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Abstract

We investigate the convergence of sequential best-response dynamics in a routing game over parallel
links. Each player controls a nonnegligible portion of the total traffic, and seeks to split its flow over the
links of the network so as to minimize its own cost. We prove that best-response operators are lipschitz
continuous, which implies that a sufficient condition for the convergence of the best-response dynamics is
that the joint spectral radius of Jacobian matrices of best-response operators be strictly less than unity.
We establish the specific structure of these Jacobian matrices for our game, and show that this condition
is met in two cases: (a) two-player game for an arbitrary number of links and for a wide class of cost
functions; and (b) for arbitrary numbers of players and links in the case of linear latency functions. For
latency functions satisfying reasonable convexity assumptions, we conjecture that the proposed sufficient
condition is met for arbitrary numbers of players and links.

1 Introduction

Game theory has emerged as a fundamental tool for the design and analysis of decentralized resource alloca-
tion mechanisms in networks. It has found applications in as diverse areas as load-balancing in server farms
[5, 14, 12, 20], power control and spectrum allocation in wireless networks [11, 26, 23], or congestion control
in the Internet [1, 18, 24, 33].

In recent years, substantial research effort has been devoted to the study of non-cooperative routing games
in which each origin/destination flow is controlled by an autonomous agent that decides how its own traffic is
routed through the network (cf. [3, 13, 21, 28] and reference therein). Apart from the gain in scalability with
respect to a centralized routing, there are wide-ranging advantages to such a decentralized routing scheme,
including ease of deployment and robusteness to failures and environmental disturbances. However, several
questions arise when seeking to design and implement such a non-cooperative routing scheme.

One of the most studied one pertains to the inefficiency of non-cooperative routing mechanisms. Indeed,
in general, the Nash equilibrium resulting from the interactions of many self-interested agents does not
correspond to an optimal routing solution. Numerous works have therefore focused on obtaining performance
guarantees for non-cooperative routing schemes [32, 30, 31, 35, 4, 10]. This is usually done by evaluating
the Price of Anarchy, a standard measure of the inefficiency of decentralized algorithms introduced by
Koutsoupias and Papadimitriou [22]. A small value of the Price of Anarchy indicates that, in the worst
case, the gap between a Nash Equilibrium and the optimal solution is not significant, and thus that good
performances can be achieved even without a centralized control.

In this work, we address a different question: do uncoordinated routing agents converge to a Nash
equilibrium? Thus, rather than the quality of the resulting routing strategy, we are concerned with the
convergence of autonomous routing agents to a Nash equilibrium under some ”natural” dynamics. More
precisely, we address this question assuming the well-known (myopic) best-response dynamics. Best-response
dynamics play a central role in game theory [8]. For instance, the Nash equilibrium concept is implicitly
based on the assumption that players follow best-response dynamics until they reach a state from which
no player can improve his utility. In a game, the best-response of player is defined as its optimal strategy
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conditioned on the strategies of the other players. It is, as the name suggests, the best response that the
player can give for a given strategy of the others. Best-response dynamics then consists of players taking
turns in some order to adapt their strategy based on the most recent known strategy of the others (without
considering the effect on future play in the game). In this paper, we will restrict ourselves to the sequential
(or round robin) best-response dynamics, where players play in a cyclic manner according to a pre-defined
order.

The focus of this paper is the convergence of sequential best-response dynamics in a network of parallel
links, shared by a finite number of selfish users. Each user controls a nonnegligible portion of the total
traffic, and seeks to split his flow over the links of the network so as to minimize his own cost. This model
was introduced in the seminal paper of Orda et al. [29], where it shown that there exists a unique Nash
equilibrium under reasonable convexity assumptions on the edge latency functions. The users may have
different traffic demands. When all users control the same amount of traffic, the convergence to the Nash
equilibrium follows from the fact that the symmetric game is a potential game, that is, the Nash equilibrium
corresponds to the minimum of a convex optimization problem [13]. For the asymmetric game, convergence
results are available only in some special cases. In [29], the convergence to the unique Nash equilibrium
of the two-player routing game was proved when there are only two parallel links. As pointed out by the
authors, the convergence proof is not readily extendible to more general cases. Altman et al. also study
the two-link case [2]. Assuming linear latency functions for the links, they prove the convergence of the
sequential best-response dynamics for any number of players. More recently, Mertzios has proven that, for
the large class of edge latency functions introduced in [29], the two-player routing game converges to the
unique Nash equilibrium in a logarithmic number of steps [27]. His proof of convergence relies on a potential-
based argument. Namely, he shows that the amount of flow that is reallocated in the network at each step is
strictly decreasing. Unfortunately, this argument does not seem to readily extend to more than two players.
We also refer to [19, 17, 16] for convergence results on related, but different, problems.

Contributions: We propose a different approach to study of the convergence of best-response dynamics.
The key idea to prove the convergence is to study the Jacobian matrices of best-response functions, and to
analyze how long products of such matrices grow as a function of the number of best-response updates.
One of the most prominent quantities characterizing the growth rate of matrix products is the so-called
joint or generalized spectral radius. We show that the best-response function is Lipschitz, and establish the
specific structure of their Jacobian matrices for our game. Then, a sufficient condition for the convergence
of the best-response dynamics is that their joint spectral radius be strictly less than unity. We thus obtain a
purely structural sufficient condition that allows to reduce the analysis of the convergence of the sequential
best-response dynamics to the analysis of the joint spectral radius of certain matrices. This condition is
used to prove the convergence of the two-player game for an arbitrary number of links. We also prove the
convergence to the Nash equilibrium for arbitrary numbers of players and links in the case of linear latency
functions. Furthermore, although we were not able to prove it, we conjecture that the proposed sufficient
condition is valid for any numbers of players and links.

The paper is organized as follows. In Section 2, we describe the non-cooperative routing game under
investigation and introduce best-response dynamics as well as some notations. In Section 3, we outline
the non-linear spectral radius approach to convergence, and present several properties of the best-response
function, and compute the structure of its Jacobian matrix. In Section 4, we state our main result, and
prove the convergence of the best-response function for the two-player game with general cost functions and
of the K-player game with linear cost functions.

2 Problem statement

2.1 Notations

In the following, IR+ denotes the set of non-negative real numbers. Recall that the 1-norm of a vector

x ∈ IRS is ‖x‖1 =
∑S

i=1 |xi|. For x ∈ X , Bo(x, r) will denote the open ball of radius r centered at point x,
i.e., Bo(x, r) = {z ∈ X : ‖x− z‖1 < r}. Let 1 denote the column vector (1, 1, . . . , 1)T .

We let I and 0 denote the identity and the zero matrices, respectively (their sizes will be clear from the
context). A matrix A is positive, and we write A ≥ 0, if and only if ai,j ≥ 0, ∀i, j, and that it is negative
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if −A is positive. We recall that the 1-norm of a matrix A is ‖A‖1 = max
j

∑

i |aij |. denote by σ(A) the

spectrum of the matrix A, i.e., σ(A) = {λ ∈ IR : ∃x 6= 0, Ax = λx}, by ρ(A) = max
λ∈σ(A)

|λ| its spectral radius,

and we recall that ρ(A) ≤ ‖A‖1. If A1, . . . , An is a collection of matrices, we denote by
∏n

i=1Ai the product
AnAn−1 . . . A1.

For any function f that is differentiable at point x, we denote by Df(x) its Jacobian matrix at x.

2.2 Non-cooperative routing game

We investigate a non-cooperative routing game with K routing agents and S links in which each routing
agent can control how its own traffic is routed over the parallel links. This routing game is depicted on
Figure 1.

ts

λ1

λi

λK

r1, c1

rS, cS

rj , cj

xi,j

Figure 1: Traffic classes route their packets over parallel links.

Denote by S = {1, . . . , S} the set of links. Link j ∈ S has capacity rj and a holding cost cj per unit time
is incurred for each packet sent on this link. We let πj = cj/rj denote the cost per unit capacity for link j.

We let C = {1, . . . ,K} be the set of routing agent and λi be the traffic intensity of routing agent i. We
shall also refer to routing agent i as traffic class i, or user i. Each class can control how its own traffic is
splitted over the parallel links and seeks to minimize its own cost. Let xi = (xi,j)j∈S denote the routing
strategy of class i, with xi,j being the amount of traffic it sends over link j. We let Xi denote the set of

routing strategies for class i, i.e., the set of vectors xi ∈ IRS such that 0 ≤ xi,j < rj for all j ∈ S, and
∑

j∈S xi,j = λi.
A strategy profile is a choice of a routing strategy for each user such that the stability condition

∑

i∈C xi,j < rj is satisfied for all links j ∈ S. It is thus a vector x = (xi)i∈C belonging to the product
strategy space

⊗

i∈C Xi such that
∑

i∈C xi,j < rj , for all j ∈ S. It will be assumed throughout the paper
that

∑

i∈C λi <
∑

j∈S rj , so that X 6= ∅.
The optimization problem solved by class i, which depends on the routing decisions of the other classes,

can be formulated as follows:

minimize Ti(x,x−i) =
∑

j∈S

πj xi,j φ(ρj) (BR-i)

subject to

x ∈ Xi, (1)

yj = xi,j +
∑

k 6=i

xk,j , ∀j ∈ S, (2)

ρj = yj/rj , ∀j ∈ S, (3)

ρj < 1, ∀j ∈ S, (4)

(5)

In the above formulation, yj represents the total traffic offered to link j, ρj is the utilization rate of this
link, and φ is the cost associated to the link when there is a traffic of yj flowing through it. In transportation
or communication networks, φ models the delay on the road or the link. The total cost incurred by user
i is then the sum of the cost of individual links weighted by the amount of traffic the user sends on each
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of the links. Thus, given the strategies of the others, user i seeks to minimize its total cost subject to flow
conservation and stability constraints.

Assumption 1 We shall make the following assumptions on the cost function φ:

(A1) φ : [0, 1) → [0,∞),

(A2) limρ→1− φ(ρ) = +∞,

(A3) continuous, strictly increasing, convex function, and is twice continuously differentiable.

Remark 1 At first glance, it appears that the assumptions are not loose enough to include polynomial cost
functions, which are widely used in transportation networks. However, it will be shown in Appendix E that
any function satisfying

(B1) φ : [0,∞) → [0,∞),

(B2) limρ→∞ φ(ρ) = +∞, and

(B3) (A3),

has an equivalent function which satisfies assumptions (A1)–(A3). Two functions are said to be equivalent if
the solution of (BR-i) with one function is also the solution of (BR-i) with the other. Thus, results obtained
for functions satisfying (A1)–(A3) will be applicable to functions that satisfy (B1)–(B3).

We note that Problem (BR-i) is well-defined for all points x ∈ X since
∑

k 6=i xk,j < rj for all links j.

2.3 Nash equilibrium

A Nash equilibrium of the routing game is a strategy profile from which no class finds it beneficial to deviate
unilaterally. Hence, x∗ ∈ X is a Nash Equilibrium Point (NEP) if x∗

i is an optimal solution of problem
(BR-i) for all classes i ∈ C, that is, if

x∗
i = arg min

z∈Xi
Ti(z,x

∗
−i), ∀i ∈ C,

where x∗
−i is the vector of strategies of all players other than player i at the NEP.

It follows from our assumptions on the function φ, that the link cost functions are a special case of type-B
functions, as defined in reference [29]. As proved in Theorem 2.1 of this reference, this implies the existence
of a unique NEP for our routing game. In the following, we shall denote by x∗ this Nash equilibrium point.

2.4 Best response dynamics

The best-response of player is defined as its optimal strategy conditioned on the strategies of the other
players. It is, as the name suggests, the best response that the player can give for a given strategy of the
others. Let x(u) : X → X , defined as

x(u)(x) =

(

arg min
z∈Xu

Tu(z,x−u),x−u

)

, (6)

be the best-response of user u to the strategy x−u of the other players. From the definition of Tu, it can
be shown that for each x ∈ X , there is a unique x(u)(x). Given a point x ∈ X , the strategy profile x(u)(x)
describes the strategies of all the players after the best response of user u.

Best-response dynamics then consists of players taking turns in some order to adapt their strategy based
on the most recent known strategy of the others (without considering the effect on future play in the game).

Define a round to be a sequence of best-responses in which each player plays exactly once. Once an order
is fixed in the first round, it is assumed to be the same in each subsequent round. The order in which the
players best-respond in the first-round can be arbitrary. Let us fix this order to be 1, 2, . . ., K.

Define x̂(1) : X → X as
x̂(1)(x) = x(K) ◦ x(K−1) ◦ . . . ◦ x(1)(x), (7)
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be the point reached from x after one round of play. One can recursively define

x̂(n)(x) = x̂(1) ◦ x̂(n−1)(x), (8)

which is the point reached after n rounds.
The best-response dynamics can then be defined as the sequence {x̂(n)(x0)}n≥1 cooresponding to the

strategy of players after each round of best-response when x0 is the initial strategy. A NEP has the property
that each player’s strategy is a best-response to strategies of the other players. Therefore if x0 is a NEP
then sequence will remain at x0.

The main question we seek to answer is: do the best-response dynamics for the routing game converge
from any starting point? If they converge, then the converge to the Nash equilibrium point.

3 The Non-linear Spectral Radius Approach

A usual method to prove the convergence of iterates of an operator x̂(1) : X → X is to show that this
operator is a contraction. For this, one needs to find a suitable norm, say ‖·‖, for which there exists a
constant c ∈ [0, 1) such that

‖x̂(1)(x)− x̂(1)(y)‖ ≤ c‖x− y‖,

for every pair of points x and y in the set X . The contraction condition says that the distance between
iterates of the function starting from two different points decreases with each iteration. The constant c
depends on the norm, and for a continuously differentiable operator, it can be computed as sup

x
‖Dx̂(1)(x)‖,

which is the supremum of the Jacobian over all points in the domain of the operator. It is then sufficient to
find a norm in which the above condition is satisfied.

For the best-response function, it turns out that it is non-trivial to find such a norm, independently of
the starting point, in which the distance decreases with every iteration. Instead, as will be seen later it will
be sufficient to find a norm in which the distance decreases asymptotically and not with every iteration.
This weaker condition can be formalized using the notion of the non-linear spectral radius described below.

For a function f : X → X , define the set

J (f) = {Df(x) : f is differentiable at x} . (9)

which is the set of Jacobian matrices of the function f evaluated at all points at which f is differentiable.

Definition 1 The non-linear spectral radius of a function f : X → X is defined as [25]:

ρ̄(f) = lim sup
n→∞

sup
Ai∈J (f)

∥

∥

∥

∥

∥

n
∏

i=1

Ai

∥

∥

∥

∥

∥

1/n

.

The non-linear spectral radius of f is related to the notion of joint spectral radius of a set M of matrices
which is defined as:

ρ̂(M) = lim sup
n→∞

sup
Mi∈M

∥

∥

∥

∥

∥

n
∏

i=1

Mi

∥

∥

∥

∥

∥

1/n

, (10)

and is independent of the induced matrix norm. It measures the worst case growth rate of a sequence of
linear transformations that are taken from the set M. It can been seen that the non-linear spectral radius
of f is in fact the joint spectral radius of the set of Jacobian matrices of f , J (f).

When there is only one matrix in M, from Gelfand’s formula it follows that the joint spectral radius is
equal to the spectral radius of that matrix. For a set with several matrices, there is an equivalent result in
terms of the generalized spectral radius of M which is defined as:

ρ (M) = lim sup
n→∞

sup
Mi∈M

ρ

(

n
∏

i=1

Mi

)
1
n

, (11)

where ρ(A) is the spectral radius of the matrix A. If M is bounded then the generalized spectral radius and
the joint spectral radius of M are equal [7].
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Consider a linear dynamical system of the form

xn+1 = Ai(n)xn,

where the matrices Ai ∈ M can be chosen differently in each step. Such a system is called a switched linear
system. When all the matrices are the same, one can determine the stability of such a system by checking
whether the spectral radius of this matrix is less than 1 or not. In case of swithced linear systems, the same
condition with the joint spectral radius in place of the spectral radius can be used to ascertain the stability
of the system, see for example [34].

For non-linear operators, the following convergence criterion was stated in [25].

Theorem 1 ([25] Theorem 1) If f : X → X is Lipschitz-continuous and has a non-linear spectral radius
smaller than 1, then the iterates of f are globally asymptotically stable. Moreover, the rate of exponential
decay, r, satisfies 0 < r ≤ − log(ρ̄(f)).

Thus, instead of requiring the best-response to be a contraction, one can show the convergence of the best-
response dynamics by showing that:

1. x̂(1) is Lipschitz-continuous; and

2. ρ̄(x̂(1)) < 1.

In the rest of this section, first we shall show a few properties of the best-response function, and then compute
the structure of its Jacobian matrices, before arriving at our main result.

3.1 Properties of the best-response function

The purpose of this section is to establish various properties of best-response function, mainly related to its
continuity and differentiability. Let us define

Su(x) = {j ∈ S : x
(u)
u,j(x) > 0} (12)

as the set of links used by player u in its best-response to the strategies x−u of other players. We have the
following result.

Theorem 2 The best-response function x(u) of player u is Lipschitz-continuous on X with

‖x(u)(z)− x(u)(w)‖1 < 2 ‖z−w‖1, ∀z,w ∈ X . (13)

Proof. See Appendix A.

Corollary 1 Since the best-response over one round, x̂(1), is a composition of best-responses of each of the
players (cf. (6)), it then follows that x̂(1) is Lipschitz continuous.

Remark 2 The continuity of the best-response functions is a direct consequence of Berge’s Theorem on the
continuity of correspondances [6] (see also page 64 of [9]). However, Lipschitz continuity requires some more
work than that.

Once the Lipschitz continuity of x̂(1) has been established, it remains to be shown that its non-linear
spectral radius is smaller than 1. For this, we shall investigate the points at which the x̂(1) is differentiable
and compute the structure of its Jacobian.

We note that, according to Rademacher’s theorem [15], a consequence of Theorem 2 is that the best-
response function x(u) is Fréchet-differentiable almost everywhere in X ; that is, the points in X at which
x(u) is not differentiable form a set of Lebesgue measure zero. To compute the points at which the derivative
is defined, we shall need the following definitions:
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• Let

gi,j(x) =
∂Ti
∂xi,j

(x) = πj

(

φ(
yj
rj

) +
xi,j
rj

φ′(
yj
rj

)

)

, (14)

where yj =
∑

k xk,j , be the marginal cost of player i on link j under strategy profile x.

We say that link j is marginally used by user u at point x whenever the flow of user u on that link is
0 although the marginal cost of that player on that link is minimum, that is

xu,j = 0 and gu,j(x) = min
k∈S

gu,k(x). (15)

• we say that the set Su(x) is locally stable at point x if it does not change for an infinitesimal variation
on the strategies of the other players, that is

∃ǫ > 0, ∀z ∈ Bo(x, ǫ),Su(x) = Su(z). (16)

From our assumptions on the function φ, the continuity of the best-response functions imply that of the
marginal costs gi,j defined in (14) under the best-response dynamics. In the following, we say that no link is
marginally used by user u in its best-response at point x if there is no link that is marginally used by user
u at point x(u)(x). The two notions introduced above are related through the following result.

Lemma 1 if there is no link that is marginally used by player u in its best-response at point x, then the set
of links Su(x) is locally stable at point x.

Proof. See Appendix A.

Our first result regarding the differentiability of best-response functions is the following.

Proposition 1 The best-response function x(u) is differentiable at every point x ∈ X such that no link is
marginally used by player u in its best-response at point x.

Proof. See Appendix A.

3.2 Structure of the Jacobian matrices

The Jacobian matrix of x̂(1) is the product of Jacobian matrices of best-responses of individual players. So,
we shall start by computing the Jacobian of the best-response functions of individual players.

Consider a player u and a point x ∈ X at which x(u) is differentiable. The Jacobian matrix of this
function is then the block matrix

Dx(u)(x) =











∂x
(u)
1

∂x1
(x) . . .

∂x
(u)
1

∂xK
(x)

...
...

∂x
(u)
K

∂x1
(x) . . .

∂x
(u)
K

∂xK
(x)











,

where the (i, j)-block
∂x

(u)
i

∂xj
(x) measures the sensitivity of the strategy of player i obtained after the best

response of player u with respect to a change in the strategy of player j.
The best-response of a player u is sensitive only to the strategies of the other players v 6= u, and these

sensitivities are reflected by the block matrices
∂x(u)

u

∂xv
which appear in the uth row of the Jacobian matrix.

Recalling that

∂x
(u)
u

∂xv
(x) =

(

∂x
(u)
u,i

∂xv,j
(x)

)

i∈S,j∈S

, (17)

we shall distinguish between links i /∈ Su(x) and links i′ ∈ Su(x). We assume in the following that the set
Su(x) is locally stable (cf. Section 3.1), and thus that it does not change for an infinitesimal variation on
the strategy xv of player v ∈ C.
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Lemma 2 For all links i /∈ Su(x),

∂x
(u)
u,i

∂xv
(x) = 0, ∀v ∈ C, (18)

Proof. See Appendix B.

For links i ∈ Su(x), we have:

Lemma 3 There exist a vector θ ∈ IRS
+ and a vector γ ∈ IRS

+ satisfying γi = 0 for all i 6∈ Su(x) and
∑

i∈S γi = 1 such that

∂x
(u)
u,i

∂xv,k
=

{

θi (γi − 1) if k = i,

θkγi otherwise,
(19)

for all players v 6= u and all links i ∈ Su(x) and k ∈ S.

Proof. See Appendix B.

Remark 3 The vectors θ and γ depend upon the strategy profile x and upon the player u that updates its
strategy. We have not made this dependence explicit in order to simplify the notation.

Further, the vector θ has the following important property which will be helpful in establishing the
desired inequality on the non-linear spectral radius of x̂(1).

Lemma 4 There exists a constant q < 1 such that

1

2
≤ θk ≤ q, ∀k ∈ S, ∀x ∈ X , ∀u ∈ C. (20)

Proof. See Appendix B.

The structure of the Jacobian matrices of the best-response functions is summarized in the following
result.

Theorem 3 The Jacobian matrix of the best response function x(u) of player u ∈ C has the following form

Dx(u)(x) =

















I . . . 0 . . . 0
...

. . .
...

Mu (x) . . . 0 . . . Mu (x)
...

. . .
...

0 . . . 0 . . . I

















,

and Mu (x) = Ψ (ΓB − I)Θ, where

• B is the S × S matrix with 1 in every entry, i.e., B = 1T 1,

• Γ = diag(γ) and Θ = diag(θ), the vectors γ and θ being those defined in Lemma 3,

• Ψ a positive diagonal matrix such that Ψi,i = 1 if i ∈ Su(x), and Ψi,i = 0 otherwise.

Proof. The proof is broken down in three steps. Firstly, the uth row follows directly from Lemma 3.
Secondly, the strategies of all players except player u do not change following the best response of player i.
Therefore, for all i 6= u and all v ∈ C, we have

∂x
(u)
i

∂xv
(x) =

{

I if v = i,

0 otherwise.
(21)
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This explains the appearance of the identity matrix on the diagonal and the 0 matrix in other columns of
each row except the row corresponding to the player doing the best-response (that is, row u).

Finally, since the best response of player u at point x is insensitive to her strategy at that point and
depends only on the strategies of the other player, we can conclude that, for all u ∈ C,

∂x
(u)
u

∂xu
(x) = 0. (22)

This explains why the diagonal block in the uth row is 0.

Corollary 2 The Jacobian matrix of x̂(1) has the form

Dx̂(1)(x) =

1
∏

u=K

Dx(u)(x),

where the index u goes down from K to 1.

4 Convergence of best-response dynamics

In this section, we shall first formulate a conjecture on the non-linear spectral radius of x̂(1) on which the
main result of this paper hinges. Then, this conjecture will be shown to be true for two particular cases :
(a) two-player routing games; (b) K player routing games with linear link cost function, φ.

Conjecture 1 For a fixed K and S, let Ĵ be the set of matrices of the form given in Corollary 2. Then,
the joint spectral radius of Ĵ is strictly less than 1.

On the extensive numerical experiments that we conducted, the above conjecture was indeed true.
The main result of this paper is then:

Theorem 4 If Conjecture 1 is true, then the best-response dynamics (8) for the routing game (BR-i) con-
verges to the unique Nash equilibrium of the game.

While we were unable to prove the conjecture, and hence the convergence of best-response dynamics, in
its generality, we can show its validity for two non-trivial cases – the two player game, and the K player
game with linear link cost function, which we show below.

4.1 Two-player routing game

First, we shall prove a general result related to the Joint spectral radius of a certain class of matrices. The
claimed result on the convergence of the best-response for the two-player game will then follow directly from
that result.

Let D+ be the set of positive diagonal matrices, and G be the set of diagonal matrices Γ ∈ D+ whose
diagonal entries satisfy in addition

S
∑

i=1

γi = 1. (23)

For any natural number k ≥ 0, the above two types of diagonal matrices are used to define the set M of
S × S matrices as follows. M is the set of matrices M that can be written as M = (ΓB − I)Θ for some
matrices Γ ∈ G and Θ ∈ D+. We also define M(k) for k ≥ 0 as the set of matrices that can be written as
the product of k matrices belonging to M, where by convention M(0) contains only the identity matrix.

For q ∈ (0, 1), we say that a matrixM is in the set Mq ifM = (ΓB−I)Θ ∈ M and in addition ‖Θ‖1 ≤ q.

We similarly define M
(k)
q as the set of matrices that can be written as the product of k matrices belonging

to Mq. We note that the set Mq is obviously bounded.
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According to Theorem 3 and Lemma 4, the Jacobian matrices of the best-response functions of players
1 and 2 have the following simple form:

Dx(1)(x) =

(

0 Ψ1M1

0 I

)

, and Dx(2)(x) =

(

I 0
Ψ2M2 0

)

, (24)

whereM1,M2 ∈ Mq for some q < 1 and where Ψ1,Ψ2 are diagonal matrices with 0-1 entries on the diagonal.
Using Corollary 2, the Jacobian of the best-response function over one round has the form

Dx̂(1) =

(

0 Ψ1M1

0 Ψ2M2M1

)

,

where M1,M2 ∈ Mq. It then follows that the structure of the product of n Jacobian matrices has the
following form.

Lemma 5 If J1, J2, . . . , Jn ∈ J , then

n
∏

i=1

Ji =

(

0 Ψ1X
(2n−1)
1

0 Ψ2X
(2n)
2

)

, (25)

where Ψ1,Ψ2 are positive diagonal matrices with 0-1 entries on the diagonal, X
(2n−1)
1 ∈ M

(2n−1)
q , and

X
(2n)
2 ∈ M

(2n)
q .

Proof. See Appendix C.

Lemma 5 shows that the behaviour of a large product of Jacobian matrices is governed by the asymptotic

behaviour of the matrices X
(n)
1 , X

(n)
2 . These matrices are themselves the product of matrices that belong to

Mq. This suggests to first characterize the asymptotic growth rate of products of matrices in Mq. Our key
result regarding this characteriztion is stated in theorem 5.

Theorem 5 For any k ≥ 1 and any matrix M =
∏k

i=1 (Γ
(i)B − I)Θ(i) in M(k), it holds that

ρ(M) ≤
k
∏

i=1

θimax, (26)

where θimax = max
1≤j≤S

θ
(i)
j for all i = 1, . . . , k.

Proof. See Appendix D.

The above theorem holds for any product of matrices belonging to M. If we now restrict our attention
to matrices belonging to Mq, we obtain the following immediate corollary.

Corollary 3 For any product MnMn−1 . . .M1 of matrices belonging to Mq, we have ρ(MnMn−1 . . .M1) ≤
qn, implying that ρ(Mq) ≤ q.

Proof. See Appendix C.

We are now in position to prove that sequential best-response dynamics converges to the unique Nash
equilibrium x∗.

Theorem 6 For the two player routing game over parallel links, the sequential best-response dynamics con-
verges to the unique Nash equilibrium for any initial point x0 ∈ X .

Proof. See Appendix C.
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4.2 K player games with linear link cost functions

Consider φ(x) = x, a delay function which is often used in congestion games to model delays in road networks.
From (55), it follows that θk = 1/2. Thus, the matrix Mu in Theorem 3 is of the form 1

2 (ΓB − I) for some
Γ ∈ G.

Theorem 7 For the K player routing game over parallel links and linear delay function, the sequential
best-response dynamics converges to the unique Nash equilibrium for any initial point x0 ∈ X .

Proof. See Appendix F.
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A Proofs of results in Section 3.1

Proof of Theorem 2. Consider two points z and w in X . Let the vectors a,b ∈ IRS
+ be such that

aj =
∑

i6=u zi,j and bj =
∑

i6=u wi,j for all j ∈ S. In other words, aj and bj are the total traffic sent on link
j by users other than u in configurations z and w, respectively. To simplify notations, we denote by xzu,j
and xwu,j the traffic sent on link j by player u after his best-response at points z and w, respectively, that is

xzu,j = x
(u)
u,j(z) and x

w
u,j = x

(u)
u,j(w). For the purpose of the proof, we also define

fj(x, y) = πj

(

φ(
x+ y

rj
) +

x

rj
φ′(

x+ y

rj
)

)

,

for all links j ∈ S. Then the marginal costs of player u on link j after the best-response of that player
at points z and w can be written as gu,j(x

(u)(z)) = fj(x
z
u,j , aj) and gu,j(x

(u)(w)) = fj(x
w
u,j , bj). From

the KKT conditions, there exist µz and µw such that fj(x
z
u,j , aj) ≥ µz, with equality if j ∈ Su(z), and

fj(x
w
u,j , bj) ≥ µw, with equality if j ∈ Su(w). Without loss of generality, we assume that µz ≥ µw. As a

consequence, we have

fj(x
z
u,j , aj) ≥ fj(x

w
u,j , bj), ∀j ∈ Su(w). (27)

Consider now the sets

S− =
{

j ∈ S : xzu,j < xwu,j
}

, (28)

and
S+ =

{

j ∈ S : xzu,j ≥ xwu,j
}

. (29)

Assume first that S− = ∅. Then xzu,j ≥ xwu,j for all j ∈ S. However, since

∑

j∈S

xzu,j =
∑

j∈S

xwu,j = λu, (30)

this implies that xzu,j = xwu,j for all j ∈ S. It yields

∑

j∈S

∣

∣xzu,j − xwu,j
∣

∣ = 0 (31)

Assume now that S− 6= ∅. Since S = S−
⋃

S+, we obtain from (30) that

∑

j∈S+

∣

∣xzu,j − xwu,j
∣

∣ = −
∑

j∈S−

∣

∣xzu,j − xwu,j
∣

∣, (32)

which leads to

∑

j∈S

∣

∣xzu,j − xwu,j
∣

∣ = 2
∑

j∈S−

∣

∣xzu,j − xwu,j
∣

∣. (33)

For j ∈ S−, we have by definiton 0 ≤ xzu,j < xwu,j , and hence j ∈ Su(w). Thus, S− ⊂ Su(w). With (27),
it yields fj(x

z
u,j , aj) ≥ fj(x

w
u,j , bj), and thus

φ

(

xzu,j + aj

rj

)

+
xzu,j
rj

φ′
(

xzu,j + aj

rj

)

≥φ

(

xwu,j + bj

rj

)

+
xwu,j
rj

φ′
(

xwu,j + bj

rj

)

,

for all j ∈ S−. However, since for j ∈ S− we have xzu,j < xwu,j and since φ and φ′ are strictly increasing, this
implies that xzu,j + aj > xwu,j + bj , from which we deduce that

0 < xwu,j − xzu,j < aj − bj ∀j ∈ S−. (34)

It yields

∑

j∈S−

∣

∣xzu,j − xwu,j
∣

∣ <
∑

j∈S−

|aj − bj | (35)
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With (33), we thus obtain

∑

j∈S

∣

∣xzu,j − xwu,j
∣

∣ < 2
∑

j∈S−

|aj − bj | ≤ 2
∑

j∈S

|aj − bj | (36)

From (31) and (36), we obtain that, whether S− be empty or not, we have

∑

j∈S

∣

∣xzu,j − xwu,j
∣

∣ < 2
∑

j∈S

∣

∣

∣

∣

∣

∣

∑

i6=u

zi,j −
∑

i6=u

wi,j

∣

∣

∣

∣

∣

∣

< 2
∑

j∈S

∑

i6=u

|zi,j − wi,j |

< 2
∑

i∈C

∑

j∈S

|zi,j − wi,j | (37)

Since x
(u)
i,j (z) = x

(u)
i,j (w) for all j ∈ S and all i 6= u, we also have

∑

i6=u

∑

j∈S

∣

∣

∣x
(u)
i,j (z)− x

(u)
i,j (w)

∣

∣

∣ = 0 (38)

Finally, from (37) and (38), we conclude that

∑

i∈C

∑

j∈S

∣

∣

∣
x
(u)
i,j (z)− x

(u)
i,j (w)

∣

∣

∣
< 2

∑

i∈C

∑

j∈S

|zi,j − wi,j |, (39)

that is,

‖x(u)(z)− x(u)(w)‖1 < 2 ‖z−w‖1, (40)

as claimed.

Proof of Lemma 1. Let Ωu be the set of points x ∈ X where Su(x) is locally stable. Let us define

fj(x, y) = πj

(

φ(
x+ y

rj
) +

x

rj
φ′(

x+ y

rj
)

)

,

for all links j ∈ S. Note that fj(x, y) is continuous and strictly increasing in both x and y. Then the
marginal cost of player u on link j after the best-response of that player can be written as gu,j(x

(u)(x)) =

fj(x
(u)
u,j(x),

∑

k 6=u xk,j). From the KKT conditions, the function µ : X−u → IR defined by

µ(x−u) = min
j∈S

gu,j(x
(u)(x))

is such that

j ∈ Su(x) ⇐⇒ fj(0,
∑

k 6=u

xk,j) < µ(x−u). (41)

Note that the continuity of the best-response function x(u) on X (cf. Theorem 2) implies that of the
marginal costs, and therefore the continuity of µ on X−u.

Let x be a point such that no link is marginally used by player u in its best-response at point x. Let us
first consider j ∈ Su(x). From (41), there exists δ > 0 such that fj(0,

∑

k 6=u xk,j) ≤ µ(x−u)−δ. Since fj(x, y)
is continuous in y and µ(x−u) is continuous on X−u, there exists ǫ1 > 0 such that, for all z ∈ Bo(x, ǫ1),

fj(0,
∑

k 6=u

zk,j) < fj(0,
∑

k 6=u

xk,j) +
δ

2
< µ(x−u)−

δ

2
,

and µ(z−u) > µ(x−u)−
δ
2 . It yields
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fj(0,
∑

k 6=u

zk,j) < µ(x−u)−
δ

2
< µ(z−u), ∀z ∈ Bo(x, ǫ1),

and thus, according to (41), we have j ∈ Su(z) for all z ∈ Bo(x, ǫ1) if j ∈ Su(x). As a consequence, if
Su(x) = S, then Su(z) = S for all z sufficiently close to x, and thus x ∈ Ωu.

Otherwise we can find j ∈ S \ Su(x). Since no link is marginally used by player u in its best-response at
point x, there exists β > 0 such that

fj(0,
∑

k 6=u

xk,j) ≥ µ(x−u) + β, ∀j ∈ S \ Su(x). (42)

Proceeding as above, we can show that there exists ǫ2 > 0 such that, for all z ∈ Bo(x, ǫ2), µ(z−u) <
µ(x−u) +

β
2 and

fj(0,
∑

k 6=u

zk,j) > fj(0,
∑

k 6=u

xk,j)−
β

2
> µ(x−u) +

β

2
,

from which we conclude that fj(0,
∑

k 6=u zk,j) > µ(z−u), for all z ∈ Bo(x, ǫ2). This implies that if j 6∈ Su(x),
then j 6∈ Su(z) for all z ∈ Bo(x, ǫ2).

Choosing ǫ = min(ǫ1, ǫ2), we thus conclude that for all z ∈ Bo(x, ǫ), Su(x) ⊂ Su(z) and S \ Su(x) ⊂
S \Su(z), which is equivalent to Su(x) = Su(z). This shows that if no link is marginally used by player u in
its best-response at point x, then Su(x) is locally stable.

Proof of Proposition 1. From Lemma 1, we know that if x is such that no link is marginally used by
user u in its best-response at point x, then the set of links Su(x) is locally stable at x. As shown in Theorem
3, this condition is sufficient to compute the partial derivatives of x(u) at point x. It can be seen from (21)

and (22) that the partial derivatives
∂x

(u)
i

∂xv
(x), i 6= u, v ∈ C, and ∂x(u)

u

∂xu
(x) are contiuous at x. According to

Lemma 2, the continuity of the partial derivatives
∂x

(u)
u,i

∂xv
(x) at x for i /∈ Su(x) follows from the local stability

of Su(x) at x. Finally, a closed-form formula is given in (19) for the partial derivatives
∂x

(u)
u,i

∂xv,k
for v 6= u and

for i ∈ Su(x), k ∈ S. In view of equations (50)-(54), the continuity of these partial derivatives follows from
our assumptions on φ and from the continuity of x(u) at x. Thus, all partial derivatives of x(u) exist and are
continuous at x, and therefore x(u) is continuously differentiable at x.

B Proofs of results in Section 3.2

Proof of Lemma 2. The proof follows from the assumption that Su(x) is locally stable at x. We have

x
(u)
u,i (x + hy) = x

(u)
u,i (x) = 0 for any vector y and h > 0 sufficiently small. This implies that the directional

derivatives of x
(u)
u,i , and thus its partial derivatives, are 0.

Proof of Lemma 3. The proof is based on two observations: (i) at a best-reponse strategy, the change in
marginal cost of player u due to a change in the strategy of player v is the same in every link that is used
at the best-response strategy; and (ii) the total flow is conserved for player u irrespective of the change in
the strategy of player 1.

Recall that

gu,i(x
(u)(x)) :=

∂Tu
∂xu,i

(x(u)(x)).

is the marginal cost of player u at link i under strategy profile x(u)(x), i.e., after the best-response of player
u.

For i ∈ Su(x), from the KKT conditions, the best-response strategy of player u, x
(u)
u , is such that the

marginal cost is the same in all the links that receive a positive traffic at this strategy. That is,

gu,i(x
(u)(x)) = µ(x−u) ∀i ∈ Su(x), (43)



16

where the constant µ depends upon the strategies of the players but not on the index of the link. The local
stability of Su(x) implies that the set of links used by user u does not change for an infinitesimal variation
on the strategies of the other players. This leads to our first observation which is that the change in the
marginal cost of player u at its best-response strategy due to the change in the strategy of player v 6= u at
link k is the same at all links that receive a positive flow of player u. Thus,

∂gu,i
∂xv,k

(x(u)(x)) = µ2, ∀i ∈ Su(x), (44)

where µ2 depends upon the strategies of the players. We have not made this dependence explicit in order to
simplify the notation.

For a function of the form h(f(x), x), its derivative with respect to x is given by

dh(f(x), x)

dx
=
dh(f, x)

df

df

dx
+
dh(f, x)

dx
,

where in the first term on the RHS, h is treated to as a function of f only, whereas in the second term it is
treated as a function of x only.

Since x
(u)
u,i is a function of xv,k, we can use the above formula to rewrite (44) as

dgu,i
dxu,i

∂x
(u)
u,i

∂xv,k
+
dgu,i
dxv,k

= µ2, ∀i ∈ Su(x), (45)

where the partial derivates are replaced by full derivates in order to indicate that the function is differentied
in one variable while treating the other as constant.

The particular form of the cost function given in problem ((BR-i)) permits a simplification of the LHS
of the above equation by noting that the marginal cost in a link depends only on the traffic that is routed
to that link. Thus,

dgu,i
dxu,i

∂x
(u)
u,i

∂xv,k
+ δk(i)

dgu,i
dxv,k

= µ2, ∀i ∈ Su(x), (46)

where δk(i) is unity if i = k, and is zero otherwise.
The value of µ2 can be computed using the second observation that the total flow of player u is conserved

irrespective of the strategy of player v. That is,

∑

i∈Su(x)

∂x
(u)
u,i

∂xv,k
= 0 (47)

We thus obtain

µ2 =





∑

l∈Su(x)

δk(l)
dgu,l
dxv,k

(

dgu,l
dxu,l

)−1








∑

l∈Su(x)

(

dgu,l
dxu,l

)−1




−1

=

(

dgu,k
dxv,k

(

dgu,k
dxu,k

)−1
)





∑

l∈Su(x)

(

dgu,l
dxu,l

)−1




−1

, (48)

and

∂x
(u)
u,i

∂xv,k
= θk (γi − δk(i)) , ∀i ∈ Su(x), (49)

where

θk =
dgu,k
dxv,k

(

dgu,k
dxu,k

)−1

, (50)
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and

γi =





∑

l∈Su(x)

(

dgu,l
dxu,l

)−1




−1
(

dgu,i
dxu,i

)−1

. (51)

We will now show that 0 < θk < 1 and 0 < γi < 1. We have

gu,k = πk

(

φ(ρk) +
xu,k
rk

φ′(ρk)

)

. (52)

Thus, since φ is an increasing and convex function,

dgu,k
dxv,k

=
πk
rk

(

φ′(ρk) +
xu,k
rk

φ′′(ρk)

)

> 0, (53)

independently of the player v 6= u, and

dgu,k
dxu,k

=
πk
rk

(

2φ′(ρk) +
xu,k
rk

φ′′(ρk)

)

> 0. (54)

Thus, from (50), θk > 0 and

θk =
φ′(ρk) +

xu,k

rk
φ′′(ρk)

2φ′(ρk) +
xu,k

rk
φ′′(ρk)

< 1. (55)

We thus obtain that θk is independant of v and that 0 < θk < 1. Similarly, we note that γi is positive
and smaller than unity due to the fact that

dg0,l

dx
(1)
0,k

is postive for all l. To conclude the proof, we note that
∑

i∈Su(x)
γi = 1 from the definition of the vector γ in (51). Thus, letting γi = 0 for i 6∈ Su(x), we obtain

∑

i∈S γi = 1.

In order to prove Lemma 4, we need the following result.

Lemma 6 There exists a strictly positive constant ρmax < 1, independant of u and x, such that the utilization
rate of each and every link j ∈ Su(x) is upper bounded by ρmax after the best-response of user u at point x,
that is,

ρ
(u)
j (x) ≤ ρmax, ∀j ∈ Su(x), ∀x ∈ X , ∀u ∈ C, (56)

where ρ
(u)
j (x) = 1

rj

∑

i∈C x
(u)
i,j (x).

Proof of Lemma 6. Observe that x ∈ X implies that
∑

k 6=u xk,j < rj for all links j, and thus that

the optimization problem for player u is well-defined. Let z = x(u)(x) be the point reached after the best

response of player u. To simplify notations, we let ρj = ρ
(u)
j (x). From the KKT conditions, there exists

µu(x−u) such that

πj

[

φ(ρj) +
zu,j
rj

φ′(ρj)

]

= µu(x−u), ∀j ∈ Su(x) (57)

πjφ(ρj) ≥ µu(x−u), ∀j /∈ Su(x) (58)

Since 0 ≤ zu,j/rj ≤ ρj , ∀j ∈ Su(x), (57) leads to the inequalities

πjφ(ρj) ≤ µu(x−u), (59)

µu(x−u) ≤ πj(ρjφ
′(ρj) + φ(ρj)). (60)

Moreover, ρj and φ′(ρj) are non-negative. Thus, (58) leads to

µu(x−u) ≤ πj(ρjφ
′(ρj) + φ(ρj)), ∀j /∈ Su(x),
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which combined with (60) gives the inequality

µu(x−u) ≤ πj(ρjφ
′(ρj) + φ(ρj)), ∀j ∈ S. (61)

Let fj : [0, 1) → [cj ,∞) be defined by fj(x) := πj(xφ
′(x) + φ(x)). Note that f is increasing and non-

negative, and hence invertible. The inverse on fj is defined on [cj ,∞). Let us define hj : [0,∞) → [0, 1) in
the following way :

hj(x) =

{

f−1
J (x) if x ∈ [cj ,∞);
0 if x ∈ [0, cj).

The function hj is continuous and non-decreasing. Further, from (61),

hj(µu(x−u)) ≤ ρj =

∑

k zk,j
rj

.

Summing over all the links, we obtain the following functional inequality on µu(x−u) :

h̄(µu(x−u)) :=
∑

j

rjhj(µu(x−u)) ≤
∑

k

∑

j

zk,j =
∑

i

λi, (62)

that is µu(x−u) is such that the above inequality is satisfied. A bound on µu(x−u) itself can now be
obtained by making use of the following observations. Since hj is continuous and non-decreasing for all
j ∈ S, h̄ is continuous and non-decreasing. It has [0,∞) as its domain and [0,

∑

j rj) as its image. Further,

limx→∞ h̄(x) =
∑

j rj . From the stability condition,
∑

i λi <
∑

j rj . Using these properties and (62), we
can conclude that µu(x−u) ≤ µmax <∞.

It then follows from (59) that

ρj ≤ βj = φ−1

(

µmax

πj

)

, ∀j ∈ Su(x),

and the upper bound βj depends neither upon u nor upon x. Moreover, φ is such that x <∞ ⇔ φ−1(x) < 1,
and hence βj < 1. By definition of Su(x), we also have ρj > 0 and thus βj > 0. Taking ρmax = max

j∈Su(x)
βj

yields the proof.

Proof of Lemma 4. We note from (55) that, since
xu,k

rk
φ′′(ρk) ≥ 0, we have θk ≥ (φ′(ρk) +

xu,k

rk
φ′′(ρk))/(2φ

′(ρk) + 2
xu,k

rk
φ′′(ρk)), implying that

θk ≥
1

2
. (63)

Since φ is increasing and convex , θk is an increasing function of xu,k (considering ρk = ρ
(u)
k (x) as fixed),

and since xu,k/rk ≤ ρk, we also have the following inequality:

θk ≤
φ′(ρk) + ρkφ

′′(ρk)

2φ′(ρk) + ρkφ′′(ρk)

≤ 1−
φ′(ρk)

2φ′(ρk) + ρkφ′′(ρk)
. (64)

Since the numerator and the denominator of the fraction appearing on the right-hand side of (64) are strictly
increasing in ρk, Lemma 6 implies that

θk ≤ q = 1−
φ′(0)

2φ′(ρmax) + ρmaxφ′′(ρmax)
< 1. (65)

A consequence of Theorem 3 and Lemma 4.
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Proposition 2 The set Ji of Jacobian matrices is bounded.

Proof of Proposition 2. Consider a player u ∈ C and a point x where the best-response function x(u) is
differentiable. Theorem 3 implies that

∥

∥

∥
Dx(u)(x)

∥

∥

∥

1
≤ ‖I‖1 + ‖Mu(x)‖1

≤ 1 + max
m∈S

∑

n∈Su(x)

|θm(γn − δm(n))‖ (66)

For m 6∈ Su(x), we have

∑

n∈Su(x)

|θm(γn − δm(n))| = θm < 1, (67)

while for m ∈ Su(x), we have

∑

n∈Su(x)

|θm(γn − δm(n))| = θm





∑

n∈Su(x),n6=m

γn + |γm − 1|





= 2θm(1− γm)

< 2. (68)

With (66), (67) and (68), we obtain that
∥

∥Dx(u)(x)
∥

∥

1
< 3 for all players u ∈ C and all points x where

x(u) is differentiable. From its definition in (9), we thus conclude that the set J is bounded.

From the submultiplicativity of norms and relation (7), it follows that

Corollary 4 The set J is bounded.

C Proofs of results in Section 4.1

Proof of Lemma 5. The proof is by induction. The claim is true for n = 1. Given that the form is true
for some n, it will be shown that the form holds for n+ 1. By definition,

n+1
∏

i=1

Ji = Jn+1

n
∏

i=1

Ji

=

(

0 Ψ1M1

0 Ψ2M2M1

)

·

(

0 Ψ3X
(2n−1)
1

0 Ψ4X
(2n)
2

)

=

(

0 Ψ1M1Ψ3X
(2n)
2

0 Ψ2M2M1Ψ4X
(2n)
2

)

Since M1 ∈ Mq and Ψ4 is a 0-1 diagonal matrix, it follows that M1Ψ4 ∈ Mq. Using the previous fact and

the definition M
(2n)
q and the fact that X

(2n)
2 ∈ M

(2n)
q , one can deduce that (M1Ψ3)X

(2n)
2 ∈ M

(2(n+1)−1)
q ,

and M2M1Ψ4X
(2n)
2 ∈ M

(2(n+1))
q .

Proof of Corollary 3. Consider M1,M2 . . .Mn ∈ Mq. Each matrix Mi can be written as Mi =

(Γ(i)B − I)Θ(i), where θimax = ‖Θ(i)‖1 ≤ q. From theorem 5, we thus obtain ρ(MnMn−1 . . .M1)
1
n ≤ q. As

a consequence,

sup
M1,...,Mn∈Mq

ρ

(

n
∏

i=1

Mi

)
1
n

≤ q
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Since Mq is bounded, its joint spectral radius and its generalized spectral radius coincide. From the
definition in (11), we immediately obtain that ρ(Mq) ≤ q.

Proof of Theorem 6. Since J is bounded (see Corollary 4), and the Generalized spectral radius is
equal to the Joint spectral radius of a bounded set of matrices, it suffices to prove that ρ(J ) < 1. From
Lemma 5, we have

det

(

n
∏

i=1

Ji − λI

)

= det (−λI) det
(

Ψ2X
(2n)
2 − λI

)

= (−λ)S det
(

Ψ2X
(2n)
2 − λI

)

,

implying that λ 6= 0 is an eigenvalue of
∏n

i=1 Ji if and only if it is an eigenvalue of Ψ2X
(2n)
2 . Thus,

ρ (
∏n

i=1 Ji) = ρ
(

Ψ2X
(2n)
2

)

. Further,

ρ
(

Ψ2X
(2n)
2

)

≤
∥

∥

∥Ψ2X
(2n)
2

∥

∥

∥

1
≤ ‖Ψ2‖1

∥

∥

∥X
(2n)
2

∥

∥

∥

1
=
∥

∥

∥X
(2n)
2

∥

∥

∥

1
,

and thus, since X
(2n)
2 ∈ M

(2n)
q ,

ρ

(

n
∏

i=1

Ji

)

≤ sup
M∈M

(2n)
q

‖M‖1 = ρ2n (Mq) ,

where the last equality is obtained using the definition of the Joint spectral radius (10). Let ǫ = 1−q
2 > 0.

Since ρn (Mq)
1
n → ρ (Mq) as n→ ∞, there exists N such that for all n ≥ N ,

ρ

(

n
∏

i=1

Ji

)
1
n

≤ ρ (Mq) + ǫ ≤ q +
1− q

2
=

1 + q

2
,

where the last inequality follows from Corollary 3. Since the right hand-side is independant of J1, . . . , Jn,
we deduce that

sup
J1,...,Jn∈J

ρ

(

n
∏

i=1

Ji

)
1
n

≤
1 + q

2
, ∀n ≥ N,

and, according to 11, it yields ρ (J ) ≤ 1+q
2 < 1.

D Proof of Theorem 5

The main difficulty in proving Theorem 5 is that the matrices M of M(k) are neither positive nor negative.
To circumvent this difficulty, we shall construct a positive or negative matrix A such that ρ(M) ≤ ρ(A) and

‖A‖1 ≤
∏k

i=1 θ
i
max. Before showing how to construct such a matrix, we state two basic properties of the

matrices in M(k) in the following lemma.

Lemma 7 For any matrix M ∈ M(k), the following two assertions hold:

(a) for each and every column j,
∑S

i=1mi,j = 0,

(b) if λ 6= 0 is an eigenvalue of M and if x is the associated eigenvector, then
∑S

i=1 xi = 0.

Proof. Let us first prove assertion (a). Consider M ∈ M(k) and write M as M = (ΓB − I)ΘY with
Y ∈ M(k−1). Then,
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(

∑

i

mi,1, . . . ,
∑

i

mi,S

)

= 1T M = 1T (ΓB − I)ΘY

=

(

∑

i

γi − 1, . . . ,
∑

i

γi − 1

)

Y

= 0T ,

which proves the result. Let us now prove assertion (b). Let M ∈ M(k) be written in the form M =
(ΓB − I)ΘY and consider λ ∈ σ(M), λ 6= 0 and x 6= 0 such that λx = Mx. Multiplying on both sides by
1T , we obtain

λ

S
∑

i=1

xi = 0 = 1T x = 1T M x = 0,

where the last equality follows from assertion (a). Since λ 6= 0, this implies that
∑S

i=1 xi = 0.

We will now use property (b) of Lemma 7 to show that, for any matrix M ∈ M(k), if we choose the
matrix A to be of the form A = DB +M , where D is any diagonal matrix, then ρ(M) ≤ ρ(A).

Lemma 8 For any matrix M ∈ M(k) and for any diagonal matrix D, ρ(M) ≤ ρ(DB +M).

Proof. Let λ 6= 0 be an eigenvalue of M and x be the associated eigenvector. We have

(DB +M)x = DBx+ λx =

(

∑

i

xi

)

D1+ λx = λx, (69)

where the last equality is obtained using property (b) of Lemma 7. Since this can be done for all non-zero
eigenvalues of M , we conclude that σ(M)− {0} ⊂ σ(DB +M). This clearly implies that

max
λ∈σ(M)

|λ| ≤ max
λ∈σ(DB+M)

|λ| ,

i.e., ρ(M) ≤ ρ(DB +M).

Given a matrix M ∈ M(k), we shall now consider two specific choices of the diagonal matrix D : the
first choice allows to obtain a matrix A ≥ 0 such that ρ(M) ≤ ρ(A), while the second one produces a matrix
A ≤ 0 with the same property. Since the two choices lead to a positive or negative matrix A, the evaluation
of ‖A‖1 is greatly simplified, allowing to obtain useful upper bounds on ρ(M). These bounds are proven in
the following proposition.

Proposition 3 For any matrix M ∈ M(k), the two following inequalities on ρ(M) are valid:

ρ(M) ≤ −
S
∑

i=1

min
1≤k≤S

(mi,k) , (70)

ρ(M) ≤
S
∑

i=1

max
1≤k≤S

(mi,k) , (71)

Proof. Let us first consider the diagonal matrix D defined as

D = −diag

(

min
k

(m1,k) ,min
k

(m2,k) , . . . ,min
k

(mS,k)

)

,

and consider the matrix A = DB +M . Since ai,j = mi,j −min
k

(mi,k), ∀i, j, we have A ≥ 0. We know from

Lemma 8 that ρ(M) ≤ ρ(A) ≤ ‖A‖1. Hence
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ρ(M) ≤ max
1≤j≤S

(

∑

i

ai,j

)

,

≤ max
1≤j≤S

(

∑

i

mi,j −
∑

i

min
k

(mi,k)

)

,

≤ −
∑

i

min
k

(mi,k) ,

where the last inequality is obtained using property (a) of Lemma 7.

To prove the second inequality, we now define the matrix D as follows

D = −diag

(

max
k

(m1,k) ,max
k

(m2,k) , . . . ,max
k

(mS,k)

)

,

and obtain a matrix A = DB +M ≤ 0 since ai,j = mi,j −max
k

(mi,k), ∀i, j. Again, using ρ(M) ≤ ρ(A) ≤

‖A‖1, we obtain

ρ(M) ≤ max
1≤j≤S

(

−
∑

i

ai,j

)

,

≤ max
1≤j≤S

(

∑

i

max
k

(mi,k)−
∑

i

mi,j

)

,

≤
∑

i

max
k

(mi,k) ,

and both inequalities on ρ(M) are proved.

We will now prove that we can recursively obtain upper bounds on the terms appearing on the right-hand
sides of (70) and (71).

Lemma 9 Let the matrix M be in M(k) and let X ∈ M(k−1), Θ ∈ D+ and Γ ∈ G be such that M =
X(ΓB − I)Θ. Then

−
S
∑

i=1

min
1≤j≤S

(mi,j) ≤ θmax

S
∑

i=1

max
1≤j≤S

(xi,j) , (72)

S
∑

i=1

max
1≤j≤S

(mi,j) ≤ −θmax

S
∑

i=1

min
1≤j≤S

(xi,j) , (73)

where θmax = max
i
θi.

Proof. We have mi,j = θj (
∑

k xi,kγk − xi,j), ∀i, j. Since max
j

(xi,j) ≥
∑

k xi,kγk for all i, we have

mi,j ≥ θj

(

∑

k

xi,kγk −max
j

(xi,j)

)

≥ θmax

(

∑

k

xi,kγk −max
j

(xi,j)

)

, (74)

for all i, j = 1, . . . , S, and thus min
j

(mi,j) ≥ θmax

(

∑

k xi,kγk −max
j

(xi,j)

)

. As a consequence
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∑

i

min
j

(mi,j) ≥ θmax

(

∑

i

∑

k

xi,kγk −
∑

i

max
j

(xi,j)

)

,

≥ θmax

(

∑

k

(

∑

i

xi,k

)

γk −
∑

i

max
j

(xi,j)

)

,

and since
∑

i xi,k = 0 for all k according to property (a) of Lemma 7, it yields

∑

i

min
j

(mi,j) ≥ −θmax

∑

i

max
j

(xi,j) (75)

which proves that −
∑

i min
j

(mi,j) ≤ θmax

∑

i max
j

(xi,j), as claimed.

The proof of the second inequality is similar. We observe that

mi,j ≤ θj

(

∑

k

xi,kγk −min
j

(xi,j)

)

≤ θmax

(

∑

k

xi,kγk −min
j

(xi,j)

)

, (76)

for all i, j = 1, . . . , S, and thus max
j

(mi,j) ≤ θmax

(

∑

k xi,kγk −min
j

(xi,j)

)

. It yields

∑

i

max
j

(mi,j) ≤ θmax

(

∑

i

∑

k

xi,kγk −
∑

i

min
j

(xi,j)

)

,

≤ θmax

(

∑

k

(

∑

i

xi,k

)

γk −
∑

i

min
j

(xi,j)

)

,

≤ −θmax

∑

i

min
j

(xi,j),

as claimed.

We are now in position to prove Theorem 5.
Proof of Theorem 5. Consider a matrix M =

∏k
i=1 (Γ

(i)B − I)Θ(i) in M(k). Define the matrices
X(n) =

∏n
i=1 (Γ

(i)B − I)Θ(i) for n = 1, 2, . . . , k. Note that X(n) ∈ M(n), that M = X(k) and that
X(n) = X(n−1)(Γ(n)B − I)Θ(n) for 1 < n ≤ k.

We have X(1) = (Γ(1)B − I)Θ(1). With (71) we have ρ(X(1)) ≤
∑S

i=1 max
1≤k≤S

(

x
(1)
i,k

)

. However

S
∑

i=1

max
1≤k≤S

(

x
(1)
i,k

)

≤
S
∑

i=1

max

(

(γ
(1)
i − 1)θ

(1)
i ,max

k 6=i

(

γ
(1)
i θ

(1)
k

)

)

,

≤ θ(1)max

S
∑

i=1

γ
(1)
i = θ(1)max, (77)

from wich we conclude that ρ(X(1)) ≤ θ
(1)
max. If k = 1, we have M = X(1) and thus ρ(M) ≤ θ

(1)
max. For k > 1,

we consider separately the case when it is even and the case when it is odd. If k is even, Proposition 3 states
that

ρ(M) ≤ −
S
∑

i=1

min
1≤k≤S

(mi,k) , (78)

and the repeated application of Lemma 9 yields
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ρ(M) ≤ θ(k)max

S
∑

i=1

max
1≤j≤S

(

x
(k−1)
i,j

)

≤ −θ(k)max θ
(k−1)
max

S
∑

i=1

min
1≤j≤S

(

x
(k−2)
i,j

)

...

≤
k
∏

i=2

θ(i)max

S
∑

i=1

max
1≤k≤S

(

x
(1)
i,k

)

,

and we conclude with (77) that ρ(M) ≤
∏k

i=1 θ
(i)
max. If on the contrary k is odd, we use the second inequality

in Proposition 3 to obtain

ρ(M) ≤
S
∑

i=1

max
1≤k≤S

(mi,k) . (79)

Applying again repeatedly Lemma 9 yields

ρ(M) ≤ −θ(k)max

S
∑

i=1

min
1≤j≤S

(

x
(k−1)
i,j

)

≤ θ(k)max θ
(k−1)
max

S
∑

i=1

max
1≤j≤S

(

x
(k−2)
i,j

)

...

≤
k
∏

i=2

θ(i)max

S
∑

i=1

max
1≤k≤S

(

x
(1)
i,k

)

,

and with (77) it proves that ρ(M) ≤
∏k

i=1 θ
(i)
max. We therefore conclude that ρ(M) ≤

∏k
i=1 θ

(i)
max for all

matrices M(k), and for all k ≥ 1.

We prove below that there exist some matrices in M(k) for which the upper bound on the spectral radius
of Theorem 5 is tight.

Lemma 10 For any k ≥ 1, there exists M ∈ M(k) such that ρ(M) =
∏k

i=1 θ
(i)
max.

Proof. Consider a matrix M =
∏k

i=1 (Γ
(i)B − I)Θ(i) ∈ M(k) such that Θ(i) = θ

(i)
maxI for all 1 ≤ i ≤ k.

Obviously, M =
(

∏k
i=1 θ

(i)
max

)

∏k
i=1 (Γ

(i)B − I). Observe now that for all m,n

Γ(m)BΓ(n)B =

(

∑

i

γ
(n)
i

)

Γ(m)B = Γ(m)B,

which implies that

(

Γ(m)B − I
)(

Γ(n)B − I
)

= Γ(m)BΓ(n)B − Γ(m)B − Γ(n)B + I

= Γ(m)B − Γ(m)B − Γ(n)B + I

= −
(

Γ(n)B − I
)

. (80)
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Hence

k
∏

i=1

(Γ(i)B − I) = (−1)k
(

Γ(k)B − I
)

, (81)

and thus we obtainM = (−1)k
(

∏k
i=1 θ

(i)
max

)

(

Γ(k)B − I
)

, which implies that ρ(M) =
(

∏k
i=1 θ

(i)
max

)

ρ
(

Γ(k)B − I
)

.

We note that Γ(k)B is a matrix of rank 1, since all its columns are the same. Moreover, the sum of
each column is 1. Thus, the spectrum of Γ(k)B is {1, 0, 0 . . . , 0}, which implies that the spectrum of
Γ(k)B − I is σ

(

Γ(k)B − I
)

= {0,−1,−1 . . . − 1}. We conclude that ρ
(

Γ(k)B − I
)

= 1, which implies

that ρ(M) =
(

∏k
i=1 θ

(i)
max

)

.

E Equivalence of functions

Let ψ be a function satisying assumptions (B1)–(B3). If the link cost function is ψ, then the player i will
solve the following optimization problem:

minimize Ti(x,x−i) =
∑

j∈S

cj xi,j ψ(yj) (BRpsi-i)

subject to
∑

j∈S

xi,j = λi, (82)

yj = xi,j +
∑

k 6=i

xk,j , ∀j ∈ S, (83)

xi,j ≥ 0, ∀j ∈ S, (84)

Note that there is no capacity associated with a link, and there is no constraint of the type yj < rj .
Let r > λ̄ be a constant. Define the function φ as

φ(x) =

{

ψ(rx) if x ≤ ρ;

ψ(rx) + 1
1−x + 1−x

(1−ρ)2 − 2
1−ρ if ρ < x < 1,

(85)

where ρ = λ̄
r . It can be verified that the φ satisaties assumptions (A1)–(A3).

We now show that the best-response of a player i when it solves (BRpsi-i) is the solution of (BR-i) with
φ as in (85), and rj = r, ∀j ∈ S. If z ∈ Xi is a solution of (BR-i), then according to the KKT conditions:

cj
r

[

φ
(yj
r

)

+ zjφ
′
(yj
r

) 1

r

]

= µi if zj > 0,

cj
r
φ
(yj
r

)

> µi if zj = 0.

Using the relation (85), the above conditions can be replaced by:

cj [ψ(yj) + zjψ
′(yj)] = rµi if zj > 0, (86)

cjψ(yj) > rµi if zj = 0. (87)

where we have used the fact that, ∀j ∈ S, yj/r ≤ λ̄/r = ρ.
It can be verified that (86)–(87) are the KKT conditions for (BRpsi-i). Hence, both (BR-i) and (BRpsi-i)

have the same best response dynamics.
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F Proof of Theorem 7

Proof. We shall show that the product of Jacobian matrices over n rounds goes to 0 as n→ ∞. This shows
that their JSR is less than 1, and hence best-response converges.

First we shall show this for the three player game as the proof follows the same steps for any number of
players. Omitting the multiplier Ψ, the one-round Jacobian matrix for three players has the form :

J (1) = J3J2J3 =





0 M1 M1

0 M2M1 M2 +M2M1

0 M3(M2M1 +M1) ΨM3(M2 +M2M1 +M1)



 .

Note that MvMu = (ΓvB − I)Θv(ΓuB − I)Θu = θ2(ΓvB − I)(ΓuB − I) where θ = 1/2.
Denote ΓuB − I = Hu, then MvMu = −θ2Hu, and the Jacobian matrix for one round, is as follows

J(1) =







0 H
(1)
1 θ H

(1)
1 θ

0 −H
(1)
1 θ2 H

(1)
2 θ −H

(1)
1 θ2

0 H
(1)
1 θ3 −H

(1)
1 θ2 −H

(1)
2 θ2 +H

(1)
1 θ3 −H

(1)
1 θ2






=







0 H
(1)
1 θ H

(1)
1 θ

0 −H
(1)
1 θ2 −H

(1)
1 θ2 +H

(1)
2 θ

0 −H
(1)
1 θ2 +H

(1)
1 θ3 H

(1)
1 θ3 −H

(1)
1 θ2 −H

(1)
2 θ2






.

Note here that for any round n,
(

H
(n)
u

)2

= −H
(n)
u and for different rounds n, m, H

(m)
v H

(n)
u = −H

(n)
u .

With notation p
(n)
i,j (θ) and q

(n)
i,j (θ), or more simply p

(n)
i,j and q

(n)
i,j , for polynomial coefficients of H

(n)
1 and

H
(n)
2 , respectively, the Jacobian matrix J (n) after n rounds, it will take the following form

J(n) =









0 H
(1)
1 p

(n)
1,2 +H

(1)
2 q

(n)
1,2 H

(1)
1 p

(n)
1,3 +H

(1)
2 q

(n)
1,3

0 H
(1)
1 p

(n)
2,2 +H

(1)
2 q

(n)
2,2 H

(1)
1 p

(n)
2,3 +H

(1)
2 q

(n)
2,3

0 H
(1)
1 p

(n)
3,2 +H

(1)
2 q

(n)
3,2 H

(1)
1 p

(n)
3,3 +H

(1)
2 q

(n)
3,3









.

To find recurrence relation between the polynomial coefficients in successive rounds, write

J(n+1) =







0 H
(n+1)
1 θ H

(n+1)
1 θ

0 −H
(n+1)
1 θ2 −H

(n+1)
1 θ2 +H

(n+1)
2 θ

0 H
(n+1)
1 θ3 −H

(n+1)
1 θ2 H

(n+1)
1 θ3 −H

(n+1)
1 θ2 −H

(n+1)
2 θ2






J(n)

=







0 H
(n+1)
1 θ H

(n+1)
1 θ

0 −H
(n+1)
1 θ2 −H

(n+1)
1 θ2 + H

(n+1)
2 θ

0 H
(n+1)
1 θ3 − H

(n+1)
1 θ2 H

(n+1)
1 θ3 − H

(n+1)
1 θ2 − H

(n+1)
2 θ2













0 H
(1)
1 p

(n)
1,2 + H

(1)
2 q

(n)
1,2 H

(1)
1 p

(n)
1,3 + H

(1)
2 q

(n)
1,3

0 H
(1)
1 p

(n)
2,2 + H

(1)
2 q

(n)
2,2 H

(1)
1 p

(n)
2,3 + H

(1)
2 q

(n)
2,3

0 H
(1)
1 p

(n)
3,2 + H

(1)
2 q

(n)
3,2 H

(1)
1 p

(n)
3,3 + H

(1)
2 q

(n)
3,3






.

One can then deduce the following recursive expressions for the vectors of polynomial coefficients in the
second column.







p
(n+1)
1,j

p
(n+1)
2,j

p
(n+1)
3,j






=





0 −θ −θ
0 θ2 θ2 − θ
0 −θ3 + θ2 −θ3 + 2θ2











p
(n)
1,j

p
(n)
2,j

p
(n)
3,j






, and







q
(n+1)
1,j

q
(n+1)
2,j

q
(n+1)
3,j






=





0 −θ −θ
0 θ2 θ2 − θ
0 −θ3 + θ2 −θ3 + 2θ2











q
(n)
1,j

q
(n)
2,j

q
(n)
3,j






.

A similar relation can be deduced for the vector of polynomials in the third column.
If it can be shown that the spectral radius of the matrix

A3 =





0 −θ −θ
0 θ2 θ2 − θ
0 −θ3 + θ2 −θ3 + 2θ2





is less than 1, then we can conclude that the any product of Jacobian matrices will go to 0 in any norm as
n→ ∞, and thus conclude that the JSR of J is smaller than 1.

For a K player game, it turns out that the matrix AK has the form

[AK ]i,j =

{

(1− θ)i−1 for j > i,

(1− θ)i−1 − (1− θ)i−j for j ≤ i.
(88)
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which is expanded form is

















































0 − λ −θ −θ −θ −θ · · · −θ

0 −θ(1 − θ) + θ − λ −θ(1 − θ) −θ(1 − θ) −θ(1 − θ) · · · −θ(1 − θ)

0 −θ(1 − θ)2 + θ(1 − θ) −θ(1 − θ)2 + θ − λ −θ(1 − θ)2 −θ(1 − θ)2 · · · −θ(1 − θ)2

0 −θ(1 − θ)3 + θ(1 − θ)2 −θ(1 − θ)3 + θ(1 − θ) −θ(1 − θ)3 + θ − λ −θ(1 − θ)3 · · · −θ(1 − θ)3

0 −θ(1 − θ)4 + θ(1 − θ)3 −θ(1 − θ)4 + θ(1 − θ)2 −θ(1 − θ)4 + θ(1 − θ) −θ(1 − θ)4 + θ − λ · · · −θ(1 − θ)4

.

.

.

0 −θ(1 − θ)k−1 + θ(1 − θ)k−2
−θ(1 − θ)k−1 + θ(1 − θ)k−3

−θ(1 − θ)k−1 + θ(1 − θ)k−4
−θ(1 − θ)k−1 + θ(1 − θ)k−5

· · · −θ(1 − θ)k−1 + θ − λ

















































.

In Proposition 4 stated just after this proof, it is shown that the spectral radius of AK is less than θ
which is less than 1. We can thus conclude that the product of Jacobians will tend to 0 as n → ∞, and
hence the best-response will converge.

Proposition 4 The spectral radius of the matrix AK defined in (88) is less than θ.

Proof. We shall show that the zeros of det(AK − λI) are in the unit circle. Transform the AK − λI by
multiplying each row i by −(1− θ) and adding it to row i+ 1, for i = K − 1,K − 2, . . . , 1, to get

det
(

AK − λI
)

= det













































−λ −θ −θ −θ · · · −θ −θ

λ(1 − θ) θ − λ 0 0 · · · 0 0

0 λ(1 − θ) θ − λ 0 · · · 0 0

0 0 λ(1 − θ) θ − λ · · · 0 0

0 0 0 λ(1 − θ) · · · 0 0

.

.

.

0 0 0 0 · · · λ(1 − θ) θ − λ













































.

Computing the determinant along the last column, one obtains the polynomial

det (AK − λI) = (−1)k

[

(λ− θ)k + θ

k−1
∑

i=0

(λ− θ)k−1−iλi(1− θ)i

]

.

Denote the expression in the square brackets by P(λ). For λ 6= 1, after some algebra, we obtain

P(λ) =
(1− θ)k

1− λ

[

λk −
λ(λ− θ)k

(1− θ)k

]

.

Since 0 < θ < 1, for λ < 0, P(λ) is negative for even k and positive for odd k.
For λ > 1, the denominator (1− λ) is negative. Note that for λ > 1, θ < θλ < λ and then 0 < λ− θλ <

λ− θ. Then for the expression in the numerator the following holds,
λk(1− θ)k − λ(λ− θ)k = (λ− θλ)k − λ(λ− θ)k < (λ− θλ)k − (λ− θ)k < 0. Hence P(λ) > 0.

For θ < λ < 1, the denominator (1 − λ) is positive. Note that for 0 < λ < θ, 0 < θλ < θ < λ < 1 and
then 0 < λ− θ < λ− θλ. Then for the expression in the numerator,
λk(1− θ)k − λ(λ− θ)k = (λ− θλ)k − λ(λ− θ)k > (λ− θλ)k − (λ− θ)k > 0.

Moreover, P(1) > 0.
Thus, the zeros of the function P(λ) are in [0, θ].
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