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Abstract—In previous works we showed that, in return
for some assumptions, indoor Location Tracking (LT) can
be formulated as a Discrete Event Systems (DES) problem.
We proposed a method for constructing Finite Automata (FA)
models on which LT is performed online for single or multiple
inhabitants. However, the accuracy of LT strongly depends on
the choices of the designer concerning topology (in particular
the splitting of the dwelling in zones) and the number and place-
ment of sensors. To evaluate the impact of these choices onto
the efficiency of the LT, we proposed an analytical approach
that allows determining asymptotic performance criteria. This
performance evaluation does not take into account the human
behavior (real time moving of inhabitants) which is very difficult
to model. In order to include the inhabitants behavior, and thus
to improve the performance evaluation by considering dynamic
criteria, we propose in this paper a discrete event simulation
approach that allows to emulate the smart home and to immerse
the human operator into this environment without having to
model the human behavior.

Index Terms— Discrete Event Systems, Smart Home, Loca-
tion Tracking, Discrete Event Simulation, Finite Automata.

INTRODUCTION

Smart Home technologies are aiming to help people to live
in a comfortable and safe environment. A smart home can
be defined as a dwelling equipped with sensors, actuators
and communication devices; based on the information given
by the sensors, the actuators can be controlled in order to
improve comfort (heating or air conditioning for instance)
or to guarantee the safety of the inhabitants (automatic
shutdown of dangerous devices or health problem detection
for instance) [1].

Location tracking (LT) is most often required for adapting
services to the habits or to the behavior of the inhabitants.
This task consists in finding in real time the location of one
or several inhabitants, based on the observation of the signals
generated by the different sensors of the house [2]. Different
sensor technologies like video cameras [3], radio frequency
identification (RFID) tags [4], ultrasonic badges [5]... are
used for performing LT. In order to help the users to accept
the observation of their every movement and to guarantee
the respect of their privacy and the reduction of cost, we
choose to only consider non-wearable, non-intrusive and low-
cost sensors. Such sensors are mostly binary sensors (door
barrier sensors, motion detectors...) or sensors delivering a
signal that can be interpreted as binary using a threshold
(electricity consumption, water flow or floor pressure sensor
for instance).

In most approaches, LT is performed by using data mining
techniques [2], [6], that need a more or less long learning
phase before the LT can be performed. Furthermore, this
phase has to be performed again as soon as the instrumenta-
tion is modified (i.e. if new sensors are added or if existing
sensors are removed or if their placement is modified). Last
but not least, such learning techniques lead to the lack of
a formal and explicit model of the location of inhabitants.
For these reasons, we proposed an approach allowing the
systematic construction of Discrete Event Systems (DES)
models (Finite Automata) on which is performed the real-
time LT of single [7] or multiple [8] inhabitants into a smart
home.

Whatever the LT technique used, the accuracy of the
estimated location strongly depends on the topology of the
dwelling and of the number and placement of sensors (for
instance a lack of instrumentation in some areas may lead
to a partial observation of the motion of the inhabitants).
To evaluate the impact of these two parameters onto the
efficiency of the LT, we proposed an analytic approach
[7] that allows determining asymptotic performance criteria
such as unlocationable zones or strong and weak accurate-
location-ability. Nevertheless, this performance evaluation
does not take into account the human behavior (real time
moving of inhabitants) which is very difficult to model.

In order to include the inhabitants behavior, and thus to
improve the performance evaluation of LT by proposing
dynamic criteria, we describe in this paper a discrete event
simulation approach that allows to emulate the considered
smart home and to immerse the human operator into this
simulation environment without having to model the human
behavior.

The rest of the paper is structured as follows: in section |
the main results of our previous works are recalled thanks to
a case study. Our simulation approach and the developed
simulator are presented in the second section. The third
section presents and discusses the relevance of practical
results.

I. PROBLEM STATEMENT AND CASE STUDY

A. Context and assumptions

As stated before, in our approach only binary sensors are
considered. It is also considered that information given by
the sensors do not depend on the ability or the willingness
of each inhabitant to provide this information. For instance,



if a door is equipped with a door barrier sensor and a
door contact sensor, an inhabitant crossing the door will
systematically be detected by the barrier sensor but will be
detected by the contact sensor only if this inhabitant opens
or closes the door while he crosses it. Consequently, in our
approach, door contact sensors will not be used. For similar
reasons, light-switch sensors are also not considered because
while entering a room an inhabitant may or not switch the
light on, depending on the luminosity or his life habits.

Moreover, it is assumed that each inhabitant of a dwelling
has a totally free behavior and behaves independently from
the others. Consequently, adopting a DES point of view, each
inhabitant living in an instrumented environment is seen as a
spontaneous event generator. These events are the rising and
falling edges of the signals emitted by the binary sensors
of the smart home during the motion of the inhabitant. As a
convention, the rising edge and the falling edge of a sensor s;
are respectively denoted as s;_1 and s;_0. The simultaneous
occurrence of several events is also considered as not being
possible.

Considering the topology of an apartment and a potential
lack of instrumentation in some areas, we also have to make
the assumption of partial observation of the behavior of each
inhabitant. Moreover since we do not consider wearable sen-
sors, the inhabitants are non-distinguishable by the sensors,
i.e. a signal generated by a sensor means someone is moving
in front of it but gives no information about who this person
is.

Based on these considerations, the problem of multiple
inhabitants online LT can be solved by using DES tech-
niques: the set of all the possible locations and observable
motions of inhabitants is modeled by a finite automaton; the
real time location of the inhabitants is estimated by playing
this automaton with the sequence of observed events, that
are generated when the inhabitants move. The structure of
such automata and their use for LT are now described by
using an example.

B. Case Study

Even if our approach has been successfully applied to
complex instrumented apartments, for the sake of better
understanding a small size example of smart home has
been chosen (Fig. 1). It is composed of three rooms: an
open space for the kitchen and the living room, a bedroom
and a bathroom. This smart home is equipped with three
motion detectors (M D; in the open space of the living
room and the kitchen, M D5 in the bedroom and M D3 in
the bathroom) and a door barrier sensor DB (detecting an
inhabitant crossing the door) on the front door of the house.

All the possible motions (i. € compatible with the topology
of the apartment) of a single inhabitant between the different
zones of this apartment that are observable by the considered
instrumentation (i. e. the number, the technology and the
placement of the chosen sensors) are represented by the
Finite Automaton (FA) given in Fig. 2. The systematic
construction of this FA (that is called the Detectable Motion
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Fig. 1. Topology and instrumentation of the case study

Automaton - DM A) from the only knowledge of the topol-
ogy of the apartment and the instrumentation is described in
detail in [7].
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Fig. 2. Detectable Motion Automaton DM A for one inhabitant

In the FA of Fig. 2, each state represents a zone of the
house where the inhabitant can be. All the states are consid-
ered as initial because the initial location of the inhabitant is
assumed to be unknown. Each transition between a state g;
and a state ¢; labeled with an event s;,_1 (or s;_0) expresses
that the motion between these two zones is topologically
possible and is observable through the sensor sy.

In case of multiple inhabitants, a FA describing the pos-
sible locations and motions can be constructed in the same
way [8]. The case of two inhabitants living together in the
apartment of Fig. 1 is given in Fig. 3.

In the FA of Fig. 3, each state represents the location of
the two inhabitants in the different zones of the house. Each
transition between a state ¢; and a state g; labeled with an
event s;_1 (or s;_0) expresses that the motion of one or two
inhabitants between these two sets of zones is topologically
possible and is observable through the sensor sy.

The online LT of the inhabitants is performed onto the
DM A thanks to Algorithm 1. After each observed event
generated by the sensors, this algorithm allows playing the
DMA for determining the new location reached by each
inhabitant.

Of course, the result of the LT is more or less accurate
depending on the choices of the zones partition and of
the instrumentation. It is therefore important to be able to
evaluate this accuracy for choosing the best combination
zones/instrumentation. The analytic approach we proposed
in [7] allows determining asymptotic performance criteria



Detectable Motion Automaton for 2 inhabitants

Fig. 3.

Algorithm 1 Online location estimation algorithm
Require: DMA = (Q,%,,Qo)
1: Initialization: Current location Lg, = set of states Qg
2: while location tracking is active do
3:  Wait for a new event e

4:  New event e is observed
5:  if 3¢ € L such that §(g,e)! then
6: ,Est = U 5((17 6)
q€LEst
7: Update current location Lgs = L,
8:  else
9: The location remains L g4
10:  end if

11: end while

such as the set of unlocationable zones (if they exist) and
the accurate-location-ability (that characterizes the ability
to estimate accurately the location of the inhabitants). For
this case study, the analytical evaluation gives the following
result: there are no unlocationable zones and we can guaran-
tee a weak accurate-location-ability (it means that depending
on the behavior of the inhabitant, the location may become
and remain accurate after a finite time). Nevertheless, this
static performance evaluation does not take into account
the human behavior, which is obviously complex, since
neither deterministic nor stochastic but rather arbitrary and
potentially irrational.

The problem we investigate in this paper can therefore now
be reformulated as follows: How to evaluate the relevance
of a Detectable Motion Automaton (constructed for a given
couple zones partition/instrumentation) for performing LT
and with what resulting accuracy? For that, we propose to
use the simulation approach that is presented below.

II. SIMULATION APPROACH

A. Overview of the approach

An overview of the approach we propose is given in
Fig. 4. The simulation of location tracking is performed
using the algorithm 1, i.e. the simulator is based on exactly
the same algorithm as the one used for location tracking
in the real home. Moreover, this simulation is aiming at
evaluating the relevance of the FA model (DM A) as it will
be used for performing the location tracking. At this point,
for a given sequence of sensor events, there is no deviation
between the location tracking done by simulation and the
expected location tracking in real homes. The goal of the
simulation is to evaluate a priori the relevance of the DM A
for LT by generating a lot of relevant sequences of events
that represent accurately the moving of inhabitants, without
having to perform tests in the real instrumented environment.
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Fig. 4. Performance evaluation of LT model by simulation

We chose to develop an emulator which allows immersing
a user (thanks to a keyboard or a joystick) in a virtual
smart environment reproducing the topology and the instru-
mentation of the dwelling. The sensors are reacting to the
inhabitants’ motion and action and provide the according
sequence of events. Furthermore, in the emulator, the exact
location of each inhabitant at each time is known. It is then
possible to evaluate the dynamic performance of the accuracy
of the LT model by comparing the estimated with the real
location. The comparison criteria are detailed in the next
section.

B. Simulator implementation

We chose to develop the emulator, the simulator and the
performance evaluator using Python 2.7' and its object-
oriented paradigms because this programing language is
well appropriated to quickly develop proof-of-concept. In
addition, the module pygame® was used in order to simulate
the interaction of the inhabitants with their environment and
to provide a graphical representation. The user inputs (motion
and action inhabitants) are transmitted to the program via a
keyboard or a joystick.

The program is strongly object-oriented, the UML Class
Diagram of the smart home emulator is shown in Fig. 5.
Three main classes are defined:

Thttp://www.python.org
Zhttp://www.pygame.org
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Fig. 5. UML diagram of the smart home emulator

o The class Obstacle defines the different possible obsta-
cles composing the topology of the smart home like the
walls. We defined the classes Wall, Door and Window
which are inheriting from the class Obstacle.

o The class Sensor defines the different possible sensors
that can be used in the smart home. Since there are
different types of sensors, additional classes inheriting
from Sensor have been defined, for instance Floor Sen-
sor, Door Sensor or Motion Detector. Their technology
is defined through a specific model of functioning and
specific attributes.

e The class Inhabitant defines the different inhabitants
living in the smart home. Different kind of inhabitants
can be defined, using the classes Human or Pet that both
inherit from the class Inhabitant

In addition to these classes, the class Occupied Smart
Home is defined. It is characterized by a list of instances
of the class Obstacle, an instrumentation which is a list of
instances of the class Sensor and a set of inhabitants which
is a list of instances of the class Inhabitant. Finally, a queue
of sensor events (FIFO type) is generated by the smart home
emulator and used by the simulator.

It can also be noticed that the different classes are linked.
The motions of the inhabitants are blocked by the different
obstacles of the house, this is represented by the link between
the classes Inhabitant and Obstacle. In a similar way, the
sensors are reacting to the position and to the motion of the
inhabitants; this is represented by the link between the classes
Sensor and Inhabitant. Each inhabitant may also interact
with the obstacles e.g. doors or windows can be opened
but only by humans (not the pets). Consequently, there is
a link between the class Human and the class Door and a
ling between the class Human and the class Window. This
allows to take into account different possible behaviors for
different types of inhabitants.

To perform the simulation of the location tracking and its
evaluation, three processes are running in parallel: the smart

home emulator, the simulator and the performance evaluator.
Each process gives a graphical result in a separate window
on the screen. The global result of the simulation screen is
shown in Fig. 6. On Fig. 6(a) is drawn the smart home and
the position, motion and action of the different inhabitants (in
this case, there is one inhabitant in the bathroom). Fig. 6(b)
shows the estimated location, i.e. the active state(s) of the
DM A (in this case, the location is accurately estimated and
there is only one active state: C). Fig. 6(c) shows the results
of the performance evaluator through the confusion matrix
and other calculated criteria that are detailed in the next
section. The content of the three windows is updated online
according to the inputs given by the user. When the user
decided to close the program, the results are saved in a log-
file.

III. PRACTICAL RESULTS

Several criteria are defined in order to evaluate the results
of the simulated Location Tracking. These criteria and their
interpretation are illustrated using the case study and a
scenario involving a single inhabitant for the sake of clarity.
However, the emulator and the performance evaluator are
also usable and perform well for multiple inhabitants location
tracking.

The evaluation criteria are based on the confusion matrix
[9]. A confusion matrix represents the number of times
a prediction corresponds or not to a real situation. It is
mainly used to evaluate data-driven learning approaches e.g.
activities of daily living recognition in smart homes [10].

We propose a confusion matrix called C M7 to evaluate
the accuracy of the estimated location compared to the real
location. For the case study and considering a single inhab-
itant, there are 4 possible locations. Consequently C M7 is
a 4x4-matrix and each element (CM LT(m')) is defined as
follow:

_1 /T L= reat®) A (Ls€Lpar()} 4
T Jo | LEst(t)]

e 1 is the duration of the simulation,

o lipredicatey = 1 if predicate is true and 0 else,

o L; (resp. L;) represents the i'" (resp. the j*") possible
location of the inhabitant,

o Lpeq(t) is the real location (in one zone) of the
inhabitant at the date ¢,

e Lpg(t) is the estimated location (in a set of zones,
possibly containing only one zone) of the inhabitant at
the date ¢,

o |LEst(t)| is the number of zones composing the esti-
mated location (for instance, if the estimated location
LEst(tl) = (A,Out), then |LEst(t1)| = 2).

Note that the sum of all the CMLT(I.’].) is equal to 1 i.e.

VT > CMpg, , (T) =1 (1)

i,J
Based on this matrix, several performance criteria can
be defined. The first one is named accuracy and gives the
proportion of time for which the estimated location was the
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Fig. 6. Screenshot of the developed program

real one during the simulation (e.g. if the estimated location
was correct during 6 minutes for a simulation of 10 minutes,
then the accuracy is equal to 60%). Formally it is the sum
of the diagonal elements of the confusion matrix:

accuracy(T) = ZCMLTW)(T) € [0,1] 2

The accuracy gives a global measure of the location
tracking performance. Complementary to this indicator, two
criteria concerning each possible location are defined. The
precision p is the proportion of time for which a real location
is correctly estimated and the recall r is the proportion of
time for which the estimated location correctly represents the
real location. Formally, for a given location i:

My, (T
pli1) = o) g 4 3)
Z CMyr, (T)
J
i T) = — 7 ) e [0,1] &)

> CMyr,, (1)
J

The criteria precision and recall can be combined using a
geometric mean called gmean:

gmean(i,T) = /r(4,T) -p(s,T) € [0,1] 5)

All of these criteria are calculated and displayed online
while simulating the behavior of one or several inhabi-
tants in the smart home. For instance, in Fig. 6(c) repre-
senting the performance evaluator, the current accuracy is
equal to 0631155 The precision for the zone A is equal to

— 0.632 while the recall for thi
0153 +0.016+ 0+ 0.073 while the recall for this

= 0.887.
0.153 + 0.014 4+ 0 4- 0.006 . . .
As an example, a scenario involving a single inhabitant

inside the house has been simulated. The location tracking

zone is equal to

has been performed using the model of Fig. 2. The evolution
of the different criteria are given in Fig. 7 and Fig. 8 for the
same duration of simulation.
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Fig. 7. Evolution of accuracy(T') along the time T'

The evolution of the accuracy of LT (Fig. 7) shows a quite
good result at the end of the scenario. However, it can be
seen that the accuracy decreased between 2 and 3 minutes.
We simulated the inhabitant going outside the house during
this temporal windows. Since there is no sensor outside in
our case study, it is quite normal to have such a decrease of
the accuracy.

The evolution of gmean(i,T) (Fig. 8) confirms the pre-
vious result. The criterion gmean shows great performances
for the zones B and C' (i.e. the bedroom and the bathroom)
but worse performances for the zones Out and A (i.e. outside
and in the living room). These results reflect a lack of
instrumentation in these two zones or a bad placement of
sensors. In our case, there is no sensor observing exclusively
outside (lack of instrumentation) and the sensor (DB) is
observing two zones (A and Out).

These results provide the designer with indications to
modify the zone partition and/or the instrumentation. For
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Fig. 8. Evolution of the precision and recall using the criterion
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instance, it is possible to add a floor pressure sensor outside,
just in front of the entrance door. By doing this modification
and computing systematically the new DM A model (not
shown here due to a lack of space), we can simulate exactly
the same scenario using the new instrumentation and the new
model. The results are shown in Fig. 9 for the accuracy and
in Fig.10 for the gmean.

Note that the accuracy at the end of this scenario has
increased from 75% to 90% (Fig. 9) and the different zones
have an increased gmean, particularly the zones A and Out
(Fig. 10).
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Fig. 9. Evolution of accuracy(T) along the time T for the new instru-

mentation

The results provided by this dynamic evaluation are com-
plementary to those given by our previously proposed ana-
Iytical approach. Considering the original and the modified
instrumentation (with the additional floor pressure sensor),
the analytical approach gives the same result, i.e. no unloca-
tionable zones and weak accurate-location-ability. However,
the new criteria accuracy and gmean allowed to highlight
differences between these two possible instrumentations and
to quantify how good the new instrumentation is, compared
to the original one.
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Fig. 10. Evolution of the precision and recall using the criterion
gmean(i,T) along the time 7" and for each location for the new instru-
mentation

CONCLUSION

In this paper, we proposed a simulator to evaluate a priori
the performances of a model for location tracking in smart
homes. The results of the discrete event simulation approach
are complementary to those of the previously proposed
analytical approach.

Future work on this topic will mainly be devoted to the
improvement of the realism of the emulated smart home, by
including actuators and a more sophisticated sensor model
including their possible faults.
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