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Abstract Off-line robot dynamic identification methods are based on the use
of the Inverse Dynamic Identification Model (IDIM ), which calculates the joint
forces/torques (estimated as the product of the known control signal - the input
reference of the motor current loop - with the joint drive gains) that are linear
in relation to the dynamic parameters, and on the use of linear least squares
technique to calculate the parameters (IDIM-LS technique). Most of the papers
dealing with the dynamic parameters identification of parallel robots are based on
simple models, which take only the dynamics of the moving platform into account.
However, for advanced applications such as output force control in which the robot
interaction force with the environment are estimated from the values of the input
reference, both identifications of the full robot model and joint drive gains are
required to obtain the best results. In this paper a systematic way to derive the
full dynamic identification model of parallel robots is proposed in combination
with a method that allows the identification of both robot inertial parameters
and drive gains. The method is based on the total least squares solution of an
over-determined linear system obtained with the inverse dynamic model. This
model is calculated with available input reference of the motor current loop and
joint position sampled data while the robot is tracking some reference trajectories
without load on the robot and some trajectories with a known payload fixed on the
robot. The method is experimentally validated on a prototype of parallel robot,
the Orthoglide.
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1 Introduction

Parallel robots have increasingly been used for a few decades. This is due to their
main advantages compared to their serial counterparts that are: (i) a higher in-
trinsic rigidity, (ii) a larger payload-to-weight ratio and (iii) higher velocity and
acceleration capacities [1]. In order to obtain these interesting properties, a good
controller should be implemented. Several approaches could be envisaged [2,3],
but it appears that, for high-speed robots or when varying loads have to be com-
pensated for (e.g. in pick-and-place operations or machining), computed torque
control is generally used [4]. This approach requires an accurate identification of
the dynamic model of the robot with the load [5], which can be obtained if two
main conditions are satisfied:

1. a well-tuned derivative band-pass filtering of actuated joints position is used
to calculate the actuated joints velocities and accelerations, and

2. the values of actuator drive gains gτ are accurately known to calculate the
actuator force/torque as the product of the known control signal (computed
by the numerical controller of the robot), i.e. the current references, by the
drive gains.

However, it is often difficult or impossible to obtain robot manufacturers’ data
on joint drive gain values. And if available, data are usually given with an un-
certainty greater than 10%, thus leading to identification and force calibration
errors. Thus, drive gains must be calibrated. Some methods have been developed
in the past [6,7] to calibrate the drive train constituted by a current controlled
voltage source amplifier with gain Gi which supplies a permanent magnet DC or
a brushless motor with torque constant Kt coupled to the link directly or through
gear train with gear ratio N . Each parameter was identified separately to then
compute the drive gain gτ = NGiKt, but these procedures were very sensitive
to measurement errors and time consuming, requiring heavy tests on the drive
chain. This sensitivity to errors directly affects the accuracy of the output force
estimation.

More recent works [8,9] have proposed to identify the global joint drive gains
gτ for each actuated joint separately by using a known payload fixed on the end-
effector. By carrying out with the robot two types of trajectories (trajectories with
a known payload and trajectories without it), it appeared that it was possible to
identify the payload terms using each joint j equations. However, as the drive gain
gτj

of joint j is unknown, the estimated payload terms are indeed equal to the
payload value divided by gτj

. As the payload was known, it was thus possible to
estimate gτj

.
In [8], the approach requires the use of the ten payload inertial parameters

estimated with CAD software which implies some errors on the estimated values.
Another drawback is to estimate the drive gain of one joint using only data coming
from the corresponding joint equation which implies the loss of information about
the coupled data on the other joints. As a result, we only succeed to identify the
first four robot drive gains over six actuated joints. [9] is an improvement using only
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the accurate value of the weighed payload mass but with the drawback of using a
sequential procedure for the computation of the payload inertial parameters that
involves the accumulation of errors in the estimation of the drive gain parameters.
Moreover, as previously, the estimation of the drive gain of one joint was done
using only data coming from the corresponding joint equation which implies the
loss of information about the coupled data on the other joints. With this approach,
we only succeed in obtaining good results for the first four robot joints.

In this paper it is proposed a new method for the global identification of all
robot dynamic parameters, including joint drive gains, using the input reference
of the motor current loop and the joint position sampled data while the robot
is tracking some reference trajectories without load fixed on the robot and some

trajectories with a known payload fixed on the robot whose inertial parameters are
measured or calculated with a CAD software. Contrary to the previous works, all
dynamic parameters and drive gains are calculated altogether as the total Least
Square (LS) solution of an over-determined system that takes into account the
coupling between the robot axes.

This method is combined with the use of an Inverse Dynamic Identification
Model (IDIM ) that takes into account all the robot link dynamic parameters.
Indeed, most of papers dealing with dynamic parameters identification for parallel
robots propose a simplified dynamic model that takes into account the platform
and drive chain dynamics only [10–12]. Only few papers propose a systematic
computation of the full IDIM. The most interesting and comprehensive works
are presented in [13,14], where the authors propose methods for computing the
IDIM based on Jourdain’s principle or Lagrange multipliers. The authors of [13]
focus on the identification of the friction terms. They have proposed a way to
decouple the identification procedure: first the inertial parameters are identified,
then the friction terms. This decoupled identification is obtained through the use of
special trajectories with constant velocities. This work however does not take into
account the asymmetry in the friction coefficients. [14] is a pedagogical work on
the identification of parallel robots which presents the identification procedure in
detail. However, the method proposed to compute the base parameters may lead,
for a parallel robot with identical legs (which is the case for most of parallel robots),
to a set of base parameters which does not conserve the symmetry properties of
the robot legs. Thus, the identification results are sometimes difficult to analyze.
Furthermore, for all these works, the way to identify the drive gains is not treated
and some Jacobian matrices, whose computation is not straightforward, are not
clearly derived.

The present paper has two main goals:

– to propose a systematic and straightforward procedure for the computation of
the IDIM for parallel robots which is combined with a way to obtain a set of
symmetric base parameters when robot legs are identical,

– to present a new method for the global identification of all robot dynamic
parameters, including joint drive gains.

The work will be decomposed as follows. First, in Section 2, the way to compute
the IDIM for parallel robots is developed. A straightforward procedure is proposed
for the computation of the Jacobian matrices required for closing the loops in the
dynamic model. Section 3 presents the usual identification procedure. Moreover,
some brief recalls are made for the computation of the base parameters of robots
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and the method is adapted to parallel robots so that, for a parallel robot with
identical legs, it leads to a set of base parameters which conserves the symmetry
properties of the robot legs. Then, Section 4 details the new procedure for the
global identification of all robot dynamic parameters, including joint drive gains.
In Section 5, the method is experimentally validated on a prototype of parallel
robot developed at the IRCCyN: the Orthoglide [15].

A condensed version of this work has been presented in [16,17]. The present
paper contains detailed proofs to enlighten the theoretical understanding of the
method and gives additional experimental results to show its practical efficiency.

2 Inverse Dynamic Identification Model of Parallel Robots

2.1 A Systematic Procedure for the IDIM Computation

This work focuses only on parallel robots without actuation redundancy. A parallel
robot is a complex multi-body system having several closed loops (Fig. 1(a)). It is
composed of a moving platform connected to a fixed base by n legs, each composed
of mi elements. It is considered here that there is one actuator per leg, but the
method can be easily extended to robots with several actuators per legs.

For the computation of IDIM of parallel robots, a method similar to the one
presented in [18] is applied. The proposed method is decomposed into two steps:

1. first, all closed loops are virtually opened to make the platform virtually dis-
assembled from the rest of the structure (Fig. 1(b)); each leg joint is virtually
considered actuated (even for unactuated actual joints) so that the robot be-
comes a tree structure with a free body: the platform; the dynamic model of
the tree structure and of the free platform is then computed using a systematic
procedure based on the Newton-Euler principle,

2. then, the loops are closed using the loop-closure equations and the Lagrange
multipliers, which involve the computation of robot Jacobian matrices.

In the following, the computation of the IDIM of the virtual tree structure
and of the platform is recalled, and then a straightforward way to compute the
Jacobian matrices for closing the loops is detailed.

2.2 IDIM of Tree Open Loop Robots

It is known that the complete rigid dynamic model of any open-loop tree structure
can be linearly written in terms of a (nt × 1) vector with respect to the standard
parameters χstt [4] (nt denotes the total number of joints for the virtual tree
structure),

τidmt
(qt, q̇t, q̈t) = IDMstt (qt, q̇t, q̈t)χstt (1)

where τidmt
is the (nt × 1) vector of the input efforts of the virtual tree structure,

IDMstt is the (nt × nstt) Jacobian matrix of τidmt
, with respect to the (nstt × 1)

vector χstt of the standard parameters given by χT
stt = [χ1T

st , χ
2T
st , . . . χ

ntT
st ] and

qt, q̇t, q̈t are the vectors of the joint positions, velocities and accelerations, respec-
tively.

For rigid robots, the vector χj
st of link j is composed of 14 standard parameters

described as:
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(b) Virtual tree structure

Fig. 1 A general parallel robot (the grey circles denote the actuated joints).

– xxj , xyj , xzj , yyj , yzj , zzj are the 6 components of the inertia matrix of link j
at the origin of frame j,

– mxj ,myj ,mzj are the 3 components of the first moment of link j,
– mj is its mass,
– iaj is the total inertia moment for rotor and gears of the drive train,
– fvj , fsj are the viscous and Coulomb friction coefficients in the joint, respec-

tively, and τoffj
= τofffsj

+ τoffτj
is an offset parameter which regroups the

current amplifier offset τoffτj
and the asymmetrical Coulomb friction coeffi-

cient τofffsj
.

In the same vein, the IDIM of the platform can be obtained as:

τp
(

x, t, ṫ
)

= IDMp

(

x, t, ṫ
)

χp (2)

where τp is the (6× 1) vector of platform reaction wrench, IDMp is the (6× 10)
Jacobian matrix of τp, with respect to the (10× 1) vector χp of the platform
inertial standard parameters1 and x, t, ṫ are the platform position, twist and ac-
celeration screw, respectively.

Several methods can be used to systematically derive these equations. Here, an
algorithm based on the use of the modified Denavit-Hartenberg robot geometric
description and the Newton-Euler principle is applied. This modeling is known to
give the dynamic model equations in the most compact form [4].

2.3 IDIM of Parallel Robots

The IDIM of the virtual tree structure and of the free moving platform does not
take into account the closed loop characteristics of parallel robots: among all joint

1 The number of standard parameters of a free rigid body can be reduced to 10 inertial
parameters as it is not necessary to consider the parameters iaj , fvj , fsj and τoffj that are
related to actuated joint drive chains.
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and platform coordinates qt and x of the virtual robot (Fig. 1(b)), resp., only a
subset denoted as q is independent in the real robot (the actual actuated joints
positions, that are indeed a subset of qt). All these variables are linked through
the loop-closure equations that can be obtained by expressing the (translational
and rotational) displacement xk of the last joints of each leg located at Cmk,k

(that belong to both the platform and each leg k – Fig. 1) in two different ways:
(i) as a function of the platform coordinates x and (ii) as a function of all joint
coordinates qt, such that:

f(x,qt) =







x1(x)− x1(qt)
...

xn(x)− xn(qt)






= 0 (3)

The main problem with (3) is that, for most parallel robots, it is difficult to solve
the forward kinematic problem (fkp) using these equations in a straightforward
way. Therefore, it is better to express the reduced loop-closure equations that
directly relate the displacements q of the actuated joints to the moving platform
coordinates x which is almost simpler to obtain [1]:

fp(x,q) = 0 (4)

and to solve then the reduced fkp that gives x as a function of q. Obviously, this
problem can be also tedious, but:

– the equations are simpler to solve than when using the equations (3),
– if the problem cannot be solved because the obtained polynomial equations

have a too high degree, a numeric procedure can be used [1].

Then, once the values of x are found as a function of q, it is possible to
introduce them into (3) in order to express all joint coordinates qt as a function of
x, and thus of q. This problem is generally easy for usual parallel robots [1] and,
even for more complicated cases, can now be solved using advanced mathematical
methods [19].

Differentiating (3) and (4) with respect to time, the following expressions can
be obtained:

Apv +Bpq̇ = 0 ⇒ v = −A
−1
p Bpq̇ = Jpq̇, (5)

Apv̇ + Ȧpv +Bpq̈+ Ḃpq̇ = 0

⇒ v̇ = −A
−1
p (Ȧpv +Bpq̈+ Ḃpq̇)

(6)

and
Jtkv − Jkq̇t = 0 ⇒ q̇t = J

−1

k Jtkv, (7)

Jtkv̇ + J̇tkv − Jkq̈t − J̇kq̇t = 0

⇒ q̈t = J
−1

k (Jtkv̇ + J̇tkv − J̇kq̇t)
(8)

where

Ap =

[

∂fp
∂xind

]

T, Bp =

[

∂fp
∂q

]

Jtk =

[

∂f

∂xind

]

, Jk = −
[

∂f

∂qt

] (9)
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with xind a vector of the independent platform coordinates, that are a subset of x,
T a transformation matrix between the platform twist and the time derivatives of
the terms xind [1], and v a vector of the independent coordinates in the platform
twist (dimv = dimxind ≤ 6), i.e.

t = Dv (10)

In the case of robots with 6 dof, D is the identity matrix. In these expressions, it
is to be noted that

– the matrix Jk stacks all Jacobian matrices corresponding to the independent
motions of the last joints of each leg due to the joint displacements of each serial
leg and is thus a square matrix of dimension ((n (mi − 1))× (n (mi − 1))),

– the matrix Jtk is a matrix of dimension ((n (mi − 1))× n) that can be obtained
by considering the rigid body displacement of any point of the robot platform
as a function of the platform twist, and

– in the case of parallel robots without actuation redundancy, the matrices Ap

and Bp are square of dimension (n× n).

Finally, by introducing (5) and (6) into (7) and (8), the expressions of q̇t and
q̈t as a function of q, q̇ and q̈ can be obtained.

It should be mentioned that all the previous expressions are valuable as long
as the robot does not meet any singularity and as long as the number of actuators
is the same as the number of platform dof to control. Singularity avoidance or
crossing is not the main topic of this paper, and the reader should refer to [20,21]
for further developments. In the following of the Section 2.3, it is considered that
all these matrices are regular.

To take into account the loop-closure constraints in the dynamic model of the
parallel robot, Lagrange multipliers λT =

[

λT
1 λT

2

]

can be used [4] to compute the
(n× 1) vector of the actuated joint force/torque τidm of the closed-loop structure.
τidm can be obtained in relation of the Lagrange multipliers λ by

τidm = [0,−B
T
p ]

[

λ1

λ2

]

= −B
Tλ, (11)

where λ is calculated from the relation:
[

JT
k 0

−JT
tk AT

p

] [

λ1

λ2

]

= A
Tλ =

[

τidmt

τpr

]

(12)

with A a square matrix of dimension ((n mi)× (n mi)) and

τpr = D
T τp (13)

where τp is defined in (2) and τpr is a subset of forces/moments in τp that can be
found through the use of the principle of virtual powers, which states that:

v
∗T τpr = t

∗T τp = v
∗T

D
T τp (14)

In this equation, the superscript “∗” stands for a virtual velocity.
It should also be mentioned that, in (11) and (12):

– λ1 stacks the wrenches applied by the virtual tree structure on the platform
at points Cmk,k,
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– λ2 stacks the values of the norms of the wrenches due to the platform dynamics
in the platform joints located at Cmk,k.

Thus, the second equation of the system (12) represents the platform equilibrium
so that the loops of the parallel robots can be closed.

Solving (11) and using the right part of (5) and (7), it can be demonstrated
that:

τidm = J
T
t τidmt

+ J
T
p D

T τp

= J
T
t IDMsttχstt + J

T
p D

T
IDMpχp

=
[

JT
t IDMstt JT

p D
T IDMp

] [

χT
stt χT

p

]T

= IDMst (q, q̇, q̈)χst

(15)

where Jt = J−1

k JtkJp.
Finally, because of perturbations due to noise measurement and modeling er-

rors, the actual force/torque τ differs from τidm by an error e, such that:

τ = τidm + e = IDMstχst + e (16)

where τ is calculated with the drive chain relation:

τ = vτgτ =







vτ1
0 0

0
. . . 0

0 0 vτn













gτ1

...
gτn






(17)

vτ is the (n× n) matrix of the actual motor current references of the current
amplifiers (vτj

corresponds to actuator j) and gτ is the (n× 1) vector of the
joint drive gains (gτj

corresponds to actuator j) that is given a priori by the
manufacturer’s data or measured with special time-consuming and heavy tests [6,
7]. Equation (16) represents the Inverse Dynamic Identification Model (IDIM ).

2.4 IDIM of Parallel Robots Including the Payload

The payload is considered as an additional link (denoted as link l) fixed to the
robot platform [5]. Only nkl among its ten parameters are considered to be known.
The model (15) becomes:

τidm =
[

IDMst IDMul IDMkl

]





χst

χul

χkl



 (18)

where:

– χkl is the (nkl × 1) vector of the known inertial parameters of the payload;
– χul is the (nul × 1) vector of the unknown inertial parameters of the payload,

where nul = 10− nkl

– IDMkl is the (n× nkl) Jacobian matrix of τidm, with respect to the vector
χkl,

– IDMul is the (n× nul) Jacobian matrix of τidm, with respect to the vector
χul.
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3 Usual Identification Procedure

This part proposes a procedure for the computation of the base parameters for
parallel robots so that, for a parallel robot with identical legs, it leads to a set of
base parameters which conserves the symmetry properties of the robot legs, and
then presents some necessary recalls on the identification procedure.

3.1 Computation of the Base Parameters

The off-line identification of the dynamic parameters is considered, given measured
or estimated off-line data for τ and (q, q̇, q̈), collected while the robot is tracking
some planned trajectories. The model (16) is sampled at frequency fm in order to
get an over-determined linear system of rfm

equations and nst unknowns:

Yfm
(τ) = W

st
fm

(q̂, ˆ̇q, ˆ̈q)χst + ρfm
(19)

where (q̂, ˆ̇q, ˆ̈q) is an estimation of (q, q̇, q̈), respectively, obtained by sampling and
band-pass filtering the measure of q [22], ρfm

is the (rfm
× 1) vector of errors, Yfm

is the (rfm
× 1) vector of the input torques/force, sampled at frequency fm and

Wst
fm

(q̂, ˆ̇q, ˆ̈q) is the (rfm
× nst) observation matrix.

The force/torque τ is perturbed by high frequency unmodelled friction and
flexibility force/torque of the joint drive chain which is rejected by the closed
loop control. These force/torque ripples are eliminated with a parallel decimation
procedure which low pass filters in parallel Yfm

and each column of Wst
fm

and
resamples them at a lower rate, keeping one sample over nd. This parallel decima-
tion can be carried out with the MATLAB decimate function, where the low pass
filter cut-off frequency, ωfp = 2π0.8fm/ (2nd), is chosen in order to keep Yfm

and
Wst

fm
in the same frequency range of the model dynamics. After the data acquisi-

tion procedure and the parallel decimation of (19), we obtain the over-determined
linear system

Y(τ) = W
st(q̂, ˆ̇q, ˆ̈q)χst + ρ (20)

where ρ is the (r × 1) vector of errors, Y is the (r × 1) vector of the input
torques/force and Wst(q̂, ˆ̇q, ˆ̈q) is the (r × nst) observation matrix.

In Y and Wst, the equations of each joint j are sorted in order to regroup the
equations of each joint altogether such that: YT =

[

(Y1)T , · · · , (Yn)T
]

, Wst =
[

(W1)T , · · · , (Wn)T
]T

, where Yj and Wj represent the r/n equations of joint
j. It is to be noted that no error is introduced by the parallel filtering process in
the linear relation (20) compared with (19). In [22], practical rules for tuning this
filter are given.

The identifiable parameters are the base parameters which are the minimum
number of dynamic parameters from which the dynamic model can be calcu-
lated [4]. The minimal dynamic model can be written using the nb base dynamic
parameters χ as follows:

Y = W (q, q̇, q̈)χ+ ρ (21)

where W is a subset of independent columns in Wst which defines the identifiable
parameters. Several methods exist for the computation of these subsets (analyti-
cal [4] or numerical [23]). In this work, it is preferred to use a numerical method
based on QR factorization.
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There is an infinity of possible subsets of base parameters, as presented in [14,
23]. In [14], the authors test different subsets (obtained via the SVD of the obser-
vation matrix [23]) and keep the one which leads to the best conditioning index
of the observation matrix. Even if it is computationally efficient, this method has
a drawback: for a parallel robot with identical legs, it can lead to a set of base
parameters which does not conserve the symmetry properties of the robot legs. Ob-
viously, for avoiding this problem, it can be set a priori that some parameters are
equivalent, which involves to sum their corresponding columns in the observation
matrix. However, as there can be some small variations in the parameters values
due to the manufacturing process, it is worth to avoid this a priori regrouping and
check it a posteriori on the identified values.

Here, a method that avoids these drawbacks is described. For presenting it,
let us make some brief recalls on the computation of the base parameters via QR

factorization.

The QR factorization of the matrix Wst of (20) takes the form:

Q
T
W

st =

[

R

0

]

(22)

where Q is a r × r orthogonal matrix and R is upper triangular.

If the absolute value |Rkk| of the k-th component located on the diagonal of
R is inferior to α (α is the numerical rank – different from 0 because of round-off
errors – and can be chosen such that α = ǫ max |Rjj |, where ǫ is a small coefficient
depending on the level of perturbations in Wst (due to noise measurement and
error modelling) and max |Rjj | is the largest diagonal absolute value of R [23]),
the k-th column Wst

k of Wst can be deleted. At the end of the procedure, (nst −
nb) columns of Wst have been deleted that corresponds to (nst − nb) standard
parameters removed from vector χst to keep a set of nb base parameters χ.

Because the QR algorithm starts from the last columns to the first of Wst,
the (nst −nb) standard parameters to delete are dependent on the ordering of the
columns of that matrix. For serial robots, the matrix Wst is build such that the
columns with the smaller indices are those corresponding to the links closest from
the base. Thus, using the previous algorithm, the parameters with the smallest
influence (those of the wrist) are eliminated from the base parameters.

For parallel robots, to take into account the symmetry in the leg dynamic
parameters, it is preferable to order the columns of Wst such that:

W
st
r =

[

Wst
p Wst

χ1,1:n Wst
χ2,1:n · · · Wst

χnstleg
,1:n

]

(23)

where nstleg is the number of standard parameters for one leg, matrix Wst
p is the

observation matrix corresponding to the platform inertial parameters and matrices
Wst

χk,1:n concatenates the columns of matrix Wst corresponding to the parameters
χk that are a priori identical for the n legs. Then, (nst −nb) columns of Wst

r can
be deleted using the previous approach based on the QR factorization to obtain a
new observation matrix W associated with a set of symmetrical base parameters
denoted as χ.
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3.2 Recalls on Least Squares Identification of the Base Dynamic Parameters
(IDIM-LS)

Using the base parameters and tracking “exciting” reference trajectories, i.e. opti-
mized trajectories that can be computed by nonlinear minimization of a criterion
function of the condition number of the Wst matrix [24,25], a well-conditioned
matrix Wst can be obtained. Examples of such trajectories will be shown in Sec-
tion 5. The LS solution χ̂ of (21) is given by:

χ̂ = W
+
Y, where W

+ =
(

W
T
W

)

−1

W
T (24)

It is computed using the QR factorization of W.
Standard deviations σχ̂i

can be estimated assuming that W is a deterministic
matrix and ρ is a zero mean additive independent noise [22], with a covariance
matrix Cρρ such that

Cρρ = E
(

ρρT
)

= σ2
ρIr (25)

E is the expectation operator and Ir, the r × r identity matrix. An unbiased
estimation of the standard deviation σρ is:

σ2
ρ = ‖Y −Wχ̂‖2 / (r − nb) (26)

The covariance matrix of the estimation error is given by:

Cχ̂χ̂ = E
[

(χ− χ̂) (χ− χ̂)T
]

= σ2
ρ

(

W
T
W

)

−1

(27)

σ2
χ̂i

= Cχ̂χ̂(i, i) is the i-th diagonal coefficient of Cχ̂χ̂ (27).
The ordinary LS can be improved by taking into account different standard

deviations on actuated joint j equations errors [22]. Data in Y and W of (20) are
weighted with the inverse of the standard deviation of the error calculated from
ordinary LS solution of the equations of joint j [22]

Y
j = W

jχ+ ρj (28)

This weighting operation normalizes the errors in (20) and gives the weighted LS

estimation of the parameters (IDIM-WLS).

3.3 Payload Identification

In order to identify the dynamic parameters of both the robot and the payload,
using the model (18), it is necessary that the robot carries out two types of tra-
jectories [26]:

1. trajectories without the payload, and
2. trajectories with the payload fixed to the end-effector.

The sampling and filtering of the model IDIM (18) can be then written as:

Y =

[

Wa 0 0

Wb Wul Wkl

]





χ
χul

χkl



+ ρ (29)

where
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– Wa is the observation matrix of the robot in the unloaded case,
– Wb is the observation matrix of the robot in the loaded case,
– Wul is the observation matrix of the robot corresponding to the unknown

payload inertial parameters,
– Wkl is the observation matrix of the robot corresponding to the known payload

inertial parameters.

Thus, these two types of trajectories avoid the regrouping of the payload param-
eters with those of the platform and allow their independent identification.

The next section presents the way to identify both link inertial parameters and
joint drive gains.

4 Global Identification of the Robot Dynamic Parameters and the

Drive Gains

In the usual IDIM-LS or IDIM-WLS, accurate values of the drive gains are nec-
essary to compute vector Y. However, it is often difficult or impossible to obtain
manufacturers’ data. And if available, data are given with an uncertainty greater
than 10%, thus leading to identification and force calibration errors. Therefore, it
is preferable to introduce the drive gains into the base parameters and to use the
Total Least Squares Identification (IDIM-TLS) procedure.

Details on the TLS identification method can be found in [27] and many papers
of the same authors. This method has been applied in [28] for the identification
of the drive gains and the dynamic parameters on a two dof serial robot but gave
arguable results due to the lack of an accurate scale factor.

In this paper a major improvement is proposed: the scaling of parameters using
the accurate value of an additional payload mass.

4.1 Total Least Square Identification of the Robot Dynamic Parameters and the
Drive Gain (IDIM-TLS)

Introducing (17) into (18), and keeping only the base parameters, we obtain:

τ = vτgτ =
[

IDM IDMul IDMkl

]





χ
χul

χkl



+ e (30)

where IDM is the Jacobian matrix that relates the base parameters χ to the input
torques τ .

Then, using the method presented in the Section 3.3, the sampling and parallel
decimation of the model IDIM (30) can be written as:

Y =

[

Vτa

Vτb

]

gτ =

[

Wa 0 0

Wb Wul Wkl

]





χ
χul

χkl



+ ρ (31)
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where Vτa is the matrix of vτ samples in the unloaded case, Vτb is the matrix of
vτ samples in the loaded case.

Vτi =







V1
τi · · · 0
...

. . .
...

0 · · · Vn
τi






,Vj

τi =









vjτi,1
...

vjτi,r/n









,with i = a, b (32)

in which vjτi,k is the k -th sample of current reference for actuator j, Vj
τi regroups

all the samples of the current reference for actuator j.

Rearranging the terms inside, Eq. (31) becomes:

Wtotχtot =

[

−Wa Vτa 0 0

−Wb Vτb −Wul −Wklχkl

]









χ
gτ

χul

1









= ρ (33)

where Wtot is a (r × c) matrix (c = (nb + n+ nul + 1)) and χtot is a (c× 1)
vector.

Without perturbation, ρ = 0 and Wtot should be rank deficient to get the
solutions λχtot 6= 0 depending on a scale coefficient λ. However because of the
measurement perturbations, Wtot is a full rank matrix. Therefore, the system (33)
is changed to the compatible system closest to (33):

Ŵtotχ̂tot = 0 (34)

where χ̂T
tot =

[

χ̂T ĝT
τ χ̂T

ul 1
]

and Ŵtot is the rank deficient matrix, closest to
Wtot with respect to the Frobenius norm, i.e. Wtot minimizes the Frobenius norm
‖Wtot − Ŵtot‖F [28]. χ̂tot is the solution of the compatible system (34) closest
to (33).

Ŵtot can be computed thanks to the “economy size” SVD of Wtot [29]:

Wtot = U

[

diag (si)
0

]

V
T (35)

where U and V are (r × r) and (c× c) orthonormal matrices, respectively, and
diag (si) is a (c× c) diagonal matrix with singular values si of Wtot sorted in
decreasing order. Ŵtot is given by:

Ŵtot = Wtot − scUcV
T
c (36)

where sc is the smallest singular value of Wtot and Uc (Vc, resp.) the column
of U (V, resp.) corresponding to sc. Then, the normalized optimal solution χ̂n

tot

(‖χ̂n
tot‖ = 1) is given by the last column of V, χ̂n

tot = Vc [28].

There is infinity of vectors χ̂tot = λχ̂n
tot which are solution of (34) depending

on a scale factor λ. The unique solution χ̂∗

tot = λ̂χ̂n
tot for the robot can be found by

taking into account that the last value χ̂∗

totc of χ̂∗

tot must be equal to 1 according

to (33), i.e. λ̂ = 1/χ̂n
totc , with χ̂n

totc the last value of χ̂n
tot.
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4.2 Statistical Analysis

Standard deviations σχ̂i
on the dynamic and sensor gains parameters, are esti-

mated assuming that all errors in data matrix Wtot are independently and iden-
tically distributed with zero mean and common covariance matrix CWW such
that

CWW = σ̂2
W IrW

(37)

where IrW
is the identity matrix of dimension (r × c)× (r × c).

An unbiased estimation of the standard deviation σ̂W [27]:

σ̂W = sc/
√
r − c (38)

The covariance matrix of the estimation error is approximated by [27]:

Cχ̂χ̂ ≈ σ̂2
W

(

1 + ‖χ̂1:c−1‖22
)(

Ŵ
T
tot1:c−1

Ŵtot1:c−1

)

−1

(39)

with χ̂1:c−1 the vector containing the (c− 1) first coefficients of χ̂∗

tot and Ŵtot1:c−1

a matrix composed of the (c− 1) first columns of Ŵtot. Finally, σ
2
χ̂i

= Cχ̂χ̂(i, i)
is the i-th diagonal coefficient of Cχ̂χ̂ and the relative standard deviation %σχ̂ri

is given by: %σχ̂ri
= 100σχ̂i

/ |χ̂i|, for |χ̂i| 6= 0.

In order to improve the estimation of χ̂∗

tot, the rows of Wtot are weighted
taking into account the confidence on the measurements. As proposed in IDIM-

WLS (Section 3.2), to improve the TLS solution, each row corresponding to joint
j equation is weighted by the inverse of σ̂Wj

, i.e. the standard deviation corre-
sponding to the data of the joint j equations. Moreover, to take into account that
the confidence on data in Vτa,b is higher than for data in Wa,b and Wu,kl, the
columns of Vτa,b could also be weighted. However, our experiments have shown
that the results were not really improved; therefore this last weighting procedure
was not used in the next section.

4.3 Discussion on the A Priori Knowledge of the Payload Parameters

The accuracy of λ̂ depends on the accuracy of the knowledge χkl of the payload pa-
rameters. The parameters can be obtained by measurements or estimated by CAD

software. However, due to the possible errors in CAD values, the most accurate
payload parameter is the mass value ml that can be accurately measured using a
weighing machine. For the robot under study in the next section, the Orthoglide,
only the payload mass appears in the model (the other payload parameters have
no effects on the dynamics). However, for other types of robots such as serial six
dof robots, our experiments have shown that, due to the error on the parameter
estimation using CAD software, it is better to carry out the identification IDIM-

TLS using the knowledge of the payload mass only [30]. These results are not
shown here as they are out of the scope of the paper.
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5 Case Study: the Orthoglide Robot

5.1 Description of the Architecture

The Orthoglide is a parallel robot with three translational dof composed of three
identical legs (Fig. 2). Each leg is made of one linearly actuated foot linked at its
extremity to a spatial parallelogram (Fig. 3(a)). The parallelogram is also attached
to the mobile platform.

(a) Prototype (b) Kinematic chain

Fig. 2 The Orthoglide robot.
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(c) Fixed base

Fig. 3 Kinematic chain description.

The directions of the three linear actuators of the Orthoglide are orthogonal
(Fig. 2(b)). This aims at creating a mechanism with a workspace shape close to
a cube and whose behavior is close to the isotropy wherever it is located in its
workspace [15].
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For the remainder of the paper, it should be mentioned that the gravity field
g is directed along the vector y0 of Fig. 3(c).

For the dynamic modeling of the Orthoglide, as the bars of the parallelograms
are parallel and as the prototype has been designed so that they are identical,
it is possible to replace the long bars by only one equivalent bar linked at each
extremity by two orthogonal pivots (Fig. 3(b)) without loss of generality. Using
the previous assumption, the Orthoglide kinematics necessary for computing the
dynamic model are defined using the modified Denavit and Hartenberg notation
(MDH ) [4]. The geometric parameters of the virtual open-loop tree structure are
given in Tables 1 and 2. The platform and payload are considered as supplementary
bodies, the payload being fixed on the platform. They are respectively numbered
as bodies 6 and 7.

The MDH notation being well known, the parameters of Tables 1 and 2 will
not be defined here. For more information concerning the MDH parameters, the
reader should refer to [4].

Table 1 MDH parameters for the frames corresponding to the first body of each leg.

ji a(ji) µji σji γji bji αji dji θji rji
11 0 1 1 0 0 0 0 0 q11
12 0 1 1 π/2 a π/2 0 0 q12 − a
13 0 1 1 0 a −π/2 0 −π/2 q13 + a

Table 2 MDH parameters for the frames corresponding to the leg i.

ji a(ji) µji σji γji bji αji dji θji rji
2i 1i 1 0 0 0 −π/2 0 q2i 0
3i 2i 1 0 0 0 −π/2 0 q3i 0
4i 3i 1 0 0 0 0 d4 q4i 0
5i 4i 1 0 0 0 π/2 0 q5i 0

As proposed in Section 2, the loop constraints can be taken into account by
using the robot loop-closure equations [1] and the Lagrange multipliers [4,31]. The
loop-closure equations of the Orthoglide can be expressed as [15]

f =
[

f
T
11, f

T
21, f

T
12, f

T
22, f

T
13, f

T
23

]T
= 0 with (40)

f1i =





x
y
z



−Ri
0





d4 cos q2i cos q3i + aδi
−d4 sin q3i + aδi+1

q1i − aδ̄i+2 − d4 sin q2i cos q3i + d6



 , f2i =

[

q2i
q3i

]

+

[

q5i
q4i

]

,

fp =





x2 + y2 + (z − q11 − d6)
2 − d24

(x− q12 − d6 + a)2 + y2 + (z − a)2 − d24
x2 + (y − q13 − d6 + a)2 + (z − a)2 − d24



 = 0, (41)

where Ri
0 is the rotation matrix between the leg frame (Oi,x1i,y1i, z1i) and the

base frame (O0,x0,y0, z0) (Fig. 3(c)), a, d4 and d6 are geometric parameters
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defined in Fig. 3(b) (a = 0.34m, d4 = 0.31m and d6 = 0.03m), δi is a scalar whose
value is equal to 1 if i = 3, 0 if not and δ̄i = 1 (δ̄i = 0, resp.) if δi = 0 (δi = 1,
resp.).

The matrices Jk, Jtk, Ap, Bp and all positions, velocities and accelerations
that are necessary for computing the dynamic model of the real robot can be
calculated from (40) and (41) using expressions of Section 2 in a straightforward
way.

5.2 Identification Results

In this part, experimentations are performed and the dynamic model identification
is carried out on the Orthoglide. The actuation of each foot is achieved by a
rotary DC motor Sanyo Denki linked to a ball-screw. The actuators are powered
by current source amplifiers Sanyo Denki. The global drive gains given by the
manufacturer are equal to 637π ≈ 2001. Actuator positions and current references
are provided by the controller.

The approach presented in Section 3 requires that the robot moves on two
types of exciting trajectories:

1. a first type of trajectory without any payload and
2. a second type of trajectory with a payload.

It should be mentioned that those trajectories can be different.

An example of exciting trajectory obtained using the approach recalled in
Section 3 is shown in Fig. 4. In our experiments, the payload mass has been
measured with an accurate weighing machine (M7 = 1.983kg± 0.001kg).

Even paying attention to the choice of the exciting trajectories, some small
parameters remain poorly identifiable because they have no significant contribu-
tion in the joint torques. These parameters have no significant estimations and can
be cancelled in order to simplify the dynamic model. Thus parameters for which
the relative standard deviation %σχ̂ri

is too high are cancelled to keep a set of
essential parameters of a simplified dynamic model with a good accuracy [26]. The
essential parameters are calculated using an iterative procedure starting from the
base parameters estimation. At each step the base parameter which has the largest
relative standard deviation is cancelled. A new IDIM-TLS parameter estimation
of the simplified model is carried out with new relative error standard deviations
%σχ̂ri

. The procedure ends when max (%σχ̂ri
) /min (%σχ̂ri

) < rσ, where rσ is a
ratio ideally chosen between 10 and 30 depending on the level of perturbation in
Y and W. In the following of the paper, this ratio is fixed to 10.

Table 3 presents the identification results. Subscript “R” stands for the param-
eters that have been regrouped using the procedure presented in Section 3. Their
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Fig. 4 Example of exciting trajectory (blue dotted line: actuator 1; green dash-dotted line:
actuator 2; red dashed line: actuator 3).

expressions are listed below (for i = 1, 2, 3):

m1jR = m1j
+ ia1j

+m2j
− 3.2258mx3j

+m3j
, for j = 1, 2

m13R = m13
− 0.10197τoff13

+m23
− 3.2258mx23

+m23

ia13R = ia13
+ 0.10197τoff13

zz2iR = zz2i
+ yy3i

− 0.31mx3i
+ yy4i

my2iR = my2i
+mz3i

+mz4i

fv2iR = fv2i
+ fv5i

fs2iR = fs2i
+ fs5i

τoff2iR
= τoff2i

− τoff5i

xx3iR = xx3i
− yy3i

+ 0.31mx3i

zz3iR = xz3i
− 0.31mz4i

fv3iR = fv3i
+ fv4i

fs3iR = fs3i
+ fs4i

τoff3iR
= τoff3i

− τoff4i

m6R = m6 +

3
∑

i=1

3.2258mx3i
+m4i

+m5i
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As it can be observed, the same regroupings appears for each robot leg. There is
a small difference concerning the regrouped parameter m1iR: as actuated joint 3 is
vertical, contrary to joints 1 and 2 that are horizontal, this joint must support the
gravity effects applied on the foot of leg 3 (link 13). This is not the case for joints
1 and 2. Thus, this is the reason why parameters m13R and ia13R are identified
separately.

In Table 3, the given values of standard deviation and percentage of error for
the payload mass m7 are those estimated by the use of the weighing machine. The
results show that the identified drive gains are about 5% off from those given by
the manufacturer.

In Fig. 5, the actuator torques calculated with the relation (17) τ = vτ ĝτ

(where vτ is the measured motor current reference and ĝτ the vector of the iden-
tified drive gains) are compared with torques computed using the IDIM (21)
τidm = IDMχ̂ (where χ̂ are the identified dynamic parameters). It should be
noted here that the trajectory used for plotting these figures is different from
the trajectories used in the identification process, i.e. the model has been cross-

validated. It can be seen that the torques are well calculated using the identified
IDIM.

In order to definitively validate our method, a second payload of 1.136 kg is
mounted on the platform and a classical IDIM-WLS identification is performed [22].
Two cases are considered:

– (Case 1) the drive gains used are those of the manufacturer and,
– (Case 2) the drive gains are those identified in Table 3.

The following results are found:

– (Case 1) m7 = 1.09 kg ±0.02kg kg,
– (Case 2) m7 = 1.14 kg ±0.02kg kg.

It is thus possible to conclude that the identification of the drive gain using IDIM-

TLS leads to better payload estimation.

Table 3 Essential parameters of the Orthoglide.

Par. Val. %σχ̂ri
Par. Val. %σχ̂ri

Par. Val. %σχ̂ri

gτ1 2170 0.39 gτ2 2100 0.39 gτ3 2070 0.24
m11R 9.40 0.44 m12R 8.95 0.44 m13R 0.87 1.12
ia11R − − ia12R − − ia13R 8.05 0.25
fv11 85.7 0.42 fv12 86.7 0.50 fv13 84.0 0.27
fs11 35.2 0.43 fs12 41.7 0.42 fs13 24.1 0.32
mx21 −0.12 3.75 mx22 − − mx23 − −

fv21R 5.57 1.36 fv22R − − fv23R − −

τoff21R 0.96 1.10 τoff22R − − τoff23R −0.47 2.16
fv31R − − fv32R − − fv33R −5.57 1.46
fs31R 1.76 1.34 fs32R 1.61 1.45 fs33R 1.35 1.93
m6R 0.92 0.86 m7 1.98 0.05

Finally, to test its effectiveness, the identified dynamic model is used in a model
based feedforward control (Computed Torque Control (CTC )). Tracking errors are
compared with those obtained with four different control laws:

1. control of the robot using a simple PID controller,
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Fig. 5 Measured and computed torques of the Orthoglide with the payload of 1.983 kg.

2. control of the robot using an advanced PID controller with velocity feedfor-
ward,

3. control of the robot using a CTC with a dynamic model identified using the
manufacturer’s drive gains,

4. control of the robot using a CTC with a dynamic model identified applying
25% of error on the manufacturer’s drive gains

keeping the same bandwidth (100 rad/s) for the linear part of the five control laws,
so that the results can be fairly compared. It should be mentioned that the last
case is introduced into the comparison as the identified gains are very close to the
manufacturer’s gains, so that the effect of drive gains obtained with a larger error
can be analyzed.

Two different trajectories are tested. They are plotted in Fig. 6. A mass of 1.983
kg is fixed on the platform. The nominal value of this mass is directly introduced
into the dynamic models used in the CTC. The tracking errors in each case for
all the three actuated axes are plotted in Figs. 7 and 8. It is obvious that CTC

strategies lead to lower tracking errors and are about 40 times better than the
simple PID control. However, it is difficult to analyze which CTC strategy is
the best. Therefore, in Table 4 are presented the values of the maximal absolute
tracking errors and the root-mean-square (rms) errors along the trajectories for
each control strategy. Each trajectory is run twice and the presented values are the



Global Identif. of Joint Drive Gains and Dyn. Param. of Parallel Robots 21

mean values of the obtained results. It can be observed that CTC with identified
gains leads to slightly better results, even if the difference with respect to the CTC
with manufacturer’s gains is not really relevant. This can be explained by the fact
that, for CTC strategies with identified and manufacturer’s gains, the computed
torques are slightly the same, as the difference in the gains is very small (less than
5%). It can also be observed that when the gains have an error of 25%, the tracking
errors are clearly higher.

Table 4 Tracking errors along the trajectories.

Trajectory 1 Maximal error (µm) rms (µm)
Control strategy joint 1 joint 2 joint 3 joint 1 joint 2 joint 3

Simple PID 5165 5202 335 1755 1776 84
Advanced PID 453 506 126 158 177 18

CTC with manuf. gains 180 177 96 61 62 10
CTC with identif. gains 179 177 96 60 61 10
CTC with error on gains 188 184 93 66 66 10

Trajectory 2 Maximal error (µm) rms (µm)
Control strategy joint 1 joint 2 joint 3 joint 1 joint 2 joint 3

Simple PID 9910 12610 10469 5307 6371 5856
Advanced PID 727 919 842 420 449 429

CTC with manuf. gains 305 339 383 140 149 156
CTC with identif. gains 302 339 382 137 147 154
CTC with error on gains 350 353 409 154 164 169

All these result show the necessity of identifying the drive gains. For doing so,
the presented effective approach can be used: for calibrating the drive gains, it is
only necessary to weigh the payload mass and to carry out exciting trajectories
on the robot.

Finally, to conclude this section and to claim that the proposed method can be
applied to any kind of robots (serial or parallel, with any types of dof ), we would
like to mention that it has been experimentally tested on three 6 dof industrial
robots (the Staübli TX-40 (2kg of payload) and RX-90 robots (about 10kg of pay-
load) and the Kuka KR270 robot (270kg of payload)). Experimental results have
either confirmed the drive gains values given by the manufacturers or have shown
significant improvements of the identification of the drive gains values leading to
better payload estimations.

6 Conclusion

This paper has presented a new method for the global identification of the parallel
robot dynamic parameters including the whole gains of the total drive chain. The
presented work has:

– proposed a systematic and straightforward procedure for the computation of
the IDIM for parallel robots combined with a way to obtain a set of symmetric
base parameters when robot legs are identical,

– shown a new method for the global identification of all robot dynamic param-
eters, including joint drive gains.
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Fig. 6 The trajectories for testing the control strategies (blue dotted line: actuator 1; green
dash-dotted line: actuator 2; red dashed line: actuator 3).
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Fig. 7 Tracking errors for each actuator on trajectory 1 (blue full line: simple PID ; red
dotted line: advanced PID with velocity feedforward; cyan bold line: CTC with parameters
identified using identified drive gains; black thin line: CTC with parameters identified using
manufacturer’s drive gains; green dash+dotted line: CTC with parameters identified using
error on gains).

The identification method is easy to implement and does not need any special
test or measurement on the components of the joint drive train. It is based on
a IDIM-TLS technique using motor current reference and joint position sampled
data while the robot is tracking some reference trajectories without load fixed
on the robot and some trajectories with a known payload fixed on the robot end-
effector. The ten inertial parameters are measured or calculated by CAD software.
The method has been experimentally validated on a prototype of parallel robot
with three translational dof, the Orthoglide. The results have shown that the
identified gains allows the best payload reconstruction and the best accuracy along
a desired trajectory.
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