our knowledge, the multi-dimensional fused-

LASSO in the context of overcomplete representations has

never been studied. One attempt of multi-dimensional fused-

LASSO has been found in an arxiv version [7] for regression

task, but the journal published version does not contain any

mention of the multi-dimensional fused-LASSO anymore.

6. CONCLUSION AND PERSPECTIVES

This paper has shown the efficiency of the proposed Multi-

SSSA based on a split Bregman approach, in order to achieve

the sparse structured approximation of multi-dimensional sig-

nals, under general conditions. Specifically, the extensive val-

idation has considered different regimes in terms of the sig-

nal complexity and dynamicity (number of patterns simulta-

neously involved and average duration thereof), and it has es-

tablished a relative competence map of the proposed Multi-

SSSA approach comparatively to the state of the art. Further

work will apply the approach to the motivating application

domain, namely the representation of EEG signals.
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