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We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid

composition of plant leaves. Our objectives are to determine whether both contamination pathways have

a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles

enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an

exploratory statistical analysis which findings were successfully cross-validated by using the data from a

second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z

index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the

statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phyto-

toxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the

effects of metal(loid) contamination on plants.

1. Introduction

Nowadays, as reported by Donisa et al. (2000) or Ma et al.
(2010), atmospheric fallouts of fine particles enriched with
metal(loid)s (denoted PM, in the present study) involve significant
contaminations of ecosystem compartments: soils, organisms,
ground and surface waters. The released metal(loid)s are highly
persistent in the environment and can cause adverse effects for
ecosystems and human health (Komárek et al., 2013). According to
Bermudez et al. (2012), they can accumulate in vegetables and
crops, with therefore health risks in relation with food chain
contamination. Both soil-plant (Alexander et al., 2006; Polichetti
et al., 2009) and air-plant (Perrone et al., 2010; Schreck et al.,
2012a) transfers of inorganic pollutants are involved. Mechanisms
of soil-plant (or root) transfers have been well studied for several
years (Lin and Xing, 2007, 2008; Stampoulis et al., 2009; Ma et al.,

2010; Yin et al., 2011; Lombi et al., 2011) whereas air-plant (or
foliar) transfers have been scarcely investigated until recently (Uzu
et al., 2010; Bermudez et al., 2011; Hu et al., 2011; Schreck et al.,
2012a,b). Actually, the use of combined microscopy and spectros-
copy techniques for tissue observations has brought some advances
in the understanding of metal pathways (Schreck et al., 2012a). It
has been demonstrated that metals can enter root cells: working on
Cd particles, Isaure et al. (2006) reported that this metal is localized
in vascular bundles of roots and coordinated to sulphur ligands, due
to their high affinity with metallic element such as Cd or Hg.
Straczek et al. (2008) showed that Zn could have different locali-
zations in roots: intracellular (bound with oxalate) or in the cell
walls (linked to COOH/OH groups) and finally bound to intracellular
organic acids. Birbaum et al. (2010) reported that finest metallic
particles may be incorporated into leaves, whereas large agglom-
erates are trapped on the surface wax. Depending on plant physi-
ology or environmental factors, metals can cross the cuticle
(Chamberlain, 1983; Ward and Savage, 1994; Nair et al., 2010; Uzu
et al., 2010). After diffusion through the cuticle, ultrafine particles
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may interact with plant cells (Birbaum et al., 2010) and may be
internalized during endocytosis process with phytotoxicity induced
(Nair et al., 2010; Schreck et al., 2012a). Li et al. (2012) reported too
that Cd exposure involve cellular changes such as modifications in
photosynthetic pigments, electrolyte leakage, malondialdehyde
(MDA) and antioxidants (ascorbic acid and glutathione) in Artemisia

annua L.
Phytotoxicity induced by inorganic pollutants was largely

studied with the objective of health plants survey (Ait Ali et al.,
2004; Ma et al., 2010; Violante et al., 2010). Moreover, in Europe,
the development of biotests to highlight media quality is required
by the Regulation on Registration, Evaluation, Authorisation and
Restriction of Chemicals (REACH) as reported by Pereira et al.
(2009), Bravin et al. (2010) and Schreck et al. (2011). Actually, the
aims of REACH regulation are to ensure a high level of protection of
human health and the environment from the risks caused by haz-
ardous materials. Following plant exposure to metal(loid)s, the
production of reactive oxygen species is observed, leading to
oxidative damages on cellular components such as nucleic acids,
proteins and especially lipids (Upchurch, 2008). Accordingly, the
fatty acid composition of lettuce leaves is modified after exposure
to soils polluted by metals (Le Guédard et al., 2008). A standardized
foliar fatty acid ratio (C18:3/(C18:2 þ C18:1 þ C18:0)) is nowadays
available to diagnose soil contamination by metals ex situ (AFNOR,
2012) and it was also successfully used in field (Le Guédard et al.,
2012a,b). A decrease in the amount of tri-unsaturated fatty acids
in higher plants was also observed for tomato seedlings grown in
culture solution containing copper or cadmium (Ouariti et al., 1997;
Djebali et al., 2005), as well as for pepper and rape seedlings grown
in nutrient solution supplemented with Cd (Jemal et al., 2000; Ben
Youssef, 2005). However, plants may be exposed to pollutants
through both air and soil transfers (Sanitá di Toppi and Gabbrielli,
1999; Serbula et al., 2012). To our knowledge, foliar fatty acid
composition has not been used so far to diagnose foliar metal up-
take, whereas a global approach of plants exposure to metal(loid)s
is necessary in order to better assess environmental and health
risks (Dmuchowski et al., 2011).

In that scientific context, we intend to answer the following
three main issues: does foliar metal(loid) uptake impact the leaf
fatty acid composition? Do foliar and root pathways induce the
similar phytotoxicity, in regards to fatty acid composition? Do the
two transfer pathways interact? We finally aim to improve the
knowledge on the mechanisms of metal(loid)s uptake and phyto-
toxicity. For that purpose, plants were exposed in situ in the im-
mediate vicinity of metal processing company in order to
investigate the impact of a complex mixture of metal(loid)s. The
industrial study site is firstly described; two complementary field
experiments were conducted via both foliar and root pathways.
These experiments as well as chemical analyses (fatty acid
composition and metal contents) are later described. Finally, sta-
tistical analyses explore and confirm relationships between vari-
ables and then allow presenting and discussing new insights on
mechanisms of metal(loid) transfer and phytotoxicity.

2. Materials and methods

2.1. Industrial site: smelter emissions and courtyard soil

The industrial site chosen for the experimentationwas a secondary lead smelter

that recycles car batteries: the Society of Chemical Treatments of Metals (STCM,

Schreck et al., 2012a,b). It is located in Toulouse, Southwest France in the peri-urban

area (43"3801200N, 01"2503400E). The rate of bulk atmospheric deposition was esti-

mated to be about 325.2 $ 12.8 mg cm%2 week%1, with 139.4 $ 7.8 mg cm%2 week%1

of lead, which is the most concentrated metal. The size of the particles from the

channelled emissions of rotary furnaces was already determined: expressed as

volume fractions, the majority of PM (89%) was in the 1e100 mm range, 7% were

inferior to 1 mm (sub-micronic and nanoparticles) and 4% were superior to 100 mm

(Uzu et al., 2011; Schreck et al., 2011). The STCM smelter emissions are assimilated to

a mixture of various metals and metalloids. The major elements in the PM were, by

mass: Pb (27%), O (15%) and S (7.5%) with no significant differences according to

particle size (Schreck et al., 2011). Several other secondary metals: Cd (2.5%), Zn

(0.5%), Fe (0.1e0.4%) and Sb (0.1%) were also present (Uzu et al., 2011). The remaining

elements to complete 100% were for the most part Cl, Na, C and other metals such as

Al, As, Cu and Ni recorded as traces. According to Uzu et al. (2009, 2011), particles are

mainly composed of metallic sulphides, sulphates, oxides and perchlorates; lead

speciationwas, in decreasing order of abundance: PbS, PbSO4, PbO.PbSO4, a-PbO and

Pb0.

Industrial atmospheric fallouts in the smelter courtyard were measured using

Owen gauges that enable wet and dry atmospheric depositions to be recorded

(Taylor and Witherspoon, 1972; Gandois et al., 2010). Two gauges were left exposed

throughout the entire experimental period in order to determine the metal(loid)s

contents in atmospheric deposits (Schreck et al., 2012b), according to NF EN 14902

(2005).

In the smelter courtyard, the soils are largely polluted: the concentrations of

lead vary from 100 to 39,000mg kg%1 of soil according to the sampling sites (parking

area, near the batteries storage area, proximity to an infiltrationpoint, etc.). Thus, the

soil chosen for the experimentation was sampled in a homogenous polluted zone

(Foucault et al., 2013). Pb, Cd, Cu, Zn, As and Sb concentrations were respectively

1650 $ 10.2, 0.8 $ 0.1, 11.9 $ 1.2, 12.2 $ 1.2, 11.9 $ 1.4 and 86.8 $ 3.2 mg kg-1 of dry

weight of soil. This historically polluted soil was sampled from the top 0e25 cm soil

layer, air-dried at ambient temperature for a week, disaggregated and, finally, sieved

to keep aggregates smaller than 2 mm before plant cultivation.

2.2. Experimental set-up

Two complementary field experiments were conducted by exposing lettuce

(Lactuca sativa L.) to process particles. The first experiment (denoted E1) considered

both foliar and root transfer whereas the second one (denoted E2) focused only on

foliar uptake. Lettuce (Lactuca sativa L.) was chosen for field exposure experiments

(E1 and E2), metal transfer and phytotoxicity studies. This leafy vegetable, largely

consumed by humans (Lebeda et al., 2007), has beenwidely used as biotest to study

soileplant or air-plant transfers of metals (Waisberg et al., 2004; Alexander et al.,

2006; Uzu et al., 2010; Schreck et al., 2012a) with in particular the measure of

fatty acid composition in the context of polluted soils (Le Guédard et al., 2008; Le

Guédard et al., 2012a,b).

For the experiment E1, seed germination was carried out with commercial let-

tuce seeds (cultivar “Batavia Blonde dorée”), firstly immersed in a 10% sodium

hypochloride solution for 10 min to ensure surface sterility (according to Lin and

Xing, 2007; Schreck et al., 2011). After seed germination, young plants were then

grown 15 days in a greenhouse on an uncontaminated or a polluted soil, according to

the chosen exposure way in the experimental design: air and/or soil-plant uptake

(see Fig. 1). Then, two-week-old plants were transferred in different individual pots

each containing 4 kg of polluted or not polluted soil, accordingly to exposure ex-

periments. A geotextile membrane was placed on the soil in view of avoiding direct

transfer between air and soil in the experiment, as previously described by Uzu et al.

(2010) and Schreck et al. (2012 a,b).

The design of the first experiment (E1) was reported in Fig. 1.

The plants were segregated into 4 different batches to study the different

transfer pathways and their potential interactions: (condition-1) no pollution or

controls, (condition-2) soil pollution only, (condition-3) air pollution only and

(condition-4) both air and soil pollutions. For conditions (1) and (2), plants were

placed in a control area, without any atmospheric contamination. For conditions (3)

and (4), plants were exposed to atmospheric fallouts enriched in metals, in the

smelter courtyard.

Plant exposure was performed during 4 weeks and the influence of the way of

transfer (foliar, root or the 2 both ways at once) was studied each week by deter-

mining fatty acid composition of plant leaves according to Le Guédard et al. (2008,

2012a,b), see Section 2.3 for details. Actually, six plants for each condition were

dedicated to fatty acid composition analysis.

A second experiment (E2) focussing on foliar uptake was then performed: 30

plants of each condition (not exposed and exposed to atmospheric fallouts) were

dedicated both to fatty acid composition and pollutant concentrations analysis as

indicated in Fig. 1. Metal concentration in soil is provided elsewhere (Schreck et al.,

2012b). Moreover, it’s important to notice that during the whole of the second week

of this foliar exposure experiment, the smelter activity was stopped (public holi-

days): PM was not emitted by the factory during this period.

2.3. Fatty acid extraction, analysis and identification

Both for E1 and E2 experiments, sampling consisted of fresh foliar tissue (be-

tween 20 and 200 mg, as reported by Le Guédard et al., 2012a,b) taken from the

different lettuces grown on the industrial landfill or on the control area. Leaf samples

were immediately placed in screw-capped tubes containing 1 ml analytical grade

methanol acidified with 2.5% (v/v) H2SO4 (Le Guédard et al., 2008; Le Guédard et al.,

2012a,b). Samples were stored at 4 "C before analysis.



Fatty acid analysis and identification was then performed according to Le

Guédard et al. (2008, 2012a,b). Tubes containing the leaf samples in acidified

methanol were heated to 80 "C for 1 h and then cooled before adding 1.5 ml H2O and

0.75 ml hexane. Fatty acid methyl esters (FAMEs) were extracted into hexane by

vigorous shaking and a two-phase systemwas established by centrifugation (1500 g,

5 min). Separation of FAMEs in the hexane phase was performed by gas chroma-

tography (Hewlett Packard 5890 series II) on a 15 m & 0.53 mm Carbowax column

(Alltech) with flame ionization detection and helium as carrier gas. The initial tem-

perature of 160 "Cwas held for 1min, followed by a 20 "Cmin%1 ramp to 190 "C and a

second ramp of 5 "C min%1
e210 "C, and held for 6 min. FAMES were identified by

comparing their retention timeswith standards (SigmaChemical, St. Louis,MO,USA).

2.4. Metal concentration analysis

For the E2 experiment, lettuce tissues were washed according to home-washing

processes usually performed before consumption (Birbaum et al., 2010; Uzu et al.,

2010; Schreck et al., 2012b) in order to focus on sanitary risk induced by ingestion

of polluted vegetables. Each week, six samples of plant leaves were 72 h oven-dried

at 40 "C. Plant samples were mineralized with a Digiprep instrument from SCP

Science producer. 0.125 g of each plant sample was digested by 5 ml of aqua regia

(mixture of 1/4 HNO3 and 3/4 HCl) þ 2 ml of H2O2 at 55 "C for 25 min and then at

80 "C for 4 h. After dilution in ultra-pure water and syringe filtration (0.45 mm), the

Pb, Cd, Cu, Zn, As and Sb concentrations were measured by inductively coupled

plasma-optical emission spectrometry ICP-OES (IRIS Intrepid II XXDL) or inductively

coupled plasma-mass spectrometry ICP-MS (X Series II, Thermo Electron) accord-

ingly to concentrations. Ten blanks were submitted to the same treatment (miner-

alization and assay) for control. Each sample was analysed in triplicate. The

detection limits for Pb, Cd, Cu, Zn, As and Sb were 0.3, 0.2, 1.3, 2.2, 0.2 and 0.2 mg l%1,

respectively, whereas the limits of quantificationwere 0.4, 0.3, 2, 3, 0.3 and 0.4 mg l%1,

respectively. The accuracy of measurements was checked using reference materials:

Virginia tobacco leaves, CTA-VTL-2, ICHTJ and TM-26.3 certified reference material

from the National Water Research Institute, Canada. The concentrations found were

within 97e101% of the certified values for all measured elements (Schreck et al.,

2012a).

During all the time of the experiment, potential variations of metals concen-

trations in soil were checked according to the following procedure: metal(loid)s

total concentrations were measured by ICP-OES (IRIS Intrepid II XXDL) after

mineralization in aqua regia according to ISO 1146627 (HNO3 65%, HCl 37%, ratio 3:1

v/v). Detection limits were below 100 mg l%1 in ICP-OES analysis and analytical errors

less than 5%.

As reported in a previous published study (Schreck et al., 2012b) and as reissued

in Supplementary material S1, metal(loid)s contents were significantly higher for

exposed lettuces than for the lettuces grown in the uncontaminated areas.

2.5. Statistical data analysis

Exploratory statistical analysis is conducted by using data from the E1 experi-

ment. Data from the E2 experiment will be used to cross-validate findings of the

exploratory analysis.

There are 18 different treatments in the E1 experiment (Fig. 1) depending on the

duration of exposure (0,1, 2, 3, 4 weeks) and the contamination pathway (control, air

only, soil only, air and soil). Such treatments can be defined by using the three-level

cross-factor duration of exposure & air pathway (not exposed, exposed) & soil

pathway (not exposed, exposed). Factors duration of exposure, air pathway, and soil

pathway are denoted in a more concise manner Duration, Air, and Soil in the

following. The significance of the effect of treatment on fatty acid contents is

investigated by the use of a 3-wayMANOVA. Isolated factors (Duration, Air, and Soil)

as well as two-factor (Air & Soil, Air & Duration, Soil & Duration) and three-factor

(Air & Soil & Duration) interactions are considered.

Patterns in variations of fatty acid concentrations with respect to treatment are

explored by the use of a Linear Discriminant Analysis (LDA). Generally speaking, LDA

computes linear combinations of the original variables which maximize the po-

tential to distinguish presupposed known groups e by optimizing the ratio of

between-group to within-group sums of squares. Similarly to Principal Component

Analysis (PCA), LDA eigenvalues are ratios of between-group to within-group sums

of squares and LDA eigenvectors are weights of the linear combinations (Venables

and Ripley, 2010). In our case, LDA computes linear combinations of fatty acid

contents (C16:0, C16:1, C18:0, C18:1, C18:2, C18:3) with treatment as a grouping

factor. Data samples are later projected onto LDA eigenvectors, referred to in the

following as LDA outputs (denoted Y1 up to Y6). LDA eigenvalues are normalized

with respect to the sum of all 6 LDA eigenvalues, later referred to as proportions of

explained variances for each discriminant. The significance of the effect of treatment

on fatty acid contents is investigated by the use of 3-way ANOVAs (Kutner et al.,

2004) on each LDA outputs.

Actually, fatty acid contents are transformed before being provided to the LDA.

The choice of the transformation is guided by the use of the BoxeCox transformation

procedure (Box and Cox, 1964), which encompasses power transformations (of

power ls 0) and the log-transform (l ¼ 0 by definition). The main interest of using

a transformation is to stabilize the variance across treatments (homoscedasticity)

and reach marginal normality. LDA computations as well as ANOVA parametric

testing indeed require that observations form a random sample which is normally

distributed and homoscedastic. Assumptions of normality and homoscedasticity are

checked by using ShapiroeWilk and BrowneForsythe tests, respectively. Pairwise

comparisons between treatments are achieved by using Tukey Honest Significant

Difference (HSD) tests.

There are 8 different treatments in the E2 experiment (Fig. 1) depending on the

duration of exposure (1, 2, 3 or 4 weeks) and the contamination pathway (control or

air only). The significance of the effect of treatment on fatty acid contents is

investigated by the use of 2-way ANOVA (factors Duration, Air and Air & Duration).

Assumptions of normality and homoscedasticity as well as pairwise comparisons are

computed as described earlier. Statistical computations are carried out with R

software (R Core Team, 2012).

3. Results and discussion

3.1. Fatty acid composition in lettuce leaves across treatments

Fatty acid compositions in lettuce leaves following the E1
experiment are shown in Table 1. It firstly appears that after two
weeks in the green-house (under monitored conditions), lettuces

Fig. 1. Experimental design of the two complementary field experiments: E1 (exploratory analysis) and E2 (cross-validation).



having grown on the contaminated soil did not display a significant
lower C18:3/(C18:2 þ C18:1 þ C18:0) ratio (2.61 $ 0.1) than seed-
lings having grown on the control soil (2.70 $ 0.5). In addition, it
also appears that after an additional (from 1 to 4 week) exposure,
this ratio did not significantly decrease in the presence of soil and/
or air contaminants. This indicates that in comparison with our
previous studies (Le Guédard et al., 2008; AFNOR, 2012; Le Guédard
et al., 2012a,b), following the E1 experiment, the effect of contam-
inants did not induce a huge oxidative stress. Hence, in comparison
with these previous studies, a more thorough statistical analysis of
the results was required to determinewhether the lettuce fatty acid
composition was significantly affected by the soil and/or air field
exposures to inorganic pollutants.

3.2. Statistical determination of a parameter to predict the impact

on lipid composition of plant exposure to metals and metalloids

Fatty acid composition is variable across treatments, as
confirmed by the results of the 3-way MANOVA (Table 2). Isolated
factors (Duration, Air and Soil) have significant effects on fatty acid
compositions. No interaction term is significant. The consequences
of the latter assertion are that: (1) both air and soil metal con-
taminations have a significant effect on fatty acid composition and
(2) soil and air pathways do not interact; they have non-synergetic
and non-antagonist effects.

Fatty acid concentrations are log-transformed, as indicated by
the results of the BoxeCox procedure (95% confidence intervals of l
for all 6 fatty acid variables are included within [%0.25, 0.25]),
before being provided to the LDA. The proportions of explained
variances are 82.32, 9.03, 3.22, 3.02, 1.55, and 0.86% on each

discriminant. Eigenvectors are provided in Table 3. The projection
of data samples on the first two eigenvectors is illustrated in Fig. 2.

As illustrated in Fig. 2, the LDA efficiently discriminates treat-
ment. More specifically, the first component substantially dis-
criminates duration of exposure (Y1 increases with the duration of
exposure) and the second component discriminates contamination
pathway (Control > Soil > Air > Soil & Air). Such assessments are
substantiated by the results of 3-way ANOVAs on LDA outputs.
Significance of isolated factors (Duration, Air and Soil) as well as
two-factor and three-factor interactions is provided in Table 2.
Results of normality (ShapiroeWilk) and homoscedasticity
(BrowneForsythe) tests are also provided. Results show that re-
sidual variance is equal across treatments. Residual variance is
normally distributed for variables Y2eY5. Isolated factors (Duration,
Air and Soil) have significant effects on variables Y1eY6 (depending
on the variable) and no interaction is significant. ANOVA results
also show that Y1 substantially discriminates duration of exposure
better than the other LDA output variables and that Y2 better dis-
criminates contamination pathway. Given that we are more inter-
ested in discriminating pathway than duration of exposure, we
now focus in the following on the second discriminant:

Y2 ¼ %11:97log10ðC16 : 0Þ þ 12:03log10ðC16 : 1Þ

% 7:12log10ðC18 : 0Þ þ 3:02log10ðC18 : 1Þ

% 2:76log10ðC18 : 2Þ þ 6:85log10ðC18 : 3Þ

Which is approximately equal to 12 log10 (Z) with:

Z ¼

�

C16 : 1

C16 : 0

 

&

�

C18 : 3

C18 : 0

 0:57

&

�

C18 : 1

C18 : 2

 0:23

Table 1

Fatty acid composition (mean$ standard deviation) across treatments for experiment E1. There are 6 replicates per treatment, except for treatment air at 4weeks (5 replicates).

Treatment Duration (week) C16:0 (%) C16:1 (%) C18:0 (%) C18:1 (%) C18:2 (%) C18:3 (%)

Control 0 19.6 $ 4.1 2.8 $ 0.9 1.5 $ 0.4 1.8 $ 0.7 17.9 $ 2.8 56.3 $ 5.7

Control 1 24.2 $ 1.4 3.2 $ 0.5 1.8 $ 0.2 1.6 $ 0.3 14.7 $ 1.1 54.5 $ 1.5

Control 2 22.1 $ 1.4 3.2 $ 0.3 1.8 $ 0.6 1.6 $ 0.3 17.5 $ 2.4 53.8 $ 2.4

Control 3 23.0 $ 1.5 3.9 $ 0.5 1.9 $ 0.4 1.4 $ 0.4 20.6 $ 3.5 49.3 $ 3.2

Control 4 25.0 $ 1.6 3.4 $ 0.5 2.4 $ 0.4 2.2 $ 0.3 20.8 $ 2.7 46.2 $ 2.2

Soil 0 21.5 $ 2.2 2.7 $ 0.2 1.8 $ 0.1 2.4 $ 0.3 18.0 $ 2.2 53.5 $ 3.3

Soil 1 22.3 $ 1.0 2.1 $ 0.3 1.8 $ 0.2 1.7 $ 0.2 15.0 $ 1.3 57.1 $ 1.7

Soil 2 22.9 $ 1.2 2.6 $ 0.3 1.5 $ 0.2 1.4 $ 0.2 15.7 $ 1.2 55.8 $ 1.2

Soil 3 23.8 $ 1.4 3.5 $ 0.2 2.0 $ 0.5 1.6 $ 0.3 18.8 $ 2.4 50.5 $ 1.6

Soil 4 23.5 $ 2.7 3.2 $ 0.8 1.9 $ 1.3 1.8 $ 1.2 19.6 $ 3.4 50.0 $ 3.7

Air 1 21.9 $ 1.4 2.2 $ 0.4 2.0 $ 0.3 1.6 $ 0.4 16.0 $ 0.9 56.4 $ 2.5

Air 2 22.6 $ 1.0 2.8 $ 0.2 2.0 $ 0.1 1.5 $ 0.4 17.4 $ 0.9 53.7 $ 0.8

Air 3 23.2 $ 0.5 3.3 $ 0.8 2.2 $ 0.3 1.4 $ 0.3 20.2 $ 1.5 49.7 $ 1.7

Air 4 22.9 $ 1.1 3.5 $ 0.6 2.9 $ 0.6 2.2 $ 0.5 19.9 $ 3.6 48.5 $ 3.2

Soil & Air 1 20.8 $ 5.0 1.7 $ 1.9 2.0 $ 0.6 1.9 $ 0.7 15.3 $ 0.9 58.2 $ 8.1

Soil & Air 2 22.8 $ 0.5 1.9 $ 0.5 2.2 $ 0.5 1.6 $ 0.3 15.0 $ 2.5 56.4 $ 3.0

Soil & Air 3 23.5 $ 1.8 2.9 $ 0.9 2.1 $ 0.4 1.8 $ 0.3 18.5 $ 2.4 51.3 $ 3.4

Soil & Air 4 23.6 $ 4.2 2.9 $ 1.2 2.5 $ 0.6 1.9 $ 1.0 18.6 $ 3.7 50.7 $ 7.0

Table 2

P-values of the tests of the 3-wayMANOVA (first column) and the 3-way ANOVAs (remaining columns) which connects fatty acid compositions to treatment factors. Factors are

air, soil, duration, and interactions and dependent variables of the ANOVAs are LDA linear combinations of fatty acid contents (C16:0, C16:1, C18:0, C18:1, C18:2, C18:3) which

are denoted Y1eY6. P-values of tests for normality (ShapiroeWilk) and homoscedasticity (BrowneForsythe) are also provided (Significance codes:<0.001 ‘***’,<0.01 ‘**’,<0.01

‘*’, <0.05 ‘
.
’).

All Y1 Y2 Y3 Y4 Y5 Y6

ShapiroeWilk 0.000261 *** 0.088967 0.096404 0.798294 0.086378 0.000001 ***

BrowneForsythe 0.256905 0.687362 0.355252 0.176096 0.235837 0.635610

Air 0.000000 *** 0.000440 *** 0.000000 *** 0.517100 0.019562 * 0.095651 0.953333

Soil 0.000208 *** 0.007499 ** 0.001148 ** 0.659816 0.001101 ** 0.821149 0.265321

Duration 0.000000 *** 0.000000 *** 0.000602 *** 0.000411 *** 0.204252 0.490537 0.900101

Air & Soil 0.664049 0.392292 0.175658 0.925690 0.302537 0.434128 0.850495

Air & Duration 0.305683 0.230966 0.148068 0.494705 0.479763 0.263779 0.401577

Soil & Duration 0.126004 0.244480 0.051573 0.097686 0.321773 0.656440 0.451030

Air & Soil & Duration 0.591404 0.061734 0.196718 0.882762 0.818391 0.373761 0.984920



Z values are of equal spread for all treatments, no matter the
duration and the contamination pathway. Values of Z across
treatments are illustrated in Fig. 3. The Z quantity has the three
following compelling properties. Z is the product of three fatty
acid concentration ratios (C16:1/C16:0, C18:3/C18:0, and C18:1/
C18:2) with different weights (1, 0.57, and 0.23 respectively). This
property will be used later when exploring the relationships be-
tween uptake and phytotoxicity. Z is a dimensionless quantity
which values are in our experiments comprised between 0 and 1.
The latter property will be of interest in order to compare Z values
across treatments and across experiments. Finally, Z is normally
distributed and of equal variance across the 18 groups (Shapiroe
Wilk: p ¼ 0.35; BrowneForsythe: p ¼ 0.58). Consequences are
facilitated subsequent statistical parametric testing. Three-way
ANOVA results show that isolated factors (Air, Soil, and Dura-
tion) have significant effects on Z, and no interaction is significant
(Table 4). Values of the Z quantity across treatments are illustrated
in Fig. 3. Values of the three ratios C16:1/C16:0, C18:3/C18:0, and
C18:1/C18:2 are illustrated in Supplementary Material S2 and
significance of ANOVA testings with respect to treatment factors
are provided in Table 4.

3.3. Interactions between metals uptake and fatty acids of Lactuca

sativa L. leaf membranes: a new way to explore relationship

between uptake and phytotoxicity

Wemention above that oxidative stress very likely did not occur
in plants during E1 experiment. In agreement, the fatty acid ratio
with themost important weight in Z values is the C16:1/C16:0 ratio,
and it is generally admitted that mono-unsaturated fatty acids are
not targets of oxidative stress as reported by Cipak et al. (2006,
2008). C16:1 fatty acid in leaves is (almost) exclusively associated
with thylakoid phosphatidylglycerol (PG), and the absence of this
unsaturated fatty acid associated with this phospholipid may
impact photosynthesis activity (Ivanov et al., 2012). Hence, Z
parameter formula suggests that process particles, carrying a
mixture of metal(loid)s, initially induce an early alteration on
chloroplast membranes, whatever the way of uptake involved (air-
leaf or soil-root pathway), and could lead later to the disruption of
photosynthetic function, finally involving phytotoxicity (Kobayashi
et al., 2007; Aronsson et al., 2008).

C16:1 fatty acid in leaves is synthesized from C16:0 (associated
with PG) by a plastidial fatty acid desaturase. Hence, it appears that
the simplest explanation for the weight of the C16:1/C16:0 ratio in
Z values is to assume that this desaturase is inhibited by metal
uptake. Actually we focused on week 1 and week 2 (highest dif-
ferences in Z values), and we considered, in the absence of con-
taminants, that for 1000C16:0 synthesizedmolecules, 32 molecules
of C16:1 were synthesized, and that 76.5% of the remaining C16:0
molecules were elongated to synthesize C18:0. We also considered
that 97.6%; 97.7% and 77% of C18:0, C18:1; C18:2 were desaturated
to form C18:1, C18:2 and C18:3 respectively. These assumptions
lead to the following fatty acid composition: 22.7%; 3.2%; 1.8%; 1.7%;
16.2% and 54.4% of C16:0; C16:1; C18:0; C18:1, C18:2 and C18:3
respectively (supplementary material S3), closed to the

Table 3

Proportions of explained variances and coordinates of the eigenvectors of the LDA.

Discriminant 1 2 3 4 5 6

log10(C16:0) %0.28 %11.97 %6.85 8.44 19.75 %2.50

log10(C16:1) %4.24 12.03 %1.42 %2.62 %4.06 %5.78

log10(C18:0) 1.78 %7.12 2.48 %9.26 %4.22 %4.72

log10(C18:1) %3.05 3.02 3.84 9.52 %2.77 %1.27

log10(C18:2) 5.62 %2.76 8.99 %6.53 10.07 9.35

log10(C18:3) %6.49 6.85 %6.23 %1.22 %16.97 4.04

Proportion (%) 82.32 9.03 3.22 3.02 1.55 0.86

Fig. 2. Projection of samples on the first two LDA eigenvectors for E1 experiment.



experimental values shown in Table 1 for weeks 1 and 2 in the
absence of pollutants. By assuming that both air and soil contam-
inants inhibited by 25% the desaturation of C16:0 molecules, and
that there was an additive effect of soil and air contaminants, we
obtained 0.59; 0.43; 0.43 and 0.32 for Z values in the absence and in
the presence of soil, air, and both soil and air contaminants
respectively. This illustrates the heavy weight of the C16:1/C16:0
ratio in Z value.

The appearance of C18:3/C18:0 and C18:1/C18:2 in Z calcula-
tions could be explained by a very slight effect of air pollution (only)
on the C18:0 desaturation (96.3% instead of 96.7% of C18:0 desa-
turated), and by a very slight effect of soil pollution (only) on the
C18:2 desaturation (78.5% instead of 77% of C18:2 desaturated).
This leads to 0.59; 0.45; 0.41 and 0.31 for Z values in the absence
and in the presence of soil, air, and both soil and air contaminants
respectively, and the resulting fatty acid compositions indicated are
closed to the experimental values shown in Table 1 for week 1 and 2
in the absence and in the presence of pollutants (Supplementary
Material S3).

All of these data explain why both air and soil metal contami-
nations have various significant (Table 4) effects on the various fatty
acid ratio, while they have non-synergistic and non-antagonist
effects.

3.4. Leaf fatty acid composition in lettuce shoots following foliar E2
exposure

The soundness of the potential use of the Z parameter to evi-
dence air pollution is assessed by using data from the second
experiment (E2). Fatty acid composition across treatments is pro-
vided in Table 5 and Z values are illustrated in Fig. 4. Results of
normality, homoscedasticity, and ANOVA tests show that Z is still
normally distributed (p ¼ 0.304335) and of equal variance across
treatments (p¼ 0.078323). Both Air and Duration have a significant
effect on Z (Air, p ¼ 0.009904**; Duration, p ¼ 0.834278;
Air & Duration, p ¼ 0.000045***).

Differences between control and exposed are not significant
at week 1 (p ¼ 0.9999) and week 2 (p ¼ 0.1958). Differences are

significant at week 3 (p ¼ 0.01663*) and week 4 (p ¼ 0.0032**)
and, similar to what has been found regarding the E1 experiment,
Z is lower for contaminated plants. In addition, it can be noted
that looking at the control experiments (ie. in the absence of
contaminants) the changes in the fatty acid composition as a
function of time (a decrease in 18:3) observed following the E1
experiment were not observed in E2. This is likely because light,
temperature and/or humidity were not the same, but we are
unable to demonstrate it (it was not the aim of the present study,
and the experiments were not designed to study this point).
Nevertheless, this observation strengthens the Z because despite
these differences, this parameter made it possible to evidence
adverse effects of pollutants following both E1 and E2
experiments.

Schreck et al. (2012b) have shown a high foliar uptake of metals
(reissued in Supplementary material S1). As mentioned above, in
the present experiment, emissions from plant was stopped during
week number 2 with a subsequent reduction of PM fallouts, and the
stop in smelter activity was therefore also observed as a break in
metal uptake by plant. Hence following the E2 experiment, it ap-
pears that the Z which has been defined earlier is efficient in

Fig. 3. Box-and-whisker plots of Z parameter across treatments for E1 experiment.

Table 4

P-values of the tests of the 3-way ANOVAs which dependent variables are fatty acid

ratios (Z, C16:1/C16:0, C18:3/C18:0, and C18:1/C18:2) and which factors are the

treatments (Air, Soil, Duration, and interactions). P-values of the normality (Sha-

piroeWilk) and homoscedasticity (BrowneForsythe) tests are also provided (Sig-

nificance codes: <0.001 ‘***’, <0.01 ‘**’, <0.01 ‘*’, <0.05 ‘
.
’).

Z C16:1/C16:0 C18:3/C18:0 C18:1/C18:2

ShapiroeWilk 0.352496 0.007205 ** 0.262648 0.000440 ***

BrowneForsythe 0.580434 0.232108 0.470564 0.395297

Air 0.000000 *** 0.001366 ** 0.000532 *** 0.931948

Soil 0.000964 *** 0.000013 *** 0.319973 0.012494 *

Duration 0.000185 *** 0.000000 *** 0.000004 *** 0.000049 ***

Air & Soil 0.535369 0.420212 0.810316 0.380353

Air & Duration 0.201538 0.274224 0.751036 0.991581

Soil & Duration 0.061689 0.756881 0.212121 0.145309

Air & Soil & Duration 0.182960 0.478196 0.694727 0.948414



highlighting differences in air quality near a factory, and, the fatty
acid composition seems to be a sensitive but also a reversible
parameter. Nevertheless, no significant correlation could be high-
lighted between metal concentrations in plant leaves and Z values
(results not shown): Z parameter is only a qualitative marker of
effect of metal pollution.

4. Conclusions and perspectives

This study opens up the answers to the three main issues which
were raised in the introduction part. We evidenced that, as root
transfer, foliar transfer also impacts fatty acid composition, that the
two transfers have different effects and that they do not interact.
Statistical analyses have allowed us to construct a new index,
denoted Z, in the form of the weighted product of ratios of con-
centrations of the pairs of fatty acids directly involved in the
mechanisms described above. This index efficiently discriminates
soil-plant and/or air-plant field exposures to a complex mixture of
process particles enriched with metal(loid)s. This study illustrates
that the synergistic combination of statistical and ecotoxicological
approaches provide new insights for understanding the mecha-
nisms involved in metal(loid) uptake by plants and phytoxicity.
Thus, further studies such as microscopy, spectroscopy and isotope
fractionation are actually in progress to explore the additional
implication of biotic (e.g. plant species) and abiotic (exposure
duration, pedoclimatic conditions, metal speciation) factors on
uptake and phytotoxicity.
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