

Advanced approach to local magnetic field computation in magnetocaloric materials characterization

PhD student M. ALMANZA, Post-doc A. RAMINOSA, director A. Lebouc, S. Miraglia UMR CNRS 5269 - Grenoble-INP – Université Joseph Fourier

Quick reminder of Extraction Magnetometer

I. Intro

Measure of magnetic moment project on Z

- Homogeneous material

$$m_{z}(H_{0}) = \int_{V_{sample}} \vec{M}(H) \cdot \vec{z} \, dV$$
[A.m²]

- isotropy on the material
- symetries on the sample

$$m_z(H_0)\,\vec{z} = \int_{V_{sample}} \vec{M}(H)\,dV$$

And $M(H) \neq m_z(H)/V$ because heterogeneity of H and $H \neq H_0$

I. Intro

Difference between applied field H₀ and the internal field H

The gray volume feels :

- the applied field H_0
- The field induce by the magnetization of its neighbours H_d

$$H = H_0 + H_d$$

I. Intro

Difference between applied field H₀ and the internal Field H

Helmholtz decomposition

 $H = H_0 + H_d$

Demagnetizing field respect

 $\begin{aligned} div(\mu_0 H_d(M) + M) &= 0\\ rot \ H_d(M) &= 0\\ H_d(M) \to 0 \ in \ \infty \end{aligned}$

We define $H_d = -grad\phi_d$

$$\phi_d(M)(x) = \frac{1}{4\pi} \int_{\Omega} \frac{div M(y)}{|x-y|} dy + \frac{1}{4\pi} \int_{\partial \Omega} \frac{M(y).n(y)}{|x-y|}$$

Advanced approach in magnetocaloric materials characterization

I. Introduction of the demagnetizing field and the heterogeneity

II. Demagnetizing Factor

III.Formulation as an inverse Problem

IV. Demagnetizing Factor as an inverse problem

V. Perspectives

Demagnetizing Factor

I. Intro > II. Demag. Factor

In elliptical shape

The magnetic field is constant inside the body

$$m_z(H_0) = \int_{V_{sample}} M(H) \, dV \qquad \qquad M(H) = m_z(H_0)/V$$

- The demagnetizing field can be write as $H_d = -NM$ with N only function of the geometry
 - $H = H_0 + H_d$ $H = H_0 Nm_z(H_0)/V$ $H = f(H_0)$

$$M(H) = m_z(f^{-1}(H))/V$$

But experimentaly it is difficult to have elliptical shape

Generalization of the demagnetizing Factor

I. Intro > II. Demag. Factor

In general shape

1st The field is not constant inside the body

 $m_z(H_0) = \int_{V_{sample}} M(H) \, dV \qquad < M(H) > = m_z(H_0)/V$

• 2nd extention of the notion of demagnetizing field define as: $\int_{V} H_{d} dv = -N_{m} \int_{V} M dv \qquad < H > = H_{0} - N_{m} < M(H) >$ $< H > \sim H_{0} - N_{m} M(<H>) \qquad < H > \sim f(H_{0})$

With N function of the geometry and M(H)

3rd approximation

$$M(H) \sim \langle M(H) \rangle = m_z(f^{-1}(\langle H \rangle))/V$$

Approximations are difficult to validate

Test of the method

I. Intro > II. Demag. Factor

Test the method based on numerical simulation

Numerical setup

- Cylinder shape with radius 20 and high/2 = [5, 10, ..., 55]
- Generalized demagnetizing factor interpolated from D.X Chen table* But it is difficult to choose with non linear material
- Magnetization curve give by arctan. model with $J_s = 1.3 T$ and $\mu_r = 10$

*D.-X. Chen, J. A. Brug, et R. B. Goldfarb, « Demagnetizing factors for cylinders », *IEEE Transactions on Magnetics*, vol. 27, nº 4, p. 3601 - 3619, juill. 1991.

Result of the simulation

I. Intro > II. Demag. Factor

A long sample improve the efficiency of the method

Because the demagnetizing field decrease

Advanced approach in magnetocaloric materials characterization

I. Introduction of the demagnetizing field and the heterogeneity

II. Demagnetizing Factor

III.Formulation as an inverse Problem

IV. Demagnetizing Factor as an inverse problem

V. Perpectives

Inverse problem

I. Intro > II. Demag. Factor > III. Inv. formulation

Scheme of the inverse problem and method of resolution

How to parametrize the magnetic curve « an unknown curve »

With the previous test of the method we obtained anl error equal to zero with 3 parameters models because the magnetization is defined with the same model

How to parametrize the magnetic curve for the inverse problem

I. Intro > II. Demag. Factor > III. Inv. formulation

Generalized demagnetizing factor

Parametric function

- Model with 3 parameters $(l + \mu_0)H + \frac{2J_s}{\pi} arctg\left(\frac{\pi(\mu_r 1)\mu_0H}{2J_s}\right) 3$

Parametric point (interpolated)

Linear, Cubic, Spline interpolation

Computation time • 12

Degree of freedom

Complexity

Advanced approach in magnetocaloric materials characterization

I. Introduction of the demagnetizing field and the heterogeneity

II. Demagnetizing Factor

III.Formulation as an inverse Problem

IV. Generalized demagnetizing Factor as an inverse problem

V. Perpectives

Prismatic sample in the magnetometer G2E I. Intro > II. Demag. Factor > III. Inv. Formulation > IV. Prismatic sample $\downarrow \downarrow \downarrow \downarrow \downarrow$ H_0 Gd prismatic sample 1x2x6 mm H_0 $\downarrow \downarrow \downarrow \downarrow \downarrow$ Orientation +++ Orientation ++ 0.01 283K orientation ++ b.008 283K orientation +++ 0.006

Inversion based magnetometer mesurement

I. Intro > II. Demag. Factor > III. Inv. Formulation > IV. Prismatic sample

Demag. factor function of temperature for orientation ++ 0.31 Error on the magnetic moment

V. Perspectives

I. Intro > II. Demag. Factor > III. Inv. Formulation > IV. Prismatic sample > V. Perspectives

Method of comparaison

- Error on the magnetic moment
- B(H) should be the same for any shape
- \Rightarrow Anistropie from process or Gd
- \Rightarrow Use of cubic sample

Now we use parametric function and interpolated point

- To have a best fit of the magnetization curve to reduce the error NOW less than 0.5% on the magnetic curve (2h for one curve)
- Try to have an error estimation on the magnetization curve

Now we start to propagate the errors on Δs

 Propagate the error througth the Maxwell Relation to have an estimation on the errors on the Δs (intrinsec)

Thanks for your attention

Question ?

By morgan.almanza@g2elab.grenoble-inp.fr

17