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Abstract

An important limitation of fuzzy integrals for information fusion is the
exponential growth of coefficients for an increasing number of information
sources. To overcome this problem a variety of fuzzy measure identifica-
tion algorithms has been proposed. HLMS is a simple gradient-based algo-
rithm for fuzzy measure identification which suffers from some convergence
problems. In this paper, two proposals for HLMS convergence improvement
are presented, a modified formula for coefficients update and new policy for
monotonicity check. A comprehensive experimental work shows that these
proposals indeed contribute to HLMS convergence, accuracy and robustness.
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1. Introduction

In different fields of human knowledge information comes from several
sources so that a fusion process is required to summarize information. Typical
applications include sensor fusion [1], cooperative classifiers [2] and selection
of alternatives in multicriteria decision making.

Information fusion can be accomplished by means of univariate or mul-
tivariate approaches. Univariate approaches model information sources in-
dividually and thus, relationships between them are dismissed. According
to the context, univariate approaches may use different fusion operators, the
mean, minimum or maximum are typical choices. Multivariate approaches
model relationships between information sources so that redundancy, com-
plementarity and independence between sources are taken into account. In
this case, fuzzy integral operators, such as Choquet [3] and Sugeno [4] inte-
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grals could be used. We note, however, that multivariate approaches require
much more coefficients than their univariate counterparts.

Different approaches have been proposed in literature, including classical
optimization techniques [5, 6], genetic algorithms [7, 8] and artificial neural
networks [9, 10]. These approaches either require large datasets (classical
optimization techniques), they depend on random steps (genetic algorithms)
which make its traceability difficult or depend on particular network struc-
ture (artificial neural network). To overcome these limitations, we consider
the alternative use of gradient-based descendant algorithms. In particular,
we consider the Heuristic Least Mean Squares (HLMS) algorithm originally
introduced by Grabisch in [11] and later modified in [12]. Briefly, HLMS
implements a gradient approach which minimizes a squared error criterion
between the expected and estimated values of targets. Remarkably, HLMS
is likely to yield acceptable solutions avoiding unsatisfactory and rather
counter-intuitive alternatives [13]. In recent work, a preliminary study of
HLMS algorithm was performed [14] and convergence problems were ob-
served.

In this paper, a revised HLMS implementation, which includes a new
formula for the iterative estimation of fuzzy measures coefficients and a new
policy for monotonicity check, is presented.

This paper is organized as follows. In Section 2, basic concepts and
definitions about fuzzy measures and integrals are reviewed. In Section 3,
improvements of the HLMS algorithm are motivated and two modifications
are proposed: a new formula for iterative fuzzy measure estimation and a
more efficient policy for monotonicity check. In Section 4, main features of
the revised HLMS algorithm are analyzed in detail; synthetic and benchmark
datasets are used to evaluate accuracy, convergence behavior according to the
HLMS learning rate parameter and sensitivity to target variations. Finally,
in Section 5, main conclusions and perspectives of future work are discussed.

2. Basic definitions

This section introduces the basic concepts related to fuzzy measures and
the discrete Choquet integral. The reader may refer to [15, 16, 17, 18, 19] for
details. Let us consider a finite set X = {x1, . . . , xi, . . . , xn} and let P(X)
denote the power set (set of all subsets) of X.

Definition 1 A fuzzy measure is a set function µ : P(X) → [0, 1] fulfilling
the following two axioms:
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1. µ(∅) = 0, µ(X) = 1

2. A ⊆ B ⊆ X ⇒ µ(A) ≤ µ(B)

The first axiom, also called the normalization axiom, allows a meaningful
comparisons of fuzzy measures. The second axiom establishes a monotonicity
condition. The coefficients of a fuzzy measure µ are the weights given to
elements of P(X ).

Definition 2 A discrete Choquet integral of a function f : X → ℜ+ with
respect to some fuzzy measure µ over X:

Cµ(f(x1), .., f(xn)) ,
n

∑

i=1

(f(x(i)) − f(x(i−1)))µ(A(i)) (1)

where A(i) = {x(i), x(i+1), . . . , x(n)} and x(·) is the rearrangement induced by
f(xi), i = 1, . . . , n, sorted in ascending order, i.e., f(x(1)) < · · · < f(x(n)),
with the convention that f(x(0)) = 0.

A suitable way of representing fuzzy measures in the finite case is to use
a lattice representation. Each element in P(X ) is associated with a vertex,
ordered by inclusion. Elements with the same cardinality are mapped to
vertices in the same lattice level and cardinalities can be used to identify
such levels. Hence, while the top lattice level labeled with 0 will contain
only the empty set φ, the bottom lattice level labeled with n will contain the
whole set X (see Figure 1).

Considering the definition of the discrete Choquet integral, just one coef-
ficient per lattice level is required for Cµ(X) computation. The corresponding
set of lattice vertices defines a complete path across the lattice (see dashed
path in Figure 1).

Definition 3 The neighbors of a lattice vertex are the set of connected
vertices. The neighbors of a lattice vertex at level (l) are the connected
vertices at levels (l − 1) and (l + 1).
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Figure 1: Lattice representation of the inclusion relation for a set of three attributes

3. The revised HLMS algorithm

HLMS [11] is a supervised algorithm for fuzzy measure identification.
The training data for HLMS is a set S of m examples made up of n input
attributes and the values of some target concept T:
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where xj
i is the i-th attribute value on the j-th sample characterized by

a target value T j, i = 1, . . . , n and j = 1, · · · , m.
In multicriteria decision making, the i-th attribute denotes the i-th cri-

terion and the j-th row denotes the j-th alternative, xj = xj
1, . . . , xj

n. Hence,
each xj

i denotes the satisfaction degree of the i-th criterion for the j-th alter-
native and T j denotes the decision value to be inferred from the n satisfaction
degrees. Note that this aggregation process makes sense only if all satisfac-
tion degrees are in the same scale.

Fuzzy measures are defined by a set of coefficients. The HLMS algorithm
updates a set of initial coefficients according to the gradient of the square
difference between the values of a known target T and its estimation obtained
from Choquet integral result using current coefficients on training data S.
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In recent work [14], we observed that unpredictable HLMS convergence
behavior could be explained by the fact that HLMS formula for coefficients
update was not a true gradient. We later realized that although a true gra-
dient update formula indeed improved HLMS convergence, there were some
datasets for which the convergence problem remained unsolved. Further ex-
perimental work revealed that the problem could be in the naive HLMS
implementation of the monotonicity check which was performed over the
complete set of lattice paths. We noted that if we constrained monotonic-
ity checks to those lattice paths defined by training samples in S, HLMS
convergence remarkably improved. Therefore, the following Revised HLMS
algorithm (1) was derived:

Algorithm 1 Revised HLMS
1: Input: training dataset S formed by samples (〈xj

1, x
j
2, . . . , x

j
n〉, T j) where j ∈ {1, . . . , m}

2: Output: 2n fuzzy measure coefficients
3: for i ∈ P(X) do {Initialization}

4: ui =
|i|

|X|

5: end for

6: Identify untouched coefficients()
7: repeat

8: examples ← random(1 : m) {Sensitivity to data presentation order}
9: for j ∈ examples do

10: ej = Cµ(xj)− T j {Individual error calculation}
11: for l ∈ (1 : n− 1) do

12: ul = ul − α× ej

emax
× (xj

(n−l+1)
− x

j

(n−l)
) {Coefficient update}

13: Check monotonicity with neighbors(ul) {Monotonicity check }
14: end for

15: end for

16: E ←

√

1
m

m
∑

s=1

(Cµ(xs)− T s)2 {Error calculation}

17: until Stop criterion met()
18: Set untouched coefficients() {Final monotonicity correction}

1. Initialization: At first, fuzzy measure coefficients ui are initialized to
their equilibrium states [11] (L. 3). Then, those coefficients which do
not participate in any integral computation for the given S are iden-
tified (L. 6) and left outside the main process. These coefficients are
only modified in a final adjustment step (L. 18).

2. Sensitivity to data presentation order: Gradient algorithms are known
to be sensitive to data presentation order. To prevent any bias, samples
are randomly rearranged at each iteration step (L. 8).

3. Individual error calculation: For each sample, the error is calculated
based on current coefficients (L. 10).
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4. Coefficient update: After each sample presentation, the coefficients in-
volved in the corresponding integral are updated (L. 12). This impor-
tant step is discussed below.

5. Monotonicity check: The monotonicity condition is checked after each
coefficient update (L. 13) but only with those coefficients in the neigh-
borhood triggered by training samples. This important step is dis-
cussed below.

6. Error calculation The Root Mean of Squared Errors (RMSE) is com-
puted over the whole training set (L. 16).

7. Stop criterion: The algorithm may stop if either the RMSE or the
coefficients do not change during a given number of iterations. It is
also possible to fix the number of iterations (L. 17).

In what follows, the two main modifications introduced by Revised HLMS,
namely a true gradient formula for coefficients update and a revised policy for
monotonicity check, are explained in detail. Their positive effects on HLMS
convergence are then analyzed.

3.1. A true gradient formula for coefficients update

Let us consider a simple fuzzy measure estimation problem involving three
attributes and let α > 0 denote the learning rate parameter of the gradient-
based HLMS algorithm for fuzzy measure estimation. Regarding the update
formula (L. 12), let ul denote the coefficient at the l-th lattice level triggered
by the j-th sample. Hence, the Choquet integral becomes:

Cµ(x) = (x(1) − x(0))u3 + (x(2) − x(1))u2 + (x(3) − x(2))u1 (2)

so that, the partial derivative of the integral with respect to ul becomes:

∂Cµ(x)

∂ul

= x(n−l+1) − x(n−l) (3)

and thus, the following gradient-based formula for coefficients update rule
follows:

ul = ul − α ×
ej

emax

× (x(n−l+1) − x(n−l)) (4)
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Note that Eq.4 differs from the one proposed in the original HLMS version
[11] showed in Eq.5:

ul = ul − α ×
ej

emax

× (xj
(n−l) − xj

(n−l−1)) (5)

It can be observed that the difference x(n−l) −x(n−l−1) term in Eq.5 is not
truly related to the gradient of the squared error. This problem is fixed by
Revised HLMS.

3.2. A revised policy for monotonicity check

As highlighted in Algorithm (1), the monotonicity check step is achieved
in two different ways depending on the fuzzy measure coefficient status (L. 13
and L. 18). This new proposition, another important difference with respect
to the original HLMS formulation, favors the algorithm convergence.

Depending on data, there might be coefficients which do not belong to
any path defined by the samples when performing the Choquet integral and
then, their values are not modified by the update formula (L. 12). Those co-
efficients which do not participate in any integral computation strongly limit
the evolution of neighbors coefficients, since their values do never change.
Hence, it makes sense to identify them and relegate them (L. 6), i.e., when
coefficient monotonicity of an updated coefficient is analyzed, they are not
taken into consideration. Relegated coefficients will only be modified at the
end of the algorithm using their new neighbors values (L. 18). Let N(l−1) and
N(l+1) respectively denote the sets of neighbors in the upper and lower lattice
levels of an untouched coefficient u. After completion of HLMS iterations,
the u value fulfilling the monotonicity condition verifies Eq.6:

max{uk|k ∈ N(l−1)} ≤ u ≤ min{uk|k ∈ N(l+1)} (6)

and thus, we set u to the mean of the above bounds.
Regarding those coefficients which participate in the main process, mono-

tonicity is checked in only one direction depending on the error sign. When
the error (L. 10) is negative, the coefficient u at l-th lattice level is increased
according to the update formula (L. 12). In this case, we only need to check
the monotonicity with coefficients in the (l + 1)-th lattice level. Similarly,

7

Author-produced version of the article published in Information Fusion, 2013, 14(4), 532-540. 

The original publication is available at http://www.sciencedirect.com  

DOI :  10.1016/j.inffus.2013.01.002



when the error (L. 10) is positive, the coefficient u at l-th lattice level is de-
creased according to the update formula (L. 12). In this case, we only need
to check monotonicity with coefficients in the (l − 1)-th lattice level.

3.3. Convergence behavior of Revised HLMS

HLMS is an stochastic algorithm [20] involving gradient computations
followed by weights updates after each sample presentation. It is well-known
[21] that, in this case, convergence is ensured when, for each sample in the
training set, the error decreases at each iteration step, k :

|Cµ(x)k+1 − T (x)| < |Cµ(x)k − T (x)| (7)

Since convergence analysis involves only one sample at the time, the j in-
dex will be dropped to alleviate the notation. Two cases must be considered
for the convergence analysis, i) both Cµ(x)k+1 and Cµ(x) are less (or higher)
than T (x) and ii) one of them is greater than T (x) while the other is not.

Case 1: Both values are on the same side of the target (above or below).
This case is illustrated in Figure 2

T
Ck

(x) (x)
k+1

C

Iterations

T
ar

ge
t

Figure 2: Both values Ck(x) and Ck+1(x) are below T (Case 1)

and thus, Eq.7 becomes:

T (x) − Cµ(x)k+1 < T (x) − Cµ(x)k ⇔ Cµ(x)k+1 − Cµ(x)k > 0 (8)

As the integral is a sum of positive quantities, previous inequality holds if:

∃l | u(l)k+1 > u(l)k ∧ ∀m 6= l u(m)k+1 ≥ u(m)k (9)

Only one coefficient is updated at a given step, so the second condition
is obviously fulfilled. The first one means: u(l)k+1 − u(l)k > 0. Substituting
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u(l)k+1 by its value according to the update formula (L. 12) in Algorithm (1)
this leads to:

α(Ck
µ(x) − T (x))(xn−l+1 − xn−l) < 0 (10)

α > 0 and (xn−l+1 − xn−l) ≥ 0, ∀l ∈ [1, n − 1]. Ck
µ(x) − T (x) < 0 in this

case so the above product is negative. The demonstration is analogous when
both values are greater than the target.

Case 2: The two values are on two different sides of the target. This case is
illustrated in Figure 3

T
Ck

(x)

(x)
k+1

C

Iterations

T
ar

ge
t

Figure 3: Both values Ck(x) and Ck+1(x) are on different sides of the target (Case 2)

and thus, Eq.7 becomes:

T (x) − Cµ(x)k+1 < Cu(x)k − T (x) (11)

2T (x) − Cµ(x)k+1 − Cµ(x)k < 0 (12)

2T (x) −
n

∑

i=1

(x(i) − x(i−1)){uk+1(A(i)) + uk(A(i))} < 0 (13)

Remark that u(A(i)) = u(i, . . . , n) which is noted as u(n−i+1) because
A(i) contains (n − i + 1) elements. According to the update formula,

uk+1
(n−i+1) + uk

(n−i+1)

= 2uk
(n−i+1) − α(Ck

µ(x) − T (x))(xn−(n−i+1)+1 − xn−(n−i+1))

= 2uk
(n−i+1) − α(Ck

µ(x) − T (x))(x(i) − x(i−1))

As
∑n

i=1(x(i) − x(i−1))u
k
(n−i+1) = Ck

µ(x), Eq.7 implies:
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α <
2(Ck

µ(x) − T (x))
∑n

i=1(x(i) − x(i−1))2(Ck
µ(x) − T (x))

(14)

And, finally:

α <
2

n
∑

i=1
(x(i) − x(i−1))2

(15)

This fraction allows a wide range of positive values for the learning rate.
As previously said, the learning rate α controls how fast the algorithm iden-
tifies the fuzzy measure coefficients (converge). The denominator of Eq.15
is a sum of positive values, since data was rearranged. The upper bound
becomes smaller when the differences (x(i) − x(i−1)) increase, meaning that
the information from sources differ. In this case, a small value of α must
be chosen in order to converge. Otherwise, when the sources give similar
information, the learning process could be faster. As stated for case 1, the
proof is analogous when the locations of the two values are inverted.

In both cases, as no assumption is made about the input values, this re-
sult holds for all the samples in the training set and ensures the algorithm
convergence provided α is positive and fulfills Eq.15.

4. Experimental design

HLMS requires input datasets with attributes expressing their contribu-
tion to a target concept in a common scale (defined up to the same positive
linear transformation). These datasets are hard to obtain [22] and thus, it
is a common practice to use synthetic ones. In this work, synthetic datasets
involving random attributes and predefined fuzzy measures for targets com-
putation [11, 23] are used to evaluate the convergence and accuracy of the
Revised HLMS algorithm. Moreover, studies are performed on coefficient
variations of Revised HLMS to different targets obtained from partial orders
over samples [15].

Finally, preprocessed real benchmark datasets described in [22] are used
to assess Revised HLMS practical performance. Datasets are described in
Table 1.
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Table 1: Datasets characteristics

Synthetic Datasets
# attributes # samples

Students’ grade (students) 4 17
Computer (computers) 3 6

Benchmark Datasets
Employee Selection (ES) 4 488
Employee Rejection/Acceptance (ERA) 4 1000
Lecture Evaluation (LE) 4 1000
CPU (CPU) 6 209
Breast Cancer (CB) 7 278
Den Bosch (DB) 8 119

4.1. Convergence and Accuracy on synthetic datasets

Regarding the evaluation of Revised HLMS convergence and accuracy,
two synthetic datasets are considered. The first dataset, hereafter named
computers, is used to evaluate Revised HLMS convergence in detail. The
computers dataset involves three attributes and three targets T1, T2 and
T3 (see Table 2). Attributes follow from clients’ satisfaction degrees over
three computer features, processor speed (S), ram memory (R) and hard disk
capacity (D). Targets T1, T2 and T3 are respectively computed using the
mean, the minimum (min) and the maximum (max) operators on samples’
attributes.

Table 2: Computer satisfaction degrees

Computer S R D T1 T2 T3
1 0.96 0.78 0.42 0.72 0.42 0.96
2 0.96 0.66 0.54 0.72 0.54 0.96
3 0.36 0.78 0.42 0.52 0.36 0.78
4 0.36 0.66 0.54 0.52 0.36 0.66
5 0.60 0.36 0.74 0.56 0.36 0.74
6 0.65 0.26 0.84 0.56 0.26 0.84

The second dataset, hereafter named students, is used to evaluate Revised
HLMS accuracy. The students dataset involves four attributes and two tar-
gets T1 and T2 (see Table 3). Attributes follow from students’ grades in four
subjects, literature (L), geography (G), physics (P) and mathematics (M).
Attributes are normalized and share a common scale so that the higher the
score the better the grade. Target T1 is computed using the fuzzy measure
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shown in Table 4 while target T2 is obtained from T1 after the addition of
uniformly distributed noise in [-0.1,0.1].

Table 3: Normalized students’ grade data

Student L G P M T1 T2
1 0.9 1.0 0.9 0.8 0.9 0.939
2 0.8 0.9 0.1 0.8 0.87 0.864
3 0.8 0.9 0.9 0.8 0.84 0.885
4 0.7 0.8 0.8 1.0 0.82 0.821
5 0.7 0.9 0.8 0.7 0.78 0.790
6 0.7 0.7 0.8 0.8 0.74 0.718
7 0.7 0.8 0.8 0.6 0.70 0.620
8 0.6 0.7 0.7 0.7 0.68 0.734
9 0.7 0.6 0.7 0.6 0.65 0.604
10 0.7 0.6 0.6 0.6 0.63 0.635
11 0.4 0.6 0.6 0.7 0.58 0.679
12 0.5 0.4 0.5 0.8 0.52 0.578
13 0.5 0.6 0.6 0.4 0.50 0.410
14 0.4 0.6 0.4 0.6 0.50 0.511
15 0.4 0.6 0.2 0.6 0.44 0.500
16 0.5 0.4 0.4 0.4 0.43 0.499
17 0.4 0.4 0.2 0.3 0.32 0.273

Table 4: Coefficients to aggregate students’ grades. For each Coalition, the corresponding
Coefficient is given

Coalition Coefficient Coalition Coefficient Coalition Coefficient
∅ 0 {1-2} 0.5 {1-2-3} 0.6
{1} 0.3 {1-3} 0.45 {1-2-4} 0.7
{2} 0.4 {1-4} 0.45 {1-3-4} 0.6
{3} 0.3 {2-3} 0.4 {2-3-4} 0.8
{4} 0.2 {2-4} 0.5 {1-2-3-4} 1

{3-4} 0.4

4.1.1. Convergence

Convergence depends on the choice of the learning rate parameter, α.
A high value of α is likely to increase convergence speed but also to make
the algorithm unstable. Figure 4 shows the evolution of coefficients value
for coalition {2-3} using Revised HLMS on the students dataset. Four α
parameterizations are considered, α = 0.1, 1, 10 and 100. As shown in the
three upper plots of Figure 4, convergence speed increases with respect to α.
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Figure 4: Revised HLMS convergence behavior on students data. The evolution of the
coefficient µ{2-3} for an increasing number of iterations is shown for α = 0.1, 1, 10 and
100

Bottom plot of Figure 4 shows that when α value is high some coefficients
start to oscillate.

4.1.2. Accuracy

Firstly, to gain insight into the accuracy of Revised HLMS, the computer

dataset is used. The computer dataset is small enough to track Revised
HLMS steps in detail. Moreover, all lattice paths are covered allowing all the
coefficients to be updated. Targets T1, T2 and T3 in the computer dataset
are computed using the mean, the min and the max aggregation operators.
The coefficients of the Choquet integral for these type of targets are well-
known [15]. For the mean operator, Choquet integral coefficients values are
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exactly those used in the initialization step (L. 4), then, a convergence with-
out error is obtained in one iteration without any coefficient update. For the
min operator, Choquet integral coefficients values must be all zeros except
µ(X) = 1. Finally, for the max operator, Choquet integral coefficients values
must be all ones except µ(∅) = 0. These expected results are used to check
the accuracy of Revised HLMS algorithm. Later, predefined coefficients are
used to calculate the target values of students’ grades and they are compared
with the ones returned by Revised HLMS.

Aggregation operators min and max have an analogous behavior. The
evolution of RMSE and coefficients according to the number of iterations are
shown in Figure 5 and Figure 6.

0 200 400 600 800 1000
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Figure 5: Root mean square error evolution when Choquet integral generalize aggregation
operator minimun. The horizontal axis shows the iteration number. Vertical axis shows
the values of RMSE

Figure 5 clearly shows the convergence of the error to the expected value,
zero. In Figure 6, several convergence speeds can be observed.

The singleton coefficients converge faster than the ones of coalitions. This
is due to the initialization: singleton coefficients are set to 1/3, closer to their
final value, 0, than the others, which are initialized to 2/3. One of the co-
efficients, coalition {2-3}, converges slower than the others. This effect is
data dependent. Only two samples, 3 and 4, update this coefficient with a
small difference in the attributes, (0.42 − 0.36), in both cases. For example,
for coalition {1-2}, this difference is (0.78 − 0.42). The previous remark also
explains the difference between error and coefficient convergence. The error
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Figure 6: Convergence evolution of singletons {1},{2} and {3} and coalitions {1-2}, {1-3}
and {2-3} when Choquet integral generalizes the aggregation operator minimun. The
horizontal axis shows the iteration number. The vertical axis shows coefficient value

is kept low even if this coefficient has not reached its final value because its
influence in the RMSE is quite low.

Now, the convergence of Revised HLMS for students dataset using T1 and
T2 is performed (see Table 5). The algorithm is run with α=0.1. Each row
corresponds to a sample with its target value and the solution for different
numbers of iterations. The RMSE evolution is shown in the last row. With
the T1 target, a quite low error value is reached after 10 iterations (0.008)
and the final value is close to 0, as expected. With noisy data T2, the solution
is no longer exact, the RMSE is 0.03 instead of 0 (0.045 after 10 iterations).

The coefficients of Choquet integral that best fit students dataset are the
ones in Table 4 (unique solution). This allows a comparison between them
and the coefficients returned by Revised HLMS. The structure of Table 6 is
similar to the previous one.

Each row corresponds to a given coefficient. The value in column (C),
used to compute the T1 target, and the coefficients estimated by Revised
HLMS for different numbers of iterations are shown. They all tend to their
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Table 5: Students’ grade convergence of sample targets

Sample T1 it:10 it:100 it:1000 T2 it:1000
1 0.90 0.899 0.896 0.897 0.939 0.879
2 0.87 0.874 0.870 0.867 0.864 0.864
3 0.84 0.849 0.845 0.840 0.885 0.839
4 0.82 0.823 0.816 0.816 0.821 0.859
5 0.78 0.774 0.771 0.776 0.790 0.779
6 0.74 0.749 0.749 0.743 0.718 0.735
7 0.70 0.723 0.716 0.702 0.620 0.679
8 0.68 0.675 0.676 0.681 0.734 0.700
9 0.65 0.649 0.648 0.645 0.604 0.638
10 0.63 0.625 0.625 0.629 0.635 0.638
11 0.58 0.574 0.573 0.580 0.679 0.629
12 0.52 0.547 0.532 0.521 0.578 0.570
13 0.50 0.523 0.516 0.502 0.410 0.479
14 0.50 0.499 0.497 0.499 0.511 0.529
15 0.44 0.449 0.444 0.440 0.500 0.481
16 0.43 0.425 0.425 0.429 0.499 0.438
17 0.32 0.324 0.322 0.319 0.274 0.315
RMSE 0 0.008 0.006 0.002 0 0.03

Table 6: Student’s grade convergence of coefficients. The coefficients coalitions are shown
in the first column. The ’C’ column represents the values were the coefficients must
converge. Columns 3 to 6 represent the coefficient value in 10, 100, 1000 and 10000
iterations

Coefficients C it:10 it:100 it:1000 it:10000
∅ 0 0 0 0 0
{1 } 0.3 0.250 0.259 0.293 0.3
{2 } 0.4 0.250 0.258 0.354 0.399
{3 } 0.3 0.249 0.247 0.270 0.299
{4 } 0.2 0.241 0.198 0.174 0.194
{1-2 } 0.5 0.499 0.496 0.491 0.499
{1-3 } 0.45 0.498 0.484 0.457 0.449
{1-4 } 0.45 0.499 0.494 0.494 0.460
{2-3 } 0.40 0.494 0.456 0.406 0.400
{2-4 } 0.5 0.498 0.489 0.496 0.499
{3-4 } 0.4 0.499 0.490 0.436 0.400
{1-2-3 } 0.6 0.745 0.710 0.622 0.599
{1-2-4 } 0.7 0.747 0.732 0.706 0.700
{1-3-4 } 0.6 0.747 0.730 0.695 0.620
{2-3-4 } 0.8 0.751 0.767 0.816 0.803
{1-2-3-4 } 1 1 1 1 1

expected value. As previously discussed the convergence speed is not the
same for all coefficients as it is data dependent.
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4.2. Coefficients sensitivity to target variations

Previous experiments assume well-known targets but in real applications,
targets are rarely known and must be expert-defined. Experts may assign
different target to a given sample. For similar targets, Revised HLMS is
expected to give similar coefficients. In this section, the targets are induced
by a partial order over samples. Briefly, let us assume all the attributes have
the same scale and meaning, for instance the higher the score the better the
grade for attributes in the students dataset. The alternative i is preferred
to alternative j if all the attributes values for i are higher or equal to their
equivalent for j and there is at least one of them strictly higher. This order
relationship is formalized in Eq.16.

∀k xi
k ≥ xj

k and ∃ p xi
p > xj

p ⇒ i ≻ j (16)

with k, p ∈ {1..n}. If neither i ≻ j nor j ≻ i, then i and j are not comparable.
For the students dataset, Eq.16 means that student #1 should be pre-

ferred to student #3 and to all students in the range [5, 17] and that student
#1 cannot be compared to students #2 and #4. In addition, all students
should be preferred to student #17. These type of preference could be used
as a constraint to generate a ranking of the students; those students which
cannot be compared can be randomly ranked. As a result a large set of rank-
ings can be induced from the students datasets. Among all such possible
rankings, two of them are randomly selected as shown in Table 7:

Table 7: R1 and R2 are two rankings over the students dataset. For each student number
in the first row, its corresponding ranking in R1 (R2) is given the second (third) row

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
R1 2 3 4 1 6 5 8 10 11 9 13 7 15 12 16 14 17
R2 3 1 4 2 5 6 7 8 11 10 9 14 12 15 16 13 17

For each of the two rankings R1 and R2, 100 targets are randomly gen-
erated using two constraints, i) the rank constraint: if sample i ranks before
sample j, then T (i) ≥ T (j) and ii)the range constraint: for each sample i,
min(xi

k) ≤ T (i) ≤ max(xi
k) holds. For each group of 100 targets derived

either from R1 or R2, a set of 100 fuzzy measures are obtained using Re-
vised HLMS. Fuzzy measures within each group of targets are expected to
be similar but different from those derived from the other group. Hence, a
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group G1 (G2) of 4950 pairwise Euclidean distances between fuzzy measures
[24] for targets induced from ranking R1 (R2) is computed. In addition, a
group G3 of 10000 pairwise Euclidean distances between fuzzy measures for
targets induced from ranking R1 and R2 is computed.

Three groups are considered:

• Group 1: d(i, j) —∀i, j = i; i, j ∈ R1 (4950 distances)

• Group 2: d(i, j) —∀i, j = i; i, j ∈ R2 (4950 distances))

• Group 3: d(i, j) —∀i ∈ R1, j∈ R2 (10000 distances)

An ANOVA test is carried out to test for differences among the three
groups, G1, G2 and G3 (see Figure 7). The factor under study is the distance
between fuzzy measures in each group. Results are shown in Table 8. The
test highlights the influence of the factor and shows that the null hypothesis
must be rejected, i.e., at least one of the groups G1, G2 and G3 is significantly
different from the others.

G1

R1

R1

100

1

...

G3

G2

... 11 100i ... 100
R2

R2

100

1

...

j d(i,j)

Figure 7: Group configuration

A Tukey test is then performed to quantify differences between the means
of groups G1, G2 and G3. Results are shown in Table 9:

These results, taken together, suggest that Revised HLMS coefficients for
targets induced from different ranks are indeed different.
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Table 8: ANOVA test on groups G1, G2 and G3 related to fuzzy measures for targets
from rankings R1, R2 and R1-R2

Df Sum Sq Mean Sq F value Pr(>F)
Factor 2 14175 7.0876 14932 <2.2e-16
Residuals 19897 9444 0.0005

Table 9: Tukey multiple comparisons of means for groups G1, G2 and G3. 95% family-wise
confidence intervals [lwr, upr] for the differences diff between means are given

diff lwr upr
2-1 0.0028 0.0018 0.0038
3-1 0.0547 0.0538 0.0556
3-2 0.0519 0.0510 0.0527

4.3. Revised HLMS on benchmark data

In this section, we evaluate Revised HLMS performance on six benchmark
datasets from the UCI repository1 and the WEKA machine learning toolbox2.
The datasets are preprocessed, following the methodology described in [22],
in order to convert each attribute value into a satisfaction degree. As usually
occurs with real data, the generated target are tainted with noise. There-
fore, convergence with non-null root mean square error (RMSE) should be
expected.

For each benchmark dataset, differences between target values and Cho-
quet integral calculations based on Revised HLMS fuzzy measure estimations
are evaluated and the corresponding RMSEs across samples are computed.
Revised HLMS is run to 1000 iterations and α = 0.05. Results are shown in
Figure 8.

RMSE decreases with the number of iterations without any oscillation,
and, converges, as expected, to a non null value. In order to check the algo-
rithm accuracy, new targets are generated for the ESL, ERA and LE datasets
using the fuzzy measure given in Table 10. In this case, the algorithm is ex-
pected to identify the correct coefficients and to converge with a zero error.
For all the datasets, the algorithm behaves as expected. These results are il-

1http://archive.ics.uci.edu/ml/
2http://www.cs.waikato.ac.nz/ml/weka/
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Figure 8: The evolution of the RMSE on the six benchmark datasets

lustrated in Figure 9, RMSE congence to zero, and in Figure 10, convergence
to expected value for some of the coefficients.

Table 10: Fuzzy measure coefficients defining new targets for the ESL, ERA and LE
datasets. For each Coalition, the corresponding Coefficient is given

Coalition Coefficient Coalition Coefficient Coalition Coefficient
∅ 0 {1-2} 0.35 {1-2-3} 0.7
{1} 0.2 {1-3} 0.2 {1-2-4} 0.8
{2} 0.3 {1-4} 0.5 {1-3-4} 0.9
{3} 0.1 {2-3} 0.45 {2-3-4} 0.75
{4} 0.4 {2-4} 0.65 {1-2-3-4} 1

{3-4} 0.6

5. Conclusions and future work

HLMS is a gradient descent algorithm for identifying the Choquet integral
parameters that best fit training data. This paper describes a revised version
where the update formula and the monotonicity check have been improved
in order to guarantee the algorithm convergence.
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Figure 9: Convergence of the RMSE for the ESL, ERA and LE datasets. Target values
were generated using fuzzy measure coefficients in Table 10

The convergence property is deeply analyzed. It highly depends on the
learning rate: this work shows that the range of possible values is wide. To
manage this trade-off between speed and convergence, an adaptive learning
rate could be implemented.

The algorithm accuracy, i.e. its ability to identify the proper coefficients,
is tested comparing its output with well known aggregation operator param-
eters. When the target is not defined, it can be generated from a sample
ranking. Note that different rankings may be compatible with a dataset, and
various target values are allowed for a given ranking. Anyway, HLMS proves
to be sensitive to the ranking and robust to the targets associated with the
ranking.

Simulation experiments were performed on synthetic and preprocessed
real benchmark datasets which are usually used for the evaluation of clas-
sification algorithms. This was motivated by the lack of publicly available
datasets in the format required by the Choquet Integral aggregation scheme,
i.e., both the attributes and the target values must represent a preference
degree. Such datasets might be hard to obtain in practice. This suggests the
need to develop automatic preprocessing strategies for the conversion of real
datasets to the Choquet integral format. This is work in progress.
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Figure 10: Convergence of attribute {1} and coalitions {1-2}, {1-3}, {1-2-3} to predefined
fuzzy measure coefficients in Table 10 for the ESL, ERA and LE datasets

Altogether, our results contribute to the robustness of HLMS, an algo-
rithm with desirable characteristics for fuzzy measure identification.
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