
HAL Id: hal-00862416
https://hal.science/hal-00862416v1

Preprint submitted on 16 Sep 2013 (v1), last revised 18 Nov 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A probabilistic and deterministic modular algorithm for
computing Groebner basis over .

Bernard Parisse

To cite this version:
Bernard Parisse. A probabilistic and deterministic modular algorithm for computing Groebner basis
over .. 2013. �hal-00862416v1�

https://hal.science/hal-00862416v1
https://hal.archives-ouvertes.fr


A probabilistic and deterministic modular
algorithm for computing Groebner basis over Q.

Bernard Parisse
Institut Fourier

UMR 5582 du CNRS
Université de Grenoble I

2013

Abstract

Modular algorithm are widely used in computer algebra systems (CAS), for
example to compute efficiently the gcd of multivariate polynomials. It is known to
work to compute Groebner basis over Q, but it does not seem to be popular among
CAS implementers. In this paper, I will show how to check a candidate Groebner
basis (obtained by reconstruction of several Groebner basis modulo distinct prime
numbers) with a given error probability, that may be 0 if a certified Groebner basis
is desired. This algorithm is now the default algorithm used by the Giac/Xcas com-
puter algebra system with competitive timings, thanks to a trick that can accelerate
computing Groebner basis modulo a prime once the computation has been done
modulo another prime.

1 Introduction

During the last decades, considerable improvements have been made in CAS like
Maple or specialized systems like Magma, Singular, Cocoa, Macaulay... to compute
Groebner basis. They were driven by implementations of new algorithms speeding up
the original Buchberger ([3]) algorithm: Gebauer and Möller criterion ([6]), F4 and F5
algorithms from J.-C. Faugère ([4], [5]), and are widely described in the literature if the
base field is a finite field. Much less was said about computing over Q. It seems that
implementers are using the same algorithm as for finite fields, this time working with
coefficients in Q or in Z, despite the fact that an efficient p-adic or Chinese remainder-
ing algorithm were described as soon as in year 2000 by E. Arnold ([1]). The reason
might well be that these modular algorithms suffer from a time-consuming step at the
end: checking that the reconstructed Groebner basis is indeed the correct Groebner
basis.

Section 2 will show that if one accepts a small error probability, this check may be
fast, so we can let the user choose between a fast conjectural Groebner basis to make his
own conjectures and a slower certified Groebner basis once he needs a mathematical
proof.

1



Section 3 will explain learning, a process that can accelerate the computation of
a Groebner basis modulo a prime pk once the same computation but modulo another
prime p has already been done ; learning is an alternative to the F5 algorithm in or-
der to avoid computing useless critical pairs that reduce to 0. The idea is similar to
F4remake by Joux-Vitse ([7]) used in the context of computing Groebner basis in
large finite fields.

In section 4, we will show in more details how the gbasis algorithm is implemented
in Giac/Xcas ([8]) and show that - at least for the classical academic benchmarks Cyclic
and Katsura - the deterministic modular algorithm is competitive or faster than the best
open-source implementations and the modular probabilistic algorithm is comparable to
Maple (but slower than Magma), while computation modulo p are faster for character-
istics in the 24-31 bits range.

2 Checking a reconstructed Groebner basis

Let f1, .., fm be polynomials in Q[x1, .., xn], I =< f1, ..., fm > be the ideal generated
by f1, ..., fn. Without loss of generality, we may assume that the fi have coefficients in
Z by multiplying by the least common multiple of the denominators of the coefficients
of fi. We may also assume that the fi are primitive by dividing by their content.

Let < be a total monomial ordering (for example revlex the total degree reverse
lexicographic ordering). We want to compute the Groebner basis G of I over Q (and
more precisely the inter-reduced Groebner basis, sorted with respect to <). Now con-
sider the ideal Ip generated by the same fi but with coefficients in Z/pZ for a prime
p. Let Gp be the Groebner basis of Ip (also assumed to be inter-reduced, sorted with
respect to <, and with all leading coefficients equal to 1).

Assume we compute G by the Buchberger algorithm with Gebauer and Möller cri-
terion, and we reduce in Z (by multiplying the s-poly to be reduced by appropriate
leading coefficients), if no leading coefficient in the polynomials are divisible by p, we
will get by the same process but computing modulo p the Gp Groebner basis. There-
fore the computation can be done in parallel in Z and in Z/pZ except for a finite set
of unlucky primes (since the number of intermediate polynomials generated in the al-
gorithm is finite). If we are choosing our primes sufficiently large (e.g. about 231), the
probability to fall on an unlucky prime is very small (less than the number of generated
polynomials divided by about 231, even for really large examples like Cyclic9 where
there are a few 104 polynomials involved, it would be about 1e-5).

The Chinese remaindering algorithm is as follow: compute Gp for several primes,
for all primes that have the same leading monomials in Gp (i.e. if coefficient values
are ignored), reconstruct G∏

pj
by Chinese remaindering, then reconstruct a candidate

Groebner basis Gc in Q by Farey reconstruction. Once it stabilizes, do the checking
step described below, and return Gc on success.

Checking step : check that the original fi polynomials reduce to 0 with respect to
Gc and check that Gc is a Groebner basis.

Theorem 1 (Arnold) If the checking step succeeds, then Gc is the Groebner basis of I .

2



This is a consequence of ideal inclusions (first check) and dimensions (second
check), for a complete proof, see [1].

Probabilistic checking algorithm: instead of checking that s-polys of critical pairs
of Gc reduce to 0, check that the s-polys reduce to 0 modulo several primes that do not
divide the leading coefficients of Gc and stop as soon as the inverse of the product of
these primes is less than a fixed ε > 0.

Deterministic checking algorithm: check that all s-polys reduce to 0 overQ. This
can be done either by integer computations (or even by rational computations, I have
not tried that), or by reconstruction of the quotients using modular reduction to 0 over
Z/pZ for sufficiently many primes. Once the reconstructed quotients stabilize, we can
check the 0-reduction identity, and this can be done without computing the products
quotients by elements of Gc if we have enough primes (with appropriate bounds on the
coefficients of Gc and the lcm of the denominators of the reconstructed quotients).

3 Speeding up by learning from previous primes

Once we have computed a Groebner basis modulo an initial prime p, if p is not an
unlucky prime, then we can speedup computing Groebner basis modulo other lucky
primes. Indeed, if one s-poly reduce to 0 modulo p, then it reduces most certainly
to 0 on Q (non zero s-poly have in general several terms, cancellation of one term
mod p has probability 1/p, simultaneous cancellation of several terms of a non-zero
s-poly modulo p is highly improbable), and we discard this s-poly in the next primes
computations. We name this speedup process learning. It can also be applied on other
parts of the Groebner basis computation, like the symbolic preprocessing of the F4
algorithm, where we can reuse the same collection of monomials that were used for the
first prime p to build matrices for next primes (see Algorithm F4 in the next section).

If we use learning, we have no certification that the computation ends up with
a Groebner basis modulo the new primes. But this is not a problem, since it is not
required by the checking correctness proof, the only requirement is that the new gen-
erated ideal is contained in the initial ideal modulo all primes (which is still true) and
that the reconstructed Gc is a Groebner basis.

4 Giac/Xcas implementation and benchmarks

We describe here briefly some details of the Giac/Xcas gbasis implementation and give
a few benchmarks.

The optimized algorithm runs with revlex as < ordering if the polynomials have at
most 15 variables (it’s easy to modify for more variables, adding multiples of 4, but this
will slow down a little if there are less variables). Partial and total degrees are coded
as 16 bits integers (hence the 15 variables limit, since 1 slot of 16 bits is kept for total
degree). Modular coefficients are coded as 31 bit integers (or 24).

The F4 algorithm is implemented modulo primes smaller than 231 using total de-
gree as selection criterion for critical pairs.
Algorithm F4 modulo a prime

3



1. Initialize the basis to the empty list, and a list of critical pairs to empty

2. Add one by one all the fi to the basis and update the list of critical pairs with
Gebauer and Möller criterion, by calling the gbasis update procedure (described
below step 9)

3. Begin of a new iteration:
All pairs of maximal total degree are collected to be reduced simultaneously,
they are removed from the list of critical pairs.

4. The symbolic preprocessing step begins, a list of monomials is created by gluing
together all monomials of the corresponding s-polys (this is done with a heap
data structure).

5. The list of monomials is “reduced” by division with respect to the current basis,
using heap division (like Monagan-Pearce) without taking care of the real value
of coefficients. This gives a list of all possible remainder monomials and a list of
all possible quotient monomials and a list of all quotient times corresponding
basis element monomial products. This last list together with the remainder
monomial list is the list of all possible monomials that may be generated reducing
the list of critical pairs of maximal total degree, it is ordered with respect to <.
We record these lists for further primes during the first prime computation.

6. The list of quotient monomials is multiplied by the corresponding elements of
the current basis, this time doing the coefficient arithmetic. The result is recorded
in a sparse matrix, each row is a list of pairs [coefficients, index of monomial],
where the index is relative to the ordered list of possible monomials. We sort the
matrix by decreasing order of leading monomial.
This step is the most memory consuming step. This is the step where it may be
interesting to compress data. For example, if the prime is less than1 224, instead
of using a 32 bit signed integer for the coefficient and a 32 bit unsigned integer
for the index, one can use a 25 bit signed integer for the coefficient and a 7 bit
unsigned shift from previous index.

7. Each s-polynomial is written as a dense vector with respect to the list of all
possible monomials, and reduced with respect to the sparse matrix, by decreasing
order with respect to <. (To avoid reducing modulo p each time, we are using a
dense vector of 128 bits integers on 64 bits architectures, and we reduce mod p
only at the end of the reduction. If we work on 24 bit signed integers, and have
less than 215 rows, we can use a dense vector of 63 bits signed integer).

8. Then inter-reduction happens on all the dense vectors representing the reduced
s-polynomials, this is dense row reduction to echelon form. Care must be taken
at this step to keep row ordering when learning is active.

1This is the limit for small modular Groebner basis computation in magma according to Allan Steel
Groebner basis webpage [9]

4



9. procedure gbasis update
Each non zero row will bring a new entry in the current basis (we record zero re-
ducing pairs during the first prime iteration, this information will be used during
later iterations with other primes to avoid computing and reducing useless criti-
cal pairs). New critical pairs are created with this new entry (discarding useless
pairs by applying Gebauer-Möller criterion). An old entry in the basis may be
removed if it’s leading monomial has all partial degrees greater or equal to the
leading monomial corresponding degree of the new entry. Old entries are also
reduced with respect to the new entries (this can be done one by one, or all to-
gether like for the simultaneous reduction of the s-polynomials, but without the
final dense row reduction step).

10. If there are new critical pairs remaining start a new iteration (step 3). Otherwise
the current basis is the Groebner basis.

Modular algorithm

1. Set a list of reconstructed basis to empty.

2. Learning prime: Take a prime number of 31 bits (or a 24 bits prime to spare
memory for the first run), run the F4 algorithm modulo this prime recording
symbolic preprocessing data and critical pairs reducing to 0 information.

3. Loop begin: Take a prime of 31 bits size. Run the F4 algorithm. Check if the out-
put has the same leading terms than one of the chinese remainder reconstructed
outputs from previous primes, if so combine them by Chinese remaindering and
go to step 4, otherwise add a new entry in the list of reconstructed basis and con-
tinue with next prime at step 3 (clearing all learning data is probably a good idea
here).

4. If the Farey Q-reconstructed basis is not identical to the previous one, go to the
loop iteration step 3. Otherwise run the final check : the initial polynomials
fi must reduce to 0 modulo the reconstructed basis and the reconstructed basis
s-polys must reduce to 0 (this is done on Q either directly or by modular recon-
struction for the deterministic algorithm, or checked modulo several primes for
the probabilistic algorithm). On success output the Q Groebner basis, otherwise
continue with next prime at step 3.

Benchmarks

Comparison of giac (1.1.0-11) with Singular 3.1 (from sage 5.10) on Mac OS X.6,
Dual Core i5 2.3Ghz, RAM 2*2Go at 1333Mhz :

• Mod timings were computed modulonextprime(2^24) and modulo 1073741827
(nexprime(2^30)).

• Probabilistic check on Q depends linearly on log of precision, two timings are
reported, one with error probability less than 1e-7, and the second one for
1e-16.

5



• Check on Q in giac can be done with integer or modular computations hence two
times are reported.

• Cyclic9 estimation was done with giac compiled with max 11 variables (instead
of 15), 1 learning run and 2 next primes run, using size of coefficients reported
in [4].

• >> means timeout (3/4h or more) or memory exhausted (Katsura12 modular
1e-16 check with giac) or test not done because it would obviously timeout
(e.g. Cyclic8 or 9 with Singular)

giac mod p giac singular giac Q prob. giac Q singular
24, 31 bits run2 mod p 1e-7, 1e-16 certified Q

Cyclic7 0.74, 0.91 0.18 2.0 6.6, 7.2 23.2, 39.3 >2700
Cyclic8 11.9, 16.5 3.6 52.5 193, 198 346, 786 »
Cyclic9 1220, 1300 455 » est. 1 day » »

Katsura8 0.078, 0.088 0.009 0.2 0.48, 0.66 6.21, 4.58 4.9
Katsura9 0.4, 0.46 0.05 1.37 3.1, 4.2 54, 37.8 41
Katsura10 2, 2.6 0.29 11.65 20, 26.7 441, 335 480
Katsura11 13.4, 17.4 2 86.8 170, 210 » »
Katsura12 91, 120 13 885 1300, ? » »

This leads to the following observations :

• Computation modulo p for 24 to 31 bits is faster that Singular, but seems also
faster than magma and maple.

• The probabilistic algorithm on Q is much faster than Singular on these examples.
Compared to maple16, it is reported to be as fast for Katsura10, and about 2
times slower for Cyclic8. Compared to magma, it is about 5 to 7 times slower
(strangely enough, magma timings are faster on Q than on Z/pZ!).

• The deterministic modular algorithm is much faster than Singular for Cyclic ex-
amples, and almost as fast for Katsura examples.

• Certification is the most time-consuming part of the process (except for Cyclic8).
Integer certification is significantly faster than modular certification for Cyclic
examples, and almost as fast for Katsura.

Example of Giac/Xcas code:

cyclic5 := [x*y*z+y*z*t+z*t*u+t*u*x+u*x*y,

x*y*z*t+y*z*t*u+z*t*u*x+t*u*x*y+u*x*y*z,

x*y*z*t*u-1, x+y+z+t+u, x*y+y*z+z*t+t*u+u*x];

p1:=nextprime(2^24); p2:=nextprime(2^30);

// debug_infolevel(1); // uncomment to show intermediate steps

time(G1:=gbasis(cyclic5 % p1,indets(cyclic5),revlex));

time(G2:=gbasis(cyclic5 % p2,indets(cyclic5),revlex));

proba_epsilon:=0; // set to 1e-7 for probabilistic algorithm.

time(H1:=gbasis(cyclic5,indets(cyclic5),revlex));

6



time(H2:=gbasis(cyclic5,indets(cyclic5),revlex,modular_check));

size(G1),size(G2),size(H1),size(H2);

write("Hcyclic5",H1);

Note that for small examples like Cyclic5 above, the system performs always the de-
terministic check (this is the case if the number of elements of the reconstructed basis
to 50).

5 Conclusion

I have described some enhancements to a modular algorithm to compute Groebner
basis over Q which, combined to F4, gives a sometimes much faster open-source im-
plementation than state-of-the-art open-source implementations for the deterministic
algorithm. The probabilistic algorithm is also not ridiculous compared to closed-source
implementations, while being much easier to implement (about 5K lines of code, while
Fgb is said to be 200K lines of code, no need to have highly optimized sparse linear
algebra).

This should speed up conjectures with the probabilistic algorithm and automated
proofs using the deterministic algorithm (e.g. for the Geogebra theorem prover [2]),
either using Giac/Xcas or adapting it’s implementation to other open-source systems.
With fast closed-source implementations (like maple or magma), there is no certifi-
cation that the result is a Groebner basis : there might be some hidden probabilistic
step somewhere, in integer linear system reduction for example. I have no indication
that it’s the case but one can never know if the code is not public, and at least for my
implementation, certification might take a lot more time than computation.

There is still room for additions and improvements

• it should be easy to parallelize this algorithm, since each prime run can be done
on a separate processor/core. But this could also be memory-hungry and it is not
clear that it would be faster for big examples (like Cyclic9).

• a first learning run could be done modulo a 24 bits prime, and the collected info
used for f4 on Q as a probabilistic alternative to F5.

• FGLM conversion is still slow in Giac/Xcas,

References

[1] E. A. Arnold. Modular algorithms for computing Gröbner bases . Journal of

Symbolic Computation, 35(4):403 – 419, 2003.

[2] F. BOTANA, Z. KOVÁCS, and S. WEITZHOFER. Implementing theorem proving
in geogebra by using a singular webservice.

[3] B. Buchberger. Grobner bases: An algorithmic method in polynomial ideal theory.
Multidimensional systems theory, pages 184–232, 1985.

7



[4] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Jour-

nal of Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[5] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of the 2002 international symposium on

Symbolic and algebraic computation, ISSAC ’02, pages 75–83, New York, NY,
USA, 2002. ACM.

[6] R. Gebauer and H. M. Möller. On an installation of buchberger’s algorithm. Jour-

nal of Symbolic Computation, 6(2–3):275 – 286, 1988.

[7] A. Joux and V. Vitse. A variant of the F4 algorithm. In Topics in Cryptology–CT-

RSA 2011, pages 356–375. Springer, 2011.

[8] B. Parisse and R. D. Graeve. Giac/Xcas computer algebra system.
http://www-fourier.ujf-grenoble.fr/˜parisse/giac_fr.html,
2013.

[9] A. Steel. Gröbner Basis Timings Page.
http://magma.maths.usyd.edu.au/˜allan/gb/, 2004.

8


	Introduction
	Checking a reconstructed Groebner basis
	Speeding up by learning from previous primes
	Giac/Xcas implementation and benchmarks
	Conclusion

