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Abstract. We present a method based on the use of toroidal harmonics and on

a modelization of the poloidal field coils and divertor coils for the 2D interpolation

and extrapolation of discrete magnetic measurements in a tokamak. The method is

generic and can be used to provide Cauchy boundary conditions needed as input by

a fixed domain equilibrium reconstruction code like Equinox [1]. It can also be used

to extrapolate the magnetic measurements in order to compute the plasma boundary

itself. The proposed method and algorithm are detailed in the paper and results from

numerous numerical experiments are presented. The method is foreseen to be used in

the real time plasma control loop on the WEST tokamak [2].

1. Introduction

Equilibrium reconstruction codes are fundamental for the analysis and the control of

fusion experiments in a tokamak [3]. The state variable of interest in the modelization of

such an equilibrium under the usual axisymmetric assumption is the poloidal flux ψ(r, z)

which is related to the poloidal magnetic field by the relation B =
1

r
(−∂zψ, ∂rψ) in the

cylindrical coordinate system (r, φ, z). The basic inputs used to achieve the numerical

reconstruction of the equilibrium are magnetic measurements taken at several locations

surrounding the vacuum vessel.

Basically equilibrium codes can be of two types. The first one is the full domain

type in which the reconstruction is performed in the whole right half plane (r > 0) and

relies on the use of Green’s functions. A drawback of this method is that nonlinear

ferromagnetic structures which can be present in certain tokamaks are complicated to

deal with. An iron model has to be introduced [4] and these codes can hardly run in

real time. The second type of code is the bounded domain one in which computations

are performed in a fixed domain containing the plasma but restricted to a limited

region. A difficulty is that Cauchy boundary conditions (g = ψ, h = ∂nψ) have to

be provided on a fixed closed contour defining the boundary of the computation domain

(this contour, called Γ in the remaining part of this paper, can link some of the B

probes for example). These boundary conditions have to be computed from the discrete

magnetic measurements. If these measurements are numerous enough and regularly

located on a smooth contour a direct linear interpolation can be considered [5, 6].

However this method is not robust in case of defective sensors. Morevover it cannot

be used in today’s machines like JET in which the measurement points are scattered in

some annular region surrounding the vacuum vessel. Another approach which can be

considered is to use the plasma boundary identification code of a particular machine if it

exists. Such a code will in fact compute the poloidal flux ψ in the vacuum surrounding

the plasma and can be used to evaluate ψ and its normal derivative on any given

fixed closed contour Γ. This is the approach followed until now for the equilibrium

reconstruction code Equinox [1]. The computations rely on the boundary conditions g

and h provided by the plasma boundary reconstruction codes Xloc at JET [7, 8] and the

Apolo code at Tore Supra [9]. The main drawback of this approach is that these two
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boundary reconstruction codes are extremely machine dependent and not transportable

to a generic platform such as the ITM [10]. Moreover concerning the particular case of

Tore Supra a new numerical method has to be developped since the machine is going to

be upgraded to WEST [2].

The aim of this paper is to investigate the possibility of using toroidal harmonics

to perform the 2D interpolation and extrapolation of magnetic measurements in an

annular domain surrounding the plasma to compute Cauchy boundary conditions on a

given fixed closed contour Γ in order to be able to run in a second step an equilibrium

reconstruction code such as Equinox in the bounded domain limited by Γ. Actually at

a given instant in time the fictitious inner boundary of the annular domain could be

defined as being the plasma boundary itself and the data interpolation problem is very

closely connected to the ill-posed inverse problem of the identification of the plasma

boundary. The latter is a Cauchy problem for the elliptic equation ∆∗ψ = 0 and various

solution methods have been proposed to solve it, compute ψ in the vacuum surrounding

the plasma and identify the plasma boundary (see [11] for a review). The ill-posedness

of the problem usually imposes the use of a regularization technique and an apriori

representation of plasma current density and the flux it generates, called the internal

solution, for example using filaments of current, or a fictious current sheet, or also

a decomposition in toroidal harmonics. The latter seems particularly attractive since

these functions provide explicit solutions to the equation ∆∗ψ = 0. Toroidal harmonics

[12, 13] were used in a number of papers in the plasma physics literature in the 80’s and

90’s [14, 15, 16, 17, 18, 19, 20] and more recently in [21].

Apart from [16] and [21] authors using toroidal harmonics do not use any

regularization procedure. Our point of view is that the small number of harmonics

needed to represent the flux in the vacuum is in itself a regularizing procedure. Our

numerical experiments confirm this point. In fact the number of toroidal harmonics

used to represent the internal solution in some way can be seen as the regularization

parameter. A too small number might lead to a smooth solution possibly not fitting

the data very well and not giving a very accurate plasma boundary, whereas a too large

number might lead to an irregular solution well fitting the data but giving an irregular

plasma boundary.

Another ingredient of the method to which the solution is quite sensitive is the

location of the pole of the toroidal coordinates system. Actually together with the

number of internal toroidal harmonics it is the only parameter of the internal solution

which can be tuned and curiously it is generally kept fixed in the literature apart from

[19] in which an optimization method is proposed to identify a proper location of the

pole. In this paper we propose two simple methods to do so.

Finally in order to represent the flux ψ in the vacuum some authors use a pure

decomposition in toroidal harmonics [14, 15, 16, 20] whereas others add a term coming

from the modelization of the flux generated by the poloidal field coils [17, 19]. In

this paper we discuss this point together with the impact of the presence of nonlinear

ferromagnetic material. Our numerical experiments show that it is important to take
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into account the divertor coils.

The paper is organized as follows. In the next section we introduce notations

for a number of domains and contours which are needed. Section 3 deals with the

decomposition of the flux in toroidal harmonics. In section 4 the proposed numerical

algorithm is presented and in the last section a number of numerical results are

presented.

2. Mathematical setting

In order to get into the details of this work we first need to briefly recall the equilibrium

reconstruction problem and introduce a number of contours and domains. Therefore a

schematic representation of a poloidal cross-section of a tokamak is shown on Fig. 1

and described below.

The unknown plasma free boundary domain is noted Ωp. The plasma boundary

is the isoflux line whose value is defined either by the contact with the limiter or as

a magnetic separatrix (hyperbolic line with an X-point represented by the dashed line

inside the limiter contour in Fig. 1). Poloidal field coils and divertor coils are noted ΩCk
.

Poloidal field probes measure the local value of the poloidal magnetic field, flux loops and

saddle loops measure the local value of the flux ψ. Flux and saddle loops, represented

by triangles, and B probes, represented by cross-circles, are shown surrounding the

limiter contour. All these measurements points can be included into a fictitious annular

domain D which neither contains the coils nor the plasma. The inner boundary of D

can for example be chosen to be the limiter contour. The presence of divertor coils can

impose the choice of a somehow tortured outer boundary (dashed line labelled ∂Ω). The

outer boundary of D also defines a domain Ω including D, Ωp and the vacuum region

lying between the plasma and D. Eventually all these different domains are included in

the larger domain Ω0 outside of which nonlinear magnetic material like iron might be

present. Its boundary is noted ∂Ω0.

Depending on the domain the poloidal flux satisfies the partial differential equation

−∆∗ψ = 0 in D (1)

or

−∆∗ψ = jp(ψ, r)χΩp
in Ω (2)

or

−∆∗ψ = jp(ψ, r)χΩp
+
∑

k

jCk
χΩCk

in Ω0 (3)

where the differential operator

∆∗ =
∂

∂r
(
1

µ0r

∂

∂r
) +

∂

∂z
(
1

µ0r

∂

∂z
),

is linear, the right hand sides represents the toroidal component of the local current

density and χ is the indicator function. If iron is present outside Ω0 (like for JET and
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Figure 1. Schematic representation of a poloidal cross-section of a tokamak. See the

text for details.

Tore Supra) µ0 is no longer a constant but a function of |B| and the operator ∆∗ becomes

nonlinear. This is why we restrict ourselves to Ω0 where ∆
∗ is linear. In Ω0\{Ωp

⋃

ΩCk
}

the current is null. In the coils ΩCk
the densities jCk

are measured and known. In the

plasma Ωp the current density is unknown but according to Grad-Shafranov equation

takes the form

jp(ψ, r) = rp′(ψ) +
1

µ0r
(ff ′)(ψ) (4)

in which p′ and ff ′ are unknown functions to be identified by an equilibrium

reconstruction code.

As explained in the Introduction one of our goals is to compute Cauchy conditions

(g = ψ, h = ∂nψ) on contour Γ in order to provide inputs to the reconstruction code

Equinox. Indeed let us recall that this code solves the following problem:

Find functions A and B defined on [0, 1] which minimize the following regularized cost

function

J(A,B) =

∫

Γ

(∂nψ − h)2ds+ ǫ(

∫ 1

0

(A′′(x))2 + (B′′(x))2dx)

where ψ satisfies

−∆∗ψ = λ(
r

r0
A(ψ̄) +

r0

r
B(ψ̄))χΩp(ψ), in DΓ

ψ = g on Γ
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Here λ is a scaling factor, r0 is a constant, A and B are related to p′ and ff ′, ψ̄ is a

normalized flux and DΓ is the domain contained inside Γ. Equinox implements a finite

element discretization method and identifies the full equilibrium (plasma boundary and

current density) in the fixed domain DΓ. This computation completely relies on the

boundary conditions g and h deduced from the magnetic measurements.

3. Decomposition of the poloidal flux ψ in the annular domain D

In this section we recall the principle of the decomposition of the flux in toroidal

harmonics in the region D. Moreover we show that the non linearity induced by the

presence of iron outside Ω0 does not restrict the possibility of using a modelization of

the flux generated by the different coils.

3.1. Toroidal harmonics

The toroidal coordinates system [13, 22] or bipolar coordinates system (if we ignore the

angular toroidal variable) (ζ, η) ∈ IR+
∗
× [0, 2π] about the pole F0 = (r0, z0) is related to

the cylindrical coordinates system (r, z) by

r =
r0 sinh ζ

cosh ζ − cos η
and z − z0 =

r0 sin η

cosh ζ − cos η

In what follows we assume that F0 lies inside the region surrounded by the annular

domain D and more precisely inside the plasma domain where the homogeneous

equation, −∆∗ψ = 0, is not satisfied. In the domain D this equation is satisfied.

It is known that explicit solutions to this equation in an annular domain can be found

in toroidal coordinates using a quasi separation of variables technique (see [23, 24] for

details on the computations). Moreover the family of solutions found is complete [24, 21].

That is to say that, given any regular enough Dirichlet boundary condition u on ∂D,

the solution to the boundary value problem
{

−∆∗ψ = 0 in D

ψ = u on ∂D
(5)

can be uniquely decomposed as


























































ψ = ψext + ψint

ψext =
r0 sinh ζ√

cosh ζ − cos η
×

[
∞
∑

n=0

aenQ
1
n−1/2(cosh ζ) cos(nη) +

∞
∑

n=1

benQ
1
n−1/2(cosh ζ) sin(nη)]

ψint =
r0 sinh ζ√

cosh ζ − cos η
×

[
∞
∑

n=0

ainP
1
n−1/2(cosh ζ) cos(nη) +

∞
∑

n=1

binP
1
n−1/2(cosh ζ) sin(nη)]

(6)
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where P 1
n−1/2 and Q

1
n−1/2 are the associated Legendre functions of first and second kind,

of degree one and half integer order [25], also called toroidal harmonics when evaluated

at point cosh ζ . Functions P 1
n−1/2 have a singularity when ζ → ∞ that is to say at point

F0 and therefore ψint represents the flux generated by currents flowing inside D. On the

contrary functions Q1
n−1/2 are singular when ζ → 0 that is to say on the axis r = 0 and

therefore ψext represents the flux generated by currents flowing outside D.

3.2. Including information from the knowledge of the currents in the coils

Let us denote by x = (r, z) a point in the poloidal plane. For any scalar fields ψ and

φ on Ω, two integrations by parts of the quantity φ∆∗ψ lead to the so called Green’s

second identity (or Green’s theorem)
∫

Ω

(φ∆∗ψ − ψ∆∗φ)dx =

∫

∂Ω

1

µ0r
(
∂φ

∂n
ψ − ∂ψ

∂n
φ)ds (7)

Let x̄ ∈ D and G(x, x̄) be the free space Green function which satisfies

−∆∗G(x, x̄) = δ(x − x̄) in the whole half plane r > 0 and G(x, x̄) → 0 when |x| → ∞
or r → 0.

The important point here is that even if the region external to Ω0 contains nonlinear

materials such as iron, the restriction of G to Ω can still be used as function φ in Eq.

(7). If ψ is chosen to be the solution to Eq. (2) one gets

ψ(x̄) =

∫

Ωp

jp(ψ(x), r)G(x, x̄)dx+

∫

∂Ω

1

µ0r
(
∂G

∂n
(x, x̄)ψ(x)−∂ψ

∂n
(x)G(x, x̄))ds(8)

and this leads again to a decomposition of the type ψ = ψint + ψext with






ψint(x̄) =
∫

Ωp
jp(ψ(x), r)G(x, x̄)dx

ψext(x̄) =

∫

∂Ω

1

µ0r
(
∂G

∂n
(x, x̄)ψ(x)− ∂ψ

∂n
(x)G(x, x̄))ds

(9)

ψint is another expression for the flux generated by currents running inside D and ψext
for those running outside. Moreover Green’s theorem can also be applied in Ω0 (the

region including the plasma and the coils). One then gets the following expression for

ψ in D: ψ = ψint + ψext + ψC with


























ψint(x̄) =
∫

Ωp
jp(ψ(x), r)G(x, x̄)dx

ψext(x̄) =

∫

∂Ω0

1

µ0r
(
∂G

∂n
(x, x̄)ψ(x)− ∂ψ

∂n
(x)G(x, x̄))ds

ψC(x̄) =
∑

k

∫

Ck

jCk
G(x, x̄)dx

(10)

where ψC represents the contribution of the coils to the total flux. In the annular domain

D, ψ̃ = ψ − ψC = ψint + ψext still satisfies
{

−∆∗ψ̃ = 0 in D

ψ̃ = ψ|∂D − ψC |∂D on ∂D
(11)

and can thus be decomposed in toroidal harmonics.
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This shows that the knowledge of the currents jCk
in the coils can be used in the

representation of the flux in the region D in the presence or absence of iron outside

Ω0. In fact if the coils are located very close to the measurement points such as the

divertor coils are it is necessary to modelize them. Their contribution to the flux in

D can theoretically be written as a series of toroidal harmonics but many of them are

needed in practice. This can be critical compared to the number of measurements and

the numerical resolution of the problem might become difficult.

4. Numerical method

Let us now present the numerical method which we implemented. At each discrete time

step during a discharge the magnetic measurements available are of three types:

• Flux loops provide Nf flux measurements at points xfi such that ψmeasi ≈ ψ(xfi )

• Saddle loops provide Ns flux variations measurements between two points such that

δiψ
meas ≈ ψ(x1i )− ψ(x2i )

• B probes provide NB measurements of the poloidal field at points xBi and directions

di such that Bmeas
i ≈ B(xBi ).di

The first step of the algorithm consists in substracting from the measurements a

numerical approximation of the contribution from the coils.










ψ̃measi = ψmeasi − ψ̂C(x
f
i ), for i = 1, . . .Nf

δiψ̃
meas = δiψ

meas − (ψ̂C(x
1
i )− ψ̂C(x

2
i )), for i = 1, . . . Ns

B̃meas
i = Bmeas

i − B̂C(x
B
i ).di, for i = 1, . . .NB

(12)

Here the contribution from each coil Ck is computed as follows. The known current

density is given as jCk
= Ik

Sk
where Ik is the total current in the coil and Sk its surface.

The coil is divided into nk subcoils Ck,l of equal surface
Sk

nk
and center ck,l on which the

integrals are numerically evaluated as
∫

Ck,l

Ik

Sk
G(x, x̄)dx ≈ Ik

nk
G(ck,l, x̄) (13)

This in fact consists in considering the contribution of the coils as a sum of the

contributions from filaments of current

ψ̂C(x̄) =
∑

k

∑

l

Ik

nk
G(ck,l, x̄) (14)



9

The second step consists in truncating the toroidal harmonics expansion of ψ̃ to

approximate it by


































































ψ̂ = ψ̂ext + ψ̂int

ψ̂ext =
r0 sinh ζ√

cosh ζ − cos η
×

[

ne
a

∑

n=0

aenQ
1
n−1/2(cosh ζ) cos(nη) +

ne
b

∑

n=1

benQ
1
n−1/2(cosh ζ) sin(nη)]

ψ̂int =
r0 sinh ζ√

cosh ζ − cos η
×

[

ni
a

∑

n=0

ainP
1
n−1/2(cosh ζ) cos(nη) +

ni
b

∑

n=1

binP
1
n−1/2(cosh ζ) sin(nη)]

(15)

and evaluate each of the terms in the expansion of ψ̂ and of the associated field B̂ at

the different measurement points in order to form a least square cost function

J(u) =

Nf
∑

i=1

(ψ̂i(u)− ψ̃measi )2

σ2
f

+
Ns
∑

i=1

(δiψ̂(u)− δiψ̃
meas)2

σ2
s

+

NB
∑

i=1

(B̂i(u)− B̃meas
i )2

σ2
B

(16)

depending on

u = (ae0, . . . , a
e
ne
a
, be1, . . . , b

e
ne
b
, ai0, . . . , a

i
ni
a
, bi1, . . . , b

i
ni
b
)

the unknown coefficients of the expansion in toroidal harmonics. The weights σf , σs and

σB correspond to the assumed measurement errors. J is quadratic in u and is minimized

by solving the associated normal equation to find the optimal set of coefficients uopt.

In these computations the expressions for ψ̂C and B̂C are explicit [26]. The

expression for B̂ is also explicit. The numerical evaluation of half integer order associated

Legendre functions is not straightforward. We use the algorithm and the computer

routine DTORH1 provided with [27]. This code enables an accurate and fast evaluation

of the set Pm
n−1/2(x), Q

m
n−1/2(x) for real x > 1, integers m ≥ 0 and n = 0, · · ·N .

Once uopt is computed an approximation of the flux can be obtained at any point

of the vacuum surrounding the plasma by ψ(x) = ψ̂(x) + ψ̂C(x). In particular one can

evaluate ψ and its normal derivative on a fixed closed countour Γ in order to provide

Cauchy boundary conditions to a fixed bounded domain equilibrium reconstruction

code. Of course one can also identify the plasma boundary as the largest closed flux

surface inside the limiter contour.

Such a procedure provides meaningful results if the pole F0 lies inside the unknown

plasma region and not too close from the boundary. The most natural choice is to put

the pole at the location of the magnetic axis but as the plasma boundary it is unknown.

Thus we propose the following procedure. At the first time step the pole is located at

(r0, 0) where r0 is the major radius of the tokamak. Then at time step tn+1 the pole

is located at the position of the magnetic axis computed at the previous time step tn.

This magnetic axis position is computed exactly if an equilibrium reconstruction code

like Equinox is run at each time step. If this is not the case and one is only interested

in the plasma boundary identification problem, or by an equilibrium reconstruction at
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a given instant in time it can be approximated by the current center (rc, zc) defined

as moments of the plasma current density [28, 11]. These quantities can be precisely

computed as integrals on the contour Γ at every point of which the flux ψ and the field

B can be evaluated:

Ip :=

∫

DΓ

jpdx =

∫

Γ

1

µ0
Bsds

zcIp :=

∫

DΓ

zjpdx =

∫

Γ

1

µ0
(−r log rBn + zBs)ds

r2cIp :=

∫

DΓ

r2jpdx =

∫

Γ

1

µ0
(2rzBn + r2Bs)ds

5. Numerical results

5.1. Twin experiments for WEST

In view of the upgrade of the tokamak Tore Supra to WEST we have conducted several

numerical experiments to test the method. The code Cedres++ [29] is run to simulate

four WEST equilibria. In the first case the X-point position is very close to the limiter

whereas in the second one the plasma is smaller. Configurations 3 and 4 are limiter

configurations. From these simulations the equivalent of magnetic measurements are

extracted: 10 flux loops measurements and 104 Bprobes measurements (see Fig 2). The

reconstruction of the plasma boundary and the equilibrium can then be performed using

these measurements as inputs as well as the currents running in the coils. Using the

notations of Eq. (16) we take Nf = 10, σf = 10−3 [Wb
2π

] and NB = 104, σB = 10−3 [T ].

Let us first concentrate on the reconstruction of the flux in vacuum for case 1

with the algorithm using toroidal harmonics (TH). Unless specified we always take into

account the values of the currents in the coils. Here we want to reconstruct a single

equilibrium and thus do not have a priori at our disposal the knowledge of the magnetic

axis position. As described in section 4 we proceed in 2 steps. First run TH setting

the pole of the toroidal coordinate system to P0 = (r0, 0), compute the current center

P1 = (rc, zc) and re-run TH setting the pole to these new coordinates. This mimics the

fact that during a whole pulse reconstruction the current center at the previous time

step would play the role of P0 and if P1 is too far from P0 then the pole of the coordinate

system is modified.

A first natural question which has to be answered is how many toroidal harmonics

should be used to represent the flux ψ in the vacuum. In all the computations we choose

the maximum order of the toroidal harmonics used in Eq. (15) to be ne := nea = neb and

ni := nia = nib. From Fig. 3 it appears that the value of the cost function at the optimal

point, which is an indicator of the quality of the fit to the measurements, decreases very

rapidly as we increase the maximum order from ne = ni = 1 to 4. Above this value the

benefit of adding new degrees of freedom is much less significant and the plot shows an

almost flat region for orders greater than 4.
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Figure 2. Poloidal section of the WEST tokamak. The two plasma boundaries

correspond to case 1 (large plasma) and case 2 (smaller plasma). The Bprobes

represented by arrows are numbered from 0 to 103 and the flux loops represented

by small circles are numbered from 0 to 9. The four bottom divertor coils are shown

as well as the top ones. The limiter contour is also plotted as well as its convex hull

(dashed line) which will be used as contour Γ that is to say the boundary of the

computation domain for the equilibrium reconstruction code Equinox.

As a consequence we make the choice ne = ni = 4. This corresponds to the

minimum number of degrees of freedom needed to obtain a good fit to the measurements.

Numerical values for the optimal cost and corresponding root mean square (rms) errors

are given for different choices of ne and ni in Table 1. The corresponding computed

plasma boundaries are also shown on Figure 4. As already mentioned adding interior

functions (column (4, 9)) or exterior functions (column (9, 4)) does not significantly

modify the rms. However in the first case it deterioriates the plasma boundary

reconstruction (Fig. 4). This is due to the fact that interior functions are involved

with the ill-posed character of the inverse boundary reconstruction problem. The

only regularization mechanism lies in the small number of toroidal harmonics used to

represent the flux. The blow up of the interior harmonics accentuates with their order

and the zone where the computed solution is not relevant spreads around the pole of the

coordinate system even reaching the plasma boundary in this case. This phenomenum

disappears in the plasma boundaries computed by Equinox in all cases (see Figure 6)

and this is due to the fact that the reconstruction of the boundary is not an ill-posed
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Figure 3. Contour and scatter plot of log(J(uopt)) as a function of the maximum

order of the associated Legendre functions of first kind ni and second kind ne used for

the representation of the flux.

inverse problem in Equinox in which the equation for ψ is solved also in the plasma and

the free boundary problem is a particular non linearity of the model.

The last column of Table 1 shows the interest of using a modelization of the flux

generated by the divertor and poloidal field coils. If we do not use these informations

in this particular case the value of ne has to be taken of at least 30 to achieve a fit to

the measurements comparable to the one obtain with the choice (4, 4).

(ne, ni) (4, 4) (4, 9) (9, 4) (30, 4) no c.

cost J(uopt) 2.783e+02 1.666e+02 2.004e+02 3.352e+02

rms B [T ] 1.614e-03 1.233e-03 1.343e-03 1.624e-03

rms Flux [Wb
2π

] 5.814e-04 6.663e-04 7.832e-04 1.657e-03

Table 1. Minimization results for the default choice (ne = 4, ni = 4), as well as choices

(4, 9), (9, 4) and (30, 4) without using any representation of the flux generated by the

divertor and poloidal field coils (no c.)

Figure 5 shows the fit to the measurements for the choice ne = ni = 4. It appears

that the largest errors on the Bprobes measurements happen for those in the range 32-40

and 84-92 which correspond to the ones located close to the X-point. These numerical

experiments therefore suggest that if some sensors could be added in the design of

WEST, it is desirable to put them if possible in the region of the divertor.

From Table 2 it can be seen that the reconstruction of the Xpoint position is

quite accurate (up to a few mm) with the default choice (ne = 4, ni = 4). More

interestingly it is also accurate with the choice (4, 9) where the plasma boundary shows
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Figure 4. Left: Plasma boundaries. Boundaries computed with (ne = 4, ni = 4)

or (ne = 9, ni = 4) and (ne = 30, ni = 4) without any PF coils modelization (no c.)

are almost superimposed with the reference boundary computed with Cedres. The

boundary computed with (ne = 4, ni = 9) shows some irregularity

Right: Corresponding relative deviation from Cedres++ boundary,

100(ρ− ρCedres)/ρCedres as a function of the poloidal angle θ. The center of the polar

coordinate system (ρ, θ) is the magnetic axis from Cedres++ (shown on left figure).
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Figure 5. Comparison between measured and reconstructed values for WEST case 1

using (ne = 4, ni = 4).

some oscillations. This is still true for many other choices of (ne, ni) and is thus satisfying

because it makes the determination of the Xpoint very little dependant on the tuning

of the TH algorithm. Table 2 also shows that the magnetic axis computed by Equinox

is very close to the one given by Cedres, and that the computed pole for the toroidal

coordinate system is also a good approximation of the magnetic axis position.

Finally in order to get some insight of the impact of a noisy sensor on the

reconstruction of the X point position with the TH algorithm we have conducted 104+10
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Figure 6. Left: Plasma boundaries. Boundaries computed by Equinox (EQX) with

(ne = 4, ni = 4) or (ne = 9, ni = 4) and (ne = 30, ni = 4) without any PF coils

modelization (no c.) are almost superimposed with the reference boundary computed

with Cedres++. The boundary computed with Equinox (ne = 4, ni = 9) does not

show any irregularities.

Right: Corresponding relative deviation from Cedres++ boundary,

100(ρ− ρCedres)/ρCedres as a function of the poloidal angle θ. The center of the polar

coordinate system (ρ, θ) is the magnetic axis from Cedres++ (shown on left figure).

(ne, ni) (4, 4) (4, 9) (9, 4) (30, 4) no c.

||XptTH −XptCedres|| [mm] 6.7 8.6 7.4 7.8

||XptEQX −XptCedres|| [mm] 5.4 5.4 5.4 5.4

||CTH −MagCedres|| [mm] 18.5 18.3 18.5 19.3

||MagEQX −MagCedres|| [mm] 4.4 3.6 4.5 4.0

Table 2. Rows 1 and 2: distance between the X-point given by Cedres and the

one computed by the Toroidal Harmonics algorithm (TH) or the one re-computed by

Equinox (EQX). Row 3: distance between the current center used as the pole of the

toroidal coordinate system in TH and the magnetic axis given by Cedres. Row 4:

distance between the magnetic axis given by Cedres and computed by Equinox.

numerical reconstructions each time applying an offset on a different sensor. The results

are displayed on Figure 7. Adding an offset of 10 mT on a Bcoil or of 200 mWb on a

flux loop pertubates the X-point position of about maximum 1 mm. Again naturally

the Xpoint position is more dependent on sensors that are in the divertor region than

on others.

The numerical results for case 2 (smaller plasma) are very similar to those

presented above for case 1. It should be mentioned however that the plasma boundary

reconstructed by the TH algorithm with the default (ne = 4, ni = 4) choice presents a

small concavity on the high field side. Nevertheless it is small (distance of maximum

2 cm from Cedres boundary) and again disappears in the plasma boundary computed

by Equinox (see Figure 8). In cases 3 and 4 with a limiter configuration the plasma
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Figure 7. Error introduced on X-point position reconstruction by adding a 10 mT

offset on a single Bcoil measurement or a 200 mWb offset on a single flux loop

measurement.

boundary reconstructions are accurate (see Figure 8).

5.2. Computing time

In view of the possible use of this method for the real time control of the plasma position

and shape in the WEST tokamak it is important to evaluate the computing time for

one boundary reconstruction. Each evaluation of the flux or the field at a given point

has a cost in terms of computing time because the evaluation of the toroidal harmonics

as well as the elliptic integrals involved in the expression of the flux generated by a

filament of current have one. Therefore in order to have an efficient code, all these

functions are precomputed and stored in tables. The evaluation of a function then just

involves a linear interpolation between two entries of a table. A second point concerns

parallelism. Many loops in the code (matrix assembly, integrals computations, boundary

points computation, . . . ) can be parallelized. We have used OpenMP to do so. The

program is tested on a Laptop with 2 quadcore processors running at 2.4 GHz. With
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this material configuration the code takes about 2 ms for one boundary reconstruction

as shown in Table 3. Although this is already in the range of computing time needed for

the real time control of the plasma on WEST this result could still be improved using

more threads or even GPU as proposed in [30]

Nbr of bnd pts 1 10 20 30 60

Comp. Time (ms) 1.09 1.23 1.44 1.54 1.98

Table 3. Wall clock computing time. 1 boundary point corresponds to the following

operations: update of the normal equation matrix as the pole of the toroidal coordinate

system changes, solve the normal equation, compute the new current center (to be

given to the next time step), compute the point defining the boundary isoflux value

ψb (either limiter point or X point). Then add to this the computation of 9, 19, 29 or

59 boundary points for the next columns.

5.3. Equinox on the ITM platform

The method presented in this paper has also been tested on data provided in the ITM

database. The aim is to be able to run the equilibrium reconstruction code Equinox

directly from the discrete magnetic measurements.

During a first initialization phase all the geometric inputs are read from the

database: limiter contour, PFcoils geometry and location, the Bprobes orientation and

location, flux and saddle loops location. The convex hull of the limiter contour is

computed. This is the Γ contour which is the boundary of the computation domain for

the finite element part of Equinox. From this contour a mesh is generated. Of course

many other contours could be used as boundary and if desired one can define their own

one point by point. However the convex hull of the limiter has the advantage of being

computed automatically.

Then comes the time stepping. Each time step is made of two stages. In the

first one at the discrete time tn the pole of the toroidal coordinate system is set to the

magnetic axis location computed at time tn−1. The contribution of the different PF

coils to the flux is computed and substracted from the magnetic measurements. The

residuals are then fitted to a truncated series of toroidal harmonics.

Once this is done the flux can be evaluated at any point of an unknown annular

domain surrounding the plasma and therefore clearly on the contour Γ. We are thus

able to compute Cauchy boundary conditions on Γ. Note that even if it is possible

in principle we do not compute the plasma boundary at this stage. Indeed we want

to run the finite element method of Equinox on a fixed domain which does not need

to be re-meshed at each time step. The plasma boundary is thus computed during

this second stage as well as all the parameters which characterize a plasma equilibrium

(among which the magnetic axis which will be used at the next time step) which are

then copied to the ITM database.
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6. Conclusion

We have presented in this paper a method based on the use of toroidal harmonics and

on a modelization of the poloidal field coils and divertor coils for the 2D interpolation

of discrete magnetic measurements.

The method completely relies on the classical assumptions that the equilibrium is

axisymmetric and that a negligeable amount of the total current density flows in the

plasma existing in the region of the sensors (i.e ∆∗ψ = 0 holds in this region). If the

first assumption was to be defaulted with non-negligeable 3D effects [31, 32, 33, 34, 35]

the method might be destabilized. The same conclusion holds if the second assumption

was to fail since the decomposition of the flux in a series of toroidal harmonics with

constant coefficients is not exact anymore.

However under these assumptions our numerical results show that the method is

quite stable even though it does not involve a classical regularization procedure. This

is due to the fact that the ill-posed part of the method that is to say the computation

of the internal solution only relies on the choice of the pole of the toroidal coordinate

system and on the number of internal toroidal harmonics used to approximate the flux.

Our numerical experiments show that the magnetic axis is a good and easy to compute

choice for the first point, and concerning the second point that only a few toroidal

harmonics are needed to accurately approximate the flux.

The method is generic and can be used to provide Cauchy boundary conditions

needed as input by a fixed domain equilibrium reconstruction code like Equinox. This is

implemented in the ITM version of Equinox. The method can also be used to extrapolate

the magnetic measurements to compute the X-point position and the plasma boundary.

It is foreseen to be used in the real time plasma control loop on the WEST tokamak.
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Figure 8. Row 1: Case 2

Left : Cedres++ reference and boundaries reconstructed with toroidal harmonics (TH)

and Equinox (EQX). Cedres++ and Equinox magnetic axis as well as the computed

plasma center taken as the pole of the toroidal coordinate system (circle) are also

shown.

Right: Corresponding relative deviation from Cedres++ boundary,

100(ρ− ρCedres)/ρCedres as a function of the poloidal angle θ. The center of the polar

coordinate system (ρ, θ) is the magnetic axis from Cedres++ (shown on left figure).

Row 2 : same for Case 3. Row 3 : same for Case 4.
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