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ABSTRACT

This paper introduces Independent Component Analy-
sis (ICA) to the Incoherent Target Decomposition theory
(ICDT) through the particular application - snow cover
analysis. Given that the equivalence of the currently
used eigenvalue decomposition and Principal Compo-
nent Analysis (PCA) can be stated under certain con-
straints, the goal is to generalise ICDT in the context
of Blind Source Separation (family of techniques com-
prising both PCA and ICA). This generalisation allows
independent non-orthogonal backscattering mechanisms
retrieval in case of non-Gaussian polarimetric clutter. The
obtained independent target vectors are parametrized us-
ing the Target Scattering Vector Model (TSVM) [1]. The
algorithm is applied on a distributed target - snow cover,
and the obtained parameters are illustrated and appropri-
ately interpreted using the Poincaré sphere.

Key words: target decomposition, independent compo-
nent analysis, Poincaré sphere, snow cover.

1. INTRODUCTION

Most of the existing Incoherent Target Decompositions
(Touzi [1], Cloude and Pottier [2] etc.) rely on eigenvec-
tor decomposition of the space averaged coherency ma-
trix. Each eigenvector represents the target vector of a
dominant single scatterer, while the corresponding eigen-
value defines its contribution to the total scattering [3].
The eigenvector parameterisation using target scattering
vector model (TSVM) ensures roll-invariance in case of
both symmetric and non-symmetric targets. Using these
parameters, it is possible to represent the dominant single
scatterer on the Poincare sphere. Its physical properties
can be inferred based on its position on the sphere.

The obtained eigenvectors are statistically non-
correlated, unless the POLSAR clutter is Gaussian,
when it can be claimed they are independent as well.
However, in case of high resolution textured POL-
SAR data, when the target vector is modelled as a
Non-Gaussian random vector [4], the difference be-

tween the statistical non-correlation and the statistical
independence occurs.

By using Independent Component Analysis [5] over mul-
tiple sets of target vectors, instead of the eigenvalue de-
composition of their covariance matrix, we are recover-
ing independent rather than non-correlated backscatter-
ing mechanisms, in the form of non-orthogonal target
vectors. The contribution of each of the mechanisms to
the total backscattering is estimated through the squared
norms of the obtained vectors [6]. The parametrization
which follows is performed using the Target Scattering
Vector Model (TSVM) [1]. Algorithm application on
two L-band ALOS POLSAR images acquired in the Cha-
monix valley in France, allowed us to characterize the
present snow cover in terms of the obtained TSVM pa-
rameters. The discrimination between wet snow, on one
side, and dry snow and bare ground on the other side is
achieved through the symmetry properties of the most
dominant independent component. Using ”global ap-
proach” (ICA applied on previously statistically defined
classes) we attributed wet snow cover to be a symmet-
ric target. In further analysis, using a ”local approach”
(ICA applied on moving window) we illustrate the wet
snow polarimetric behaviour using the roll-invariant pa-
rameters representation of the same component on the
Poincaré sphere [1].

In Section 2 we introduce the two BSS techniques we are
referring to through this article: PCA and ICA. Section
3 provides comprehensive description of the method we
use. In Section 4 we present the results and the following
interpretations in case of the application on distributed
target. Finally, the last section contains conclusions and
further work , influenced partly by the feedback received
during the workshop.

2. BLIND SOURCE SEPARATION (BSS)

Blind Source Separation (BSS) aims to recover the source
signals from their mixture without detailed knowledge of
the mixing process [5]. The linear mixing model is gen-
erally referred to the time dependent vector (x(t)) as the
observation data, but can be equally applied in the case
of space dependency:
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where s(i, j) is the vector containing sources
s1(i, j), s2(i, j), s3(i, j)...sn(i, j) while A is the
mixing matrix having dimensions n × n and providing
information about the share of the given sources in the
mixture.

2.1. Principal Component Analysis (PCA)

If the estimation of the mixing matrix and the sources
vector is limited on using the second order statistics of the
observation data, the most representative BBS technique
proves to be the Principal Component Analysis (PCA).
In this case, the mutual decorrelation of the sources is
ensured.

It is demonstrated [7] that the decorrelation of the sources
is ensured by replacing the columns of the mixing matrix
with the un-normalized eigenvectors (multiplied by cor-
responding eigenvalues) of the observation vector covari-
ance matrix. The product of this matrix with any unitary
matrix will lead to the same effect, but the optimal results
in terms of energy of the components will be lost. There-
fore, we can state there is a sort of equivalence between
the PCA and the classic eigenvalue decomposition.

2.2. Independent Component Analysis (ICA)

By relaying on higher order statistical moments, it is
possible to estimate the vector of mutually independent
sources and the corresponding mixing matrix. The tech-
nique providing this possibility is called Independent
Component Analysis [5]. The necessary constraint is the
Non-Gaussian nature of the observation data and conse-
quently Non-Gaussian nature of the estimated sources. If
this condition is not satisfied, the estimation of the direc-
tion of the mixing matrix proves to be impossible (multi-
variate probability density of independent Gaussian vari-
ables is completely symmetric).

Principally, the concept is derived from the Central
Limit Theorem (classical result in probability theory). It
states that the distribution of the sum of two indepen-
dent random variables will always be closer to Gaussian
than the original variables. Therefore, the independence
of the component is ensured by maximizing the Non-
Gaussianity of the sources.

There are several criteria of Gaussianity measure and
therefore several approaches, used in the ICA algorithm
we are applying in this stage of our research - FastICA
[8]:

1. Maximizing kurtosis

Kurtosis, in its excess form, is defined as the nor-
malized, standardized fourth statistical moment:

kurt(s) =
E{s4}
E{s2}2

− 3 (2)

Given that the fourth statistical moment of a Gaus-
sian variable equals to 3E{s2}2, its kurtosis is zero.
Therefore, by maximizing the kurtosis of each of the
sources, we are minimizing their Gaussian nature
and maximizing their independence with respect to
the other sources.

2. Maximizing negentropy

Negentropy of a random variable is a quantity de-
fined as a difference between the entropy of a Gaus-
sian variable (ν) and the entropy of a variable itself
(s). However, ICA is based on approximated negen-
tropy, defined using non-quadratic function G(x)
[8]:

J(s) ∝ [E{G(s)} − E{G(ν)}]2 (3)

Given that a Gaussian random variable has the
largest entropy among all the random variables with
the same variance, the goal is to estimate as Non-
Gaussian source as possible, by maximizing J(s).

3. Minimizing mutual information

Mutual information is a natural measure of the de-
pendence between random variables:

I(s1, s2, ...sn) =

m∑
i=1

H(si)−H(s) (4)

The aim in this case is to achieve zero value, which
indicates independence between the sources.

4. Maximum Likelihood Estimation

By a priori knowing the statistical nature (sub or su-
pergaussian distribution) of the sources (fi(si)), it is
possible to rely on the log-likelihood function [9]:

L =

T∑
t=1

n∑
i=1

log fi(wTi x(t)) + T log |det W| (5)

where W = (w1,w2, ...wn)T represents the in-
verse mixing matrix (A−1). Through the maximiza-
tion of L we are estimating the mixing matrix ensur-
ing independence.



Figure 1. Applying ICA algorithm

3. METHOD DESCRIPTION

The proposed method allowing the characterization of the
independent components consists of three steps. Primar-
ily, it is necessary to select the set of the observation tar-
get vectors. This is done either by performing the sta-
tistical classification [10] and using the resulting classes
as the sets, either by using a sliding window. The Fas-
tICA algorithm based on kurtosis maximization criterion
[8] is then applied on each of the sets and target vectors
of independent components are extracted as the columns
of the mixing matrix. Finally, each of the vectors is be-
ing characterized using Target Scattering Vector Model
(TSVM).

3.1. Step I: Observation data selection

In the first step, we can distinguish two possible ap-
proaches concerning the observation data selection: the
global and the local approach.

Statistical classification, named also the global approach,
uses Riemannian distances in the covariance space to es-
timate the barycenters of the classes [10]. Pixels are as-
signed to the classes using the Wishart criterion. Finally,
each class represents a set of observations which are due
to be characterized by one mixing matrix.

The local approach is a rather classical one: sliding win-
dow allows to characterize each local neighbourhood by
a mixing matrix.

3.2. Step II: Applying ICA algorithm

Estimated, either using the whole class or the local neigh-
bourhood, the mixing matrix is interpreted as a set of the
target vectors of the most dominant independent com-
ponents (fig. 1). Given that ICA, unlike PCA, is capa-
ble of retrieving the mixing matrix with non-orthogonal

columns [7], the estimated independent scattering mech-
anisms are not necessarily mutually orthogonal.

The FastICA algorithm, applied in this article, is based on
kurtosis maximization [8]. It is a rapidly converging algo-
rithm, based on a fixed point iteration scheme for finding
the maximum of Non-Gaussianity.

Given that the variances of the independent sources are
fixed to unity [8], the contribution of each of the compo-
nents to the total backscattering is estimated through the
squared norms of the mixing matrix columns. The poten-
tial issue occurring here and being a subject of our current
research is the roll-invariance of this important parameter.

3.3. Step III: TSVM parametrization

Each of the columns is parametrised using Target Scatter-
ing Vector Model (TSVM) [1]. Resulting from the pro-
jection of Kennaugh-Huynen condiagonalization onto the
Pauli basis, TSVM allows parametrization of the target
vectors in terms of rotation angle (ψ), maximum ampli-
tude (m), helicity (τm), symmetric scattering type mag-
nitude (αs) and symmetric scattering type phase (Φαs ).
The last four parameters are roll-invariant.

[
ac1i
ac2i
ac3i

]
= mc

i |aci |mci e
jΦcsi

[
1 0 0
0 cos 2ψci − sin 2ψci
0 sin 2ψci cos 2ψci

]

·

 cosαcsi cos 2τ cmi
sinαcsie

jΦcαsi

−j cosαcsi sin 2τ cmi

 (6)

Using these parameters, it is possible to represent each
independent target vector on the Poincaré sphere (fig. 3).
The difference, with respect to the Touzi decomposition
[1], is that the vectors do not form an orthogonal basis.
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Figure 2. L-band ALOS POLSAR quad-pol images, Chamonix, Mont Blanc, France, 26/02/2008: (a) Image I; (b) Image
II; (c) statistical classification of image I; (d) statistical classification of image II;

4. APPLICATION ON SNOW COVER ANALYSIS

The distributed target of interest in this article is the snow
cover. The presented method is applied on two ALOS
POLSAR L-band images acquired on 26 February, in
2008, over the Chamonix valley in France, near Mont
Blanc (Fig. 2).

Initially, the global approach has been applied, result-
ing in eight distinct classes per image (Fig. 2), sixteen
in total. The analysis of the classes, based on the local
temperature, precipitation data and terrain model, leaded
to the labelling provided in Table 1. Given that the ap-
plied classification was unsupervised, the correspondence
is not strictly exact, except for the foldover which is very
well segmented.

After parametrizing the dominant independent compo-
nents, estimated from the sets of target vectors defined in
the classification, the helicity parameter (τm) indicated

Label Classes (Image/Class)
Wet snow I/1, II/2, II/3
Dry snow I/2, I/3

Bare ground II/1
Foldover the rest

Table 1. Labelling of the classes obtained after Step I
(global approach)

the difference in target symmetry between wet snow
cover, on one side, and dry snow cover and bare ground
on the other side (Fig. 3). Wet snow is recognized as a
symmetric target, unlike dry snow and bare ground (Table
2), which show similar behaviour in terms of symmetry
(non-symmetric targets). This result could be justified by
the fact that the most dominant backscattering component
in case of a dry snow is the underlying ground component
[11], causing the similarity noticed in terms of symmetry.
In case of a wet snow, it is the snow surface which dom-
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Figure 3. Extracted parameters: (a,b) helicity maps, (c,d) Poincaré sphere representation of the wet snow classes

inates, being significantly less rough than the underlying
ground.

On the other side, symmetric scattering magnitude and
phase (αs and Φαs ) did not appear to match in case of the
wet snow classes (Fig. 3). Therefore, the global approach
has been replaced with the local one, within each of the
wet snow classes (Fig. 4). The distribution of helicity pa-
rameters was concentrated around zero value, confirming
the previous result of the global estimation.

The mapped Poincaré sphere in case of all three wet snow
classes, point out the high concentration of dipoles, sym-
metric cylinders, symmetric narrow dihedrals etc. Sym-
metric trihedrals, dihedrals and 1/4 wave scatterers are
almost completely absent. This sort of polarimetric be-
haviour could indicate the dominance of snow surface

backscattering, but with certain contribution of volume
backscattering component (due to the presence of dipole
elementary reflectors).

Class/Parameter I/1 II/2 II/3
τm −5.2656◦ 5.9644◦ 3.2994◦

αs −59.27◦ 14.81◦ −7.34◦

Φαs −35.41◦ 37.10◦ −21.22◦

Table 2. Wet snow classes parametrization
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Figure 4. The results in case of a local approach: (a) class I, image I; (b) class II, image II; (c) class III, image II; (d,
e, f) top cross section of the symmetric target Poincaré sphere; (g, h, i) first lateral cross section of the symmetric target
Poincaré sphere; (j, k, l) second lateral cross section of the symmetric target Poincaré sphere



5. CONCLUSION AND PERSPECTIVES

This article introduces a novel target decomposition
method, able to recover independent, non-orthogonal
backscattering mechanisms, through the application on
the snow cover analysis. By analysing extracted roll-
invariant parameters of the dominant independent com-
ponents, we managed to discriminate between wet snow
on one side and dry snow and bare ground on the other
side, based on the symmetry properties. This result can
be interpreted as a consequence of the underlying ground
backscattering dominance in case of a dry snow. Further
wet snow analysis, illustrated using the Poincaré sphere,
revealed the dominance of dipole elementary scatter-
ers, indicating that, aside from the strong snow surface
backscattering, the volume influence exists as well. This
can be justified by the significant penetration characteris-
tic for the L band.

Further work will go in three principal directions:

• Roll-invariance analysis of the maximum amplitude
parameter (squared norm of the mixing matrix col-
umn),

• Comparison between introduced ICA criteria (kur-
tosis, negentropy, mutual information, maximum
likelihood estimation), in the context of polarimet-
ric decomposition,

• More profound physical interpretation of the ob-
tained results in case of snow as a target.

As well, following the advice of Dr. Touzi, the second
dominant components, especially in the context of helic-
ity, is going to be analysed.
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