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Abstract

Background: Contacts between patients, patients and health care workers (HCWs) and among HCWs represent one of the
important routes of transmission of hospital-acquired infections (HAI). A detailed description and quantification of contacts
in hospitals provides key information for HAIs epidemiology and for the design and validation of control measures.

Methods and Findings: We used wearable sensors to detect close-range interactions (‘‘contacts’’) between individuals in
the geriatric unit of a university hospital. Contact events were measured with a spatial resolution of about 1.5 meters and a
temporal resolution of 20 seconds. The study included 46 HCWs and 29 patients and lasted for 4 days and 4 nights. 14,037
contacts were recorded overall, 94.1% of which during daytime. The number and duration of contacts varied between
mornings, afternoons and nights, and contact matrices describing the mixing patterns between HCW and patients were
built for each time period. Contact patterns were qualitatively similar from one day to the next. 38% of the contacts
occurred between pairs of HCWs and 6 HCWs accounted for 42% of all the contacts including at least one patient,
suggesting a population of individuals who could potentially act as super-spreaders.

Conclusions: Wearable sensors represent a novel tool for the measurement of contact patterns in hospitals. The collected
data can provide information on important aspects that impact the spreading patterns of infectious diseases, such as the
strong heterogeneity of contact numbers and durations across individuals, the variability in the number of contacts during a
day, and the fraction of repeated contacts across days. This variability is however associated with a marked statistical
stability of contact and mixing patterns across days. Our results highlight the need for such measurement efforts in order to
correctly inform mathematical models of HAIs and use them to inform the design and evaluation of prevention strategies.
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Introduction

The control of hospital-acquired infections (HAI) is largely

based on preventive procedures derived from the best available

knowledge of potential transmission routes. The accurate descrip-

tion of contact patterns between individuals is crucial to this end,

as it can help to understand the possible transmission dynamics

and the design principles for appropriate control measures. In

particular, the mutual exposures between patients and health-care

workers (HCWs) have been documented for bacterial and viral

transmission since decades [1,2,3]. Transmission might be the

result of effective contact, as in the cases of S. aureus [4,5], K.

pneumoniae [6] or rotavirus [7], of exposure to contaminated

aerosols, as for M. tuberculosis [8], or the result of exposure to

droplets, as for influenza [9]. Some pathogens such as influenza

can also be transmitted by different routes. Although close-range

proximity and contacts between individuals are strong determi-

nants for potential transmissions, obtaining reliable data on these

behaviors remains a challenge [10].

Data on contacts between individuals in specific settings or in

the general population are most often obtained from diaries and

surveys [11,12,13,14] and from time-use records [15]. These

approaches provide essential information to describe contacts

patterns and inform models of infectious disease spread. The

gathered data, however, often lack the longitudinal dimension

[10,12,16] and the high spatial and temporal resolution needed to

accurately characterize the interactions among individuals in

specific environments such as hospitals. Moreover, they are subject

to potential biases due to behavioral modifications due to the
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presence of observers, to short periods of observation, and

especially to missing information and recall biases. Evaluating

biases and understanding the accuracy of the collected data is

therefore a difficult task [16].

In this context, the use of electronic devices has recently

emerged as an interesting complement to more traditional

methods [10]. In particular, wearable sensors based on active

Radio-Frequency IDentification (RFID) technology have been

used to measure face-to-face proximity relations between individ-

uals with a high spatio-temporal resolution in various contexts [17]

that include social gatherings [18,19], schools [20,21] and

hospitals [22,23]. The amount of available data, however, is still

very limited, high-resolution contact data relevant for the

epidemiology of infectious diseases are scarce, and the longitudinal

aspects of contact patterns have not been investigated in detail,

prompting further investigation.

In this paper we report on the use of wearable proximity sensors

[17] to measure the numbers and durations of contacts between

individuals in an acute care geriatric unit of a university hospital.

We investigate the variability of contact patterns as a function of

time, as well as the differences in contact patterns between

individuals with different roles in the ward. We document the

presence of individuals with a high number of contacts, who could

be considered as potential super-spreaders of infections. Some

implications of our results regarding prevention and control of

hospital-acquired infections are discussed.

Materials and Methods

Study Design and Data Collection
The measurement system, developed by the SocioPatterns

collaboration [24], is based on small active RFID devices (‘‘tags’’)

that are embedded in unobtrusive wearable badges and exchange

ultra-low-power radio packets [17,18,21,23]. The power level is

tuned so that devices can exchange packets only when located

within 1–1.5 meters of one another, i.e., package exchange is used

as a proxy for distance (the tags do not directly measure distances).

Individuals were asked to wear the devices on their chests using

lanyards, ensuring that the RFID devices of two individuals can

only exchange radio packets when the persons are facing each

other, as the human body acts as a RF shield at the frequency used

for communication. In summary the system is tuned so that it

detects and records close-range encounters during which a

communicable disease infection could be transmitted, for example,

by cough, sneeze or hand contact. The information on face-to-face

proximity events detected by the wearable sensors is relayed to

radio receivers installed throughout the hospital ward (bedrooms,

offices and hall).

The system was tuned so that whenever two individuals wearing

the RFID tags were in face-to-face proximity the probability to

detect such a proximity event over an time interval of 20 seconds

was larger than 99%. We therefore define two individuals to be in

‘‘contact’’ during a 20-second interval if and only if their sensors

exchanged at least one packet during that interval. A contact is

therefore symmetric by definition, and in case of contacts involving

three or more individuals in the same 20-second interval, all the

contact pairs were considered. After the contact is established, it is

considered ongoing as long as the devices continue to exchange at

least one packet for every subsequent 20 s interval. Conversely, a

contact is considered broken if a 20-second interval elapses with no

exchange of packets. We emphasize that this is an operational

definition of the human proximity behavior that we choose to

quantify, and that all the results we present correspond to this

precise and specific definition of ‘‘contact’’. We make the raw data

we collected available to the public as Datasets S1–S5 in File S1

and on the website of the SocioPatterns collaboration (www.

sociopatterns.org).

Data were collected in a short stay geriatric unit (19 beds) of a

university hospital of almost 1000 beds [3] in Lyon, France, from

Monday, December 6, 2010 at 1:00 pm to Friday, December 10,

2010 at 2:00 pm. During that time, 50 professional staff worked in

the unit and 31 patients were admitted. We collected data on the

contacts between 46 staff members (92% participation rate) and 29

patients (94% participation rate). The participating staff members

were 27 nurses or nurses’ aides, 11 medical doctors and 8

administrative staff.

In the ward, all rooms but 2 were single-bed rooms. Each day 2

teams of 2 nurses and 3 nurses’ aides worked in the ward: one of

the teams was present from 7:00 am to 1:30 pm and the other

from 1:30 pm to 8:00 pm. An additional nurse and an additional

nurse’ aid were moreover present from 9:00 am to 5:00 pm. Two

nurses were present during the nights from 8:00 pm to 7:00 am. In

addition, a physiotherapist and a nutritionist were present each

day at various points in time, with no fixed schedule, and a social

counselor and a physical therapist visited on demand (in our

analysis they are considered as nurses). Two physicians and 2

interns were present from 8:00 am to 17:00 pm each day. Visits

were allowed from 12:00 am to 8:00 pm but visitors were not

included in the study.

Ethics and Privacy
In advance of the study, staff members and patients were

informed on the details and aims of the study. A signed informed

consent was obtained for each participating patient and staff

member. All participants were given an RFID tag and asked to

wear it properly at all times. No personal information was

associated with the tag: only the professional category of each

HCW and the age of the patients were collected. The study was

approved by the French national bodies responsible for ethics and

privacy, the ‘‘Commission Nationale de l’Informatique et des

Libertés’’ (CNIL, http://www.cnil.fr) and the ‘‘Comité de

Protection des personnes’’ (http://www.cppsudest2.com/) of the

hospital.

Data Analysis
Individuals were categorized in four classes according to their

activity in the ward: patients (PAT), medical doctors (physicians

and interns, MED), paramedical staff (nurses and nurses’ aides,

NUR) and administrative staff (ADM). MED and NUR profes-

sionals form a group named HCW.

The contact patterns were analyzed using both the numbers and

the durations of contacts between individuals. For each individual

we measured the number of other distinct individuals with whom

she/he had been in contact, as well as the total number of contact

events she/he was involved in, and the total time spent in contact

with other individuals. These quantities were aggregated for each

class and for each pair of role classes in order to define contact

matrices that describe the mixing patterns between classes of

individuals.

The longitudinal evolution of the contact patterns was studied

by considering, in addition to the entire study duration, several

shorter time intervals: We divided the study duration into 5

daytime periods (7:00 am to 8:00 pm) and 4 nights (8:00 pm to

7:00 am); daytime periods were divided in morning (7:00 am to

1:30 pm) and afternoon (1:30 pm to 8:00 pm) shifts, and we also

considered data aggregated on a 1-hour timescale.

We finally considered the similarity of contact patterns between

successive days, by measuring the fraction of contacts that were

Contacts Patterns in a Hospital Ward
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repeated from one day to the next, as such information is

particularly relevant when modeling spreading phenomena

[18,25,26].

Results

Number of Contacts
Overall, 14,037 contacts occurred during the study, with a

cumulative duration of 648,480 s (approx. 10,808 minutes or 180

hours). 10,616 contacts (75.6%) included at least one NUR, 4,003

(28.5%) included at least one MED, and 3,849 (27.4%) at least one

patient. Table 1 reports the average number and duration of

contacts of individuals in each class over the whole study duration.

Most contacts involve at least one NUR and/or one MED, and

NURs and MEDs have on average the largest number of contacts,

as well as the largest cumulative duration in contact. Large

standard deviations are however observed: the distributions of the

contact durations and of the numbers and cumulative durations of

contacts are broad, as also observed in many other contexts

[20,21,23,27]. Important variations are observed even within each

role class. In particular, contacts of much larger duration than the

average are observed with a non-negligible frequency.

Contacts between Classes of Individuals
The total number of contacts between individuals belonging to

specific classes is reported in Table 2 and the corresponding

contact matrices are shown in Figure 1. We report contact

matrices giving the total numbers and cumulative durations of

contacts between individuals of given classes, as well as contact

matrices taking into account the different numbers of individuals

in each class. Contacts were most frequent between two NURs

(5,310 contacts, 38%), followed by NUR-PAR contacts (2,951

contacts, 21%), and by contacts between two MEDs (2,136

contacts, 15%). Very few contacts between PATs or between

members of the ADM group were observed.

Longitudinal Study
As reported in Table 3, among the 14,037 contacts detected,

13,206 (94.1%) occurred during daytime, for a total duration of

612,900 s (approx. 10,215 min or 170 h). 831 contacts (5.9%)

occurred during nights (lasting 35,580 s, approx. 593 min or

10 h). On average we recorded 2,265 contacts per morning, 1,041

per afternoon, and 207 per night.

The evolution of the number of contacts at the more detailed

resolution of one-hour time windows is reported in Figure 2. The

number of contacts varied strongly over the course of a day, but

the evolution was similar from one day to another (for day 1 and

day 5, contacts were recorded after 1:00 pm and before 2:00 pm

respectively, see Methods), with very few contacts at night and a

maximum around 10–12 am. The number of contacts between

individuals of specific classes also depends on the period of the day.

Contacts between NURs, and between NURs and PATs, were

predominant in the morning while contacts between MEDs

remained similar between mornings and afternoons. Overall,

63.3% of contacts between NURs and PATs occurred on the

morning, 25.5% on the afternoon and 9.2% during the night.

Figure 3 reports the contact matrices giving the numbers of

contacts between individuals of specific classes for each morning,

afternoon and night. The absolute numbers of contacts varied

from one morning (resp., afternoon or night) to the next, but the

mixing patterns remained very similar. Differences were observed

between morning, afternoon and night patterns. The main

difference between morning and afternoon periods came from

larger numbers of contacts involving NURs in the morning.

Almost only contacts involving NURs and PATs were observed at

night.

Although the aggregated observables reported above are very

similar from day to day, the precise structure of the daily contact

network varied strongly: the fraction of common neighbors of an

individual between two different days is on average just of 48%.

Table 1. Number of individuals in each class, and average number and duration of contacts during the study per individual in
each class.

Group* Number of individuals
Average number of contacts per
individual (SD)

Average duration (seconds) of contacts per
individual (SD)

NUR 27 590 (470) 27111 (24395)

PAT 29 136 (112) 6327 (5421)

MED 11 558 (341) 27307 (16275)

ADM 8 258 (291) 10135 (11439)

Overall 75 374 (390) 17293 (19265)

Numbers in parenthesis give the standard deviation.
*Abbreviations: NUR, paramedical staff (nurses and nurses’ aides); PAT, Patient; MED, Medical doctor; ADM, administrative staff.
doi:10.1371/journal.pone.0073970.t001

Table 2. Total number and duration of contacts between
pairs of individuals belonging to specific classes.

Pair* Contact number Cumulative duration in seconds

NUR-NUR 5,310 (37.8%) 253,900 (39.2%)

NUR–PAT 2,951 (21.0%) 136,900 (21.1%)

MED-MED 2,136 (15.2%) 113,200 (17.5%)

NUR–ADM 1,334 (9.5%) 51,920 (8.0%)

MED-NUR 1,021 (7.3%) 35,380 (5.5%)

MED-PAT 574 (4.1%) 29,420 (4.5%)

MED-ADM 272 (1.9%) 9,180 (1.4%)

ADM-PAT 227 (1.6%) 8,820 (1.4%)

ADM-ADM 115 (0.8%) 5,580 (0.9%)

PAT-PAT 97 (0.7%) 4,180 (0.6%)

Total 14,037 (100%) 648,480 (100%)

Numbers in parenthesis give the percentage with respect to the total number
and durations of all detected contacts.
*Abbreviations: NUR, paramedical staff (nurses and nurses’ aides); PAT, Patient;
MED, Medical doctor; ADM, administrative staff.
doi:10.1371/journal.pone.0073970.t002
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This value is smaller than the one observed in a school [21], but

much larger than the one measured for the attendees of a

conference [18].

’’Super-contactors’’ among HCWs (NURs and MEDs)
The cumulative number and duration of contacts of each

individual, as identified by his/her badge identification number,

are reported in Figure 4 and Table 4. A small number of HCWs

accounted for most of the contacts observed between HCWs and

PATs, both in terms of number and cumulative duration. For

instance, 6 NURs (representing 16% of all HCWs) accounted for

42.1% of the number of contacts and 44.3% of the cumulated

duration of the contacts with PATs (number of contacts and

cumulative duration of contacts of a given individual are strongly

correlated, r = 0.98). The number of distinct individuals contacted

by a given individual was also correlated with the total number of

contacts of the same individual (r = 0.69). These 6 HCWs had a

much larger number and duration of contacts than average, as

shown in Table 4.

Discussion

The objective of the present study was to describe in detail the

contacts between individuals in a healthcare setting. Such data can

help to accurately inform computational models of the propaga-

tion of infectious diseases and, as a consequence, to improve the

design and implementation of prevention or control measures

based on the frequency and duration of contacts.

Figure 1. Contacts matrices giving the numbers (left column) and cumulated durations in seconds (right column) of the contacts
between classes of individuals. In the first line, the matrix entry at row X and column Y gives the total number (resp. duration) of all contacts
between all individuals of class with all individuals of class Y. In the second line, the matrix entry at row X and column Y gives the average number
(resp. duration) of contacts of an individual of class X with individuals of class Y, during the whole study. In the third line, we normalize each matrix
element of the second line matrices by the duration of the study, in days, to obtain average daily numbers and durations of the contacts of an
individual of class X with any individual of class Y. The asymmetry of the matrices in the second and third lines is due to the different numbers of
individuals populating each class. Abbreviations: NUR, paramedical staff (nurses and nurses’ aides); PAT, Patient; MED, Medical doctor; ADM,
administrative staff.
doi:10.1371/journal.pone.0073970.g001
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Numbers and duration of contacts were characterized for each

class of individuals and for individuals belonging to given class

pairs, yielding contact matrices that represent important inputs for

realistic computational models of nosocomial infections. As also

measured in other contexts [17,20,21,23,27], the numbers and

durations of contacts display large variations even across

individuals of the same class: the resulting distributions were

broad, with no characteristic time scale. As a consequence, even

though the average durations of contacts were rather short,

contacts of much longer durations than average occured with non-

negligible frequency.

Contacts involving either two NURs or between NURs and

PATs accounted for the majority of contacts, both in terms of

numbers and of global durations. Very few contacts occurred

between PATs: this might be a specificity of wards with mostly

single rooms, and other wards in which patients are not alone in a

room or in which they move around more might yield more

numerous contacts between PATs. These results are consistent

with previous studies [23,28] carried out in pediatrics, surgery and

intensive care units, and provide additional evidence that nurses

and assistants may be the most essential target group for

prevention measures [27,28].

The detailed information about the number and duration of

contacts also allowed us to highlight the presence of a limited

number of ‘‘super-contactors’’ among HCWs who account for a

large part of all contacts. A large number of contacts could

correspond to different situations, namely to contacts with many

different patients, or to many contacts with few patients. Our

results show that the cumulated number of contacts and the

number of distinct persons contacted are correlated; this indicates

that in the hospital context under study the super-contactors have

contacts with many different patients. They could therefore

potentially play the role of super-spreaders, whose importance in

the spread of infectious agents has been highlighted both

theoretically [29,30] and empirically [31]. This suggests that their

role class should be targeted for prevention measures.

These results are in concordance with the central role of HCWs

in hospital wards, as repeated contacts with patients are often

necessary for the quality of healthcare. However, since outbreaks

of measles and influenza involving this population have been

observed [32,33], the possibility for HCWs to be super-contactors

emphasizes the need to reduce their exposure to infection and to

limit the risk of transmission to patients. This should stimulate the

strict implementation of preventive measures including hand

washing, vaccination, or wearing of masks [34]. In addition,

HCWs could be warned against the risk brought forth by

unnecessary large numbers or long durations of contacts,

especially with patients.

Limiting the contacts of HCWs (either with PATs or with other

HCWs) might however not be feasible without altering the quality

of care. In this respect, the investigation of the temporal evolution

Table 3. Number and duration of contacts between
individuals in the various periods of the days, aggregated over
the observation period of 4 workdays and 4 nights.

Number of
contacts Cumulative duration of contacts

Number (% of
total)

Seconds (% of
total) Minutes Hours

Mornings 9,060 (64.5) 426,860 (65.8) 7,114 118.6

Afternoons 4,165 (29.7) 185,790 (28.7) 3,097 51.6

Days 13,206* (94.1) 612,900 (94.5) 10,215 170.3

Nights 831 (5.9) 35,580 (5.5) 593 9.9

Total 14,037 648,480 10,808 180.1

*19 contacts started the morning and ended the afternoon.
doi:10.1371/journal.pone.0073970.t003

Figure 2. Number of contacts per 1-hour periods. Top row: global number of contacts. Middle and bottom rows: number of contacts involving
patients, healthcare workers and medical doctors. The left plots give the number of contacts as a function of the time since the start of the week
(Monday, 0:00 AM). The right plots display the number of contacts of several types in each day, as a function of the hour of the day, to show the
similarity of the curves in different days. Abbreviations: NUR, paramedical staff (nurses and nurses’ aides); PAT, Patient; MED, Medical doctor; ADM,
administrative staff.
doi:10.1371/journal.pone.0073970.g002
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of the numbers of contacts may help envision and discuss changes

in the organization of care during epidemic or pandemic periods.

The numbers of contacts varied indeed greatly along the course of

each day, clearly highlighting the periods of the day (here, the

mornings) during which transmission could occur with higher

probability. The high numbers of contacts during mornings may

indicate a potential overexposure to infection for PATs and

NURs, and one may imagine a different organization toward a

smoothing of the number of contacts throughout mornings and

afternoons. This would decrease the density of contacts, in

particular between NURs, at each specific moment, while

maintaining the daily number and duration of contacts between

NURs and PATs, and overall tend to limit their overexposure

[35]. The potential efficacy of such or other changes in the

healthcare organization should of course be tested through

numerical simulations of spreading phenomena, and their

feasibility would moreover need to be asserted through discussions

with the staff.

The measurement of contact patterns by means of wearable

sensors presents strengths and limitations that are worth discuss-

ing. Strong advantages are the versatility of the sensing strategy

(i.e., the unobtrusiveness of wearable sensors and the prompt

Figure 3. Contacts matrices between classes of individuals in each morning, afternoon and night. In each matrix, the entry at row X and
column Y gives the total number of contacts of all individuals of class X with all individuals of class Y during each period. Abbreviations: NUR,
paramedical staff (nurses and nurses’ aides); PAT, Patient; MED, Medical doctor; ADM, administrative staff.
doi:10.1371/journal.pone.0073970.g003
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deployability of receivers) and the fact that it does neither require

the constant presence of external observers nor interfere with the

delivery of care in the ward. Another strength lies in the high

spatial and temporal resolution: behavioral differences across role

classes can be detected, and longitudinal studies are possible. High

participation ratios are also crucial: similarly to a previous study in

another hospital [23], the rate of acceptance among HCWs and

patients turned out to be very high (92%). The information

meetings held before the study, providing a clear exposition of the

scientific objectives and of the privacy aspects, most probably

played an important role in achieving such a high participation

rate.

The versatility of a system based on wearable sensors and easily

deployable data receivers makes it possible to repeat similar studies

in different environments and to compare results across contexts

[19]. In particular, several of the reported findings are very similar

to those described in [23] in a different hospital, situated in a

different country, and in a different type of ward (paediatric): large

variability in the cumulative duration of contacts, small number of

contacts between patients, and large numbers and durations of

contacts between NURs. Repeating measurements in the same

ward and in other wards represents an important step towards

understanding the similarities and differences of contact patterns

in hospital settings, and allows to generalize the observations to

more correctly inform models.

The measurement approach we used here has also several

limitations. Contacts were defined as face-to-face proximity,

without any information on physical contact between individuals.

Therefore, the assumption that the number of contacts reflects

disease exposure can be appropriate for respiratory infections such

as influenza, or for similar diseases that can be transmitted by

various routes at a distance of 1 meter around an index case [36].

The use of close-range proximity as a proxy for the transmission of

bacterial infection acquired by cross transmission, such as S aureus

or Enterobacteriacea, is more questionable. Other factors related to

specific attributes of individuals (e.g., vaccination or immunosup-

pression), of the microbial agent (e.g., resistance or virulence) or of

the environment (e.g., specialty of ward) may also alter the

relationship between contact frequency/duration and transmis-

sion. In this respect, a validation with simultaneous direct

observation and human annotation of the contacts would be of

particular interest.

Finally, it is difficult to assess whether individuals modified their

behavior in response to wearing RFID badges, but direct

observation indicated that HCWs were focusing on their daily

activities and most probably were not influenced by the presence

of the badges. Badges were not proposed to visitors and this

potential external source of infection was not studied.

Conclusions and Future Work
This study complements previous work [22,23,27,28,30,34] and

provides data that can be used to explore the spread of infection in

confined settings through mathematical and computational

modeling. Models of transmission within hospitals might be based

on contact matrices such as those presented here, and used to

better understand the epidemiology of different types of microbial

agents, to assess the impact of control measures, and to help

improve the delivery of care during emergency epidemic

situations. In our study, specific mixing patterns were observed

between different classes of individuals, showing a clear departure

from homogeneous mixing, as it is expected in a hospital setting,

and highlighting the relevance of correctly informed contact

matrices. Moreover, although an important turnover between the

persons in contact with a given individual was observed across

different days, and although the average contact durations

between different classes of individuals varied between mornings,

Figure 4. Number of distinct patients contacted, number and cumulative duration (in seconds) of contacts with at least one patient
for each HCW (NURs and MEDs). ‘‘Super-contactors’’ are defined as individuals with the highest number of contacts. Here for instance, six HCWs
account for more than 40% of the cumulative total of contact numbers and durations. Abbreviations: HCW, healthcare worker; NUR, paramedical staff
(nurses and nurses’ aides); MED, Medical doctor.
doi:10.1371/journal.pone.0073970.g004
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afternoons and nights, the contact patterns remained statistically

very similar across successive days. These results suggest that, in

order to correctly inform computational models, data collected

over just a few hours might be insufficient, but that measures

lasting 48 hours would be sufficient to evaluate the statistical

properties of contact patterns as well as the mixing patterns

between individual classes, and to estimate the similarity between

the contacts of an individual across days. The statistical features of

the gathered data could then be used to model contact patterns

over longer time scales.

The scarcity of contact data [10,37] calls for further measure-

ment campaigns to validate and consolidate the results across

other hospital units, other contexts, and over longer periods of

time. Additional data sets would also be useful to build and test

proxies that could replace systematic detailed measurement of

contact patterns, such as the ones put forward in [15,38,39].

In order to explore the relationship between complex contacts

network and the spreading of infections, it would be particularly

interesting to collect simultaneously high-resolution contact data

and microbiological data describing the infection status of

participating individuals. Combining these heterogeneous sources

of information within appropriate statistical models would allow

elucidating the relation between the risk of disease transmission

and contacts patterns, in order to disentangle transmission

likelihood from contact frequency. Finally, feedback of the results

to HCWs could be an innovative pedagogical tool in health care

settings.

Supporting Information

File S1 Dataset S1. Time-resolved contact network for day 1,

in gexf format. Each node corresponds to one RFID tag and has

an attribute ‘‘role’’ that indicates the role of the individual wearing

the tag: patient (PAT), medical doctor (MED), paramedical staff

(NUR) or administrative staff (ADM). Each edge has 3 attributes:

‘‘Ncontacts’’, the number of contact events between the corre-

sponding RFID tags; ‘‘cumulativeduration’’, the total duration of

these contacts, and ‘‘list_contacts’’, the explicit list of time intervals

during which the individuals were in contact. Dataset S2. Time-

resolved contact network for day 2, in gexf format. Each node

corresponds to one RFID tag and has an attribute ‘‘role’’ that

indicates the role of the individual wearing the tag: patient (PAT),

medical doctor (MED), paramedical staff (NUR) or administrative

staff (ADM). Each edge has 3 attributes: ‘‘Ncontacts’’, the number

of contact events between the corresponding RFID tags;

‘‘cumulativeduration’’, the total duration of these contacts, and

‘‘list_contacts’’, the explicit list of time intervals during which the

individuals were in contact. Dataset S3. Time-resolved contact

network for day 3, in gexf format. Each node corresponds to one

RFID tag and has an attribute ‘‘role’’ that indicates the role of the

individual wearing the tag: patient (PAT), medical doctor (MED),

paramedical staff (NUR) or administrative staff (ADM). Each edge

has 3 attributes: ‘‘Ncontacts’’, the number of contact events

between the corresponding RFID tags; ‘‘cumulativeduration’’, the

total duration of these contacts, and ‘‘list_contacts’’, the explicit list

of time intervals during which the individuals were in contact.

Dataset S4. Time-resolved contact network for day 4, in gexf

format. Each node corresponds to one RFID tag and has an

attribute ‘‘role’’ that indicates the role of the individual wearing

the tag: patient (PAT), medical doctor (MED), paramedical staff

(NUR) or administrative staff (ADM). Each edge has 3 attributes:

‘‘Ncontacts’’, the number of contact events between the corre-

sponding RFID tags; ‘‘cumulativeduration’’, the total duration of

these contacts, and ‘‘list_contacts’’, the explicit list of time intervals
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during which the individuals were in contact. Dataset S5. Time-

resolved contact network for day 5, in gexf format. Each node

corresponds to one RFID tag and has an attribute ‘‘role’’ that

indicates the role of the individual wearing the tag: patient (PAT),

medical doctor (MED), paramedical staff (NUR) or administrative

staff (ADM). Each edge has 3 attributes: ‘‘Ncontacts’’, the number

of contact events between the corresponding RFID tags;

‘‘cumulativeduration’’, the total duration of these contacts, and

‘‘list_contacts’’, the explicit list of time intervals during which the

individuals were in contact.

(ZIP)
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