Cuttlefish rely on both polarized light and landmarks for orientation.
Résumé
Cuttlefish are sensitive to linear polarization of light, a sensitivity that they use in predation and possibly in intraspecific communication. It has also been shown that cuttlefish are able to solve a maze using visual landmarks. In this study, cuttlefish were trained to solve a Y-maze with the e-vector of a polarized light and landmarks as redundant spatial information. The results showed that cuttlefish can use the e-vector orientation and landmarks in parallel to orient and that they are able to use either type of cue when the other one is missing. When they faced conflicting spatial information in the experimental apparatus, the majority of cuttlefish followed the e-vector rather than landmarks. Differences in response latencies in the different conditions of testing (training with both types of cue, tests with single cue or with conflicting information) were observed and discussed in terms of decision making. The ability to use near field and far field information may enable animals to interpret the partially occluded underwater light field.