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Abstract

Extradenticle (Exd) and Homothorax (Hth) function as positive transcriptional cofactors of Hox proteins, helping them to
bind specifically their direct targets. The posterior Hox protein Abdominal-B (Abd-B) does not require Exd/Hth to bind DNA;
and, during embryogenesis, Abd-B represses hth and exd transcription. Here we show that this repression is necessary for
Abd-B function, as maintained Exd/Hth expression results in transformations similar to those observed in loss-of-function
Abd-B mutants. We characterize the cis regulatory module directly regulated by Abd-B in the empty spiracles gene and show
that the Exd/Hth complex interferes with Abd-B binding to this enhancer. Our results suggest that this novel Exd/Hth
function does not require the complex to bind DNA and may be mediated by direct Exd/Hth binding to the Abd-B
homeodomain. Thus, in some instances, the main positive cofactor complex for anterior Hox proteins can act as a negative
factor for the posterior Hox protein Abd-B. This antagonistic interaction uncovers an alternative way in which MEIS and PBC
cofactors can modulate Abd-B like posterior Hox genes during development.
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Introduction

In segmented animals the differential anterior-posterior mor-

phology is achieved during development under the control of the

Hox genes [1]. Hox genes encode a conserved family of

transcription factors organized in clusters in most animals. Hox

clusters originated before the divergence of protostomes and

deuterostomes and as a result, orthologous Hox genes can be

identified between vertebrates and invertebrates that are more

similar to each other than to other Hox genes in the same species

[2,3].

The development of the unique organs present in a segment is

controlled by the Hox protein expressed in that segment through

the regulation of specific downstream targets. In Drosophila

melanogaster the Abdominal-B (Abd-B) protein (orthologous to

Hox9/13 in mammals) induces the formation of the posterior

spiracles in the eighth abdominal segment (A8) through the

transcriptional activation of empty spiracles (ems), cut (ct) and spalt (sal)

among other genes [4,5]. Similarly, expression of the Sex combs

reduced protein (Scr, orthologous to Hox5) in the labial segment of

the head induces the formation of the salivary glands through the

activation of fork head, trachealess and huckebein [6]; while expression of

Ultrabithorax (Ubx) and Abdominal-A (Abd-A, both orthologous to

Hox6/8) in the abdominal segments prevent the development of

thoracic structures by repressing Distalless and buttonhead in the

abdomen [7,8]. The specific in vivo regulation of precise targets by

each Hox protein contrasts with the observation that Hox proteins

bind very similar DNA sequences in vitro [9]. In Drosophila, anterior

and central Hox proteins (Lab, Pb, Dfd, Scr, Antp, Ubx and Abd-A

[henceforth collectively referred to as anterior-Hox for simplicity])

bind TAAT sites with only the posterior-Hox Abd-B protein

binding the slightly different TTAT sites [10,11]. This in vitro lack of

Hox DNA binding specificity is resolved in vivo by the use of protein

cofactors that increase Hox DNA affinity and extend the binding

site therefore increasing specificity for downstream target genes

[12].

In Drosophila, the best-studied Hox cofactors are the Extra-

denticle (Exd) and Homothorax (Hth) proteins (homologous to the

Pbx and Meis proteins in vertebrates) [13]. In vitro studies show

that the anterior-Hox proteins bind poorly to many of their targets

in the absence of Exd and Hth [14]. The Hth, Exd and Hox

proteins form a trimeric complex that binds DNA with higher

affinity than any of the proteins separately [15]. Exd directs the

formation of the trimeric complex by binding directly to both Hth

and the Hox protein. Exd can bind to various domains in the

anterior-Hox proteins including the YPWM domain (present in all
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anterior-Hox proteins but not in the Abd-B posterior Hox

proteins), the UbdA domain (present only in Ubx and Abd-A)

and possibly to other domains not yet characterized [9,16]. Hth

binds Exd directly through the Homothorax-Meis (HM) domain

[15] but there is no evidence of Hth binding to Hox proteins

directly.

Exd translocation to the nucleus requires its binding to Hth

[17]. Accordingly, Exd remains in the cytoplasm of cells that do

not express Hth, while Exd is nuclear in cells expressing Hth.

Moreover, in hth mutants Exd localization is cytoplasmic. These

observations suggested a model in which Hth binding to Exd

allows the translocation of Exd to the nucleus where it can bind to

the Hox proteins forming the trimeric complex that binds target

genes [15]. The requirement of this complex for normal Hox-

target activation explains the homeotic phenotypes observed in hth

or exd mutants even though they express correct levels of Hox

proteins [18].

In contrast to the Exd/Hth requirement for anterior-Hox

protein function, there is no clear evidence pointing to Abd-B

interacting with these cofactors although such evidence exists in

vertebrates for Hoxa9 protein interaction with PBX. Abd-B has

two functions: a morphogenetic function (m) required for the

formation of segment specific structures, and a regulatory function

(r) that represses the transcription of anterior-Hox genes [19].

These functions correlate with the existence of two protein

isoforms, which differ by the inclusion of a 59 exon [20,21,22,23].

Mutations affecting the Abd-Bm isoform result in embryos where

the posterior spiracles are almost absent and the A5–A8 denticle

belts resemble that in A4 indicating that Abd-Bm performs most of

the morphogenetic functions [4,19,24]. Mutations affecting the

Abd-Br isoform have minor defects in A8 but result in the

formation of a small A9 denticle belt anterior to the anal pads

indicating that Abd-B represses the formation of an A9 segment.

However, the r isoform has some morphogenetic activity as heat

shock induction of both the Abd-B m and r isoforms can induce

the formation of posterior spiracles when ectopically expressed

[25,26,27].

Contrary to the anterior-Hox proteins, addition of the Exd

cofactor does not increase Abd-B’s binding affinity to DNA [14].

As a result, the case for Hth and Exd interaction with Abd-B has

not been studied in detail.

Here we investigate the interaction of Exd/Hth and Abd-B and

find that, surprisingly, these cofactors interfere with Abd-B

function during embryogenesis. We show that the presence of

Exd/Hth interferes with Abd-B binding to its direct target empty

spiracles (ems). This interference does not require binding of Exd/

Hth to DNA and is probably achieved by Exd/Hth binding to the

Abd-B homeodomain. These results uncover a novel Exd/Hth

complex function and explain why in Drosophila exd and hth

transcription is repressed by Abd-B protein. This novel interaction

extends our understanding on the capacity of PBX MEIS proteins

to modulate Hox output.

Results

Despite the importance of Exd and Hth for anterior-Hox

function, there is not much evidence pointing to the Abd-B

proteins interacting with these cofactors. In fact, during embryo-

genesis exd and hth are initially expressed homogeneously along the

trunk epidermis until stage 11 (st11) when their transcription is

downregulated in the posterior abdominal segments [28,29,30].

To study more in detail the expression of Hth in the A8 and A9

segments we double stained with Abd-B antibodies and observed

that Hth expression is downregulated in the dorsal region of A8

and A9 (Figure 1A–1B). This downregulation depends on Abd-B

function as dorsal levels of Hth are restored in Abd-B mutant

embryos (Figure 1C). In this region it had been described that

Abd-B excludes Exd protein from the nucleus [[28] and Figure 1D9

insets] probably because its effect on Hth expression.

Coexpression of Hth and Exd hampers Abd-B
morphogenetic capacity

To test if the downregulation of exd and hth observed in wild

type embryos is required for the normal development of the A8

segment we artificially maintained their expression using the Gal4

system. Expression of Exd in the ectoderm using the arm-Gal4 or

the 69B-Gal4 lines driving UAS-exd results in embryos with normal

cuticles (Figure 2A) and the same is true for UAS-hth (not shown).

In contrast, coexpression of Exd and Hth gives rise to larvae with

abnormal posterior spiracles and a reduced A8 denticle belt

(Figure 2B–2B9). Interestingly, in many embryos a small A9

denticle belt forms (Figure 2B0), a phenotype also observed in the

Abd-BUab-1 and Abd-BUabX23-1 loss-of-function alleles [19]. As these

phenotypes could be caused by abnormal Abd-B expression, we

stained embryos expressing ectopically both cofactors with anti-

Abd-B. Using several Gal4 lines we observed that Abd-B

localization in cells ectopically expressing Exd/Hth is normal

(Figure 1E–1E9) showing that the transformations caused in the

posterior segments are not due to altered Abd-B expression.

To find out at what level of the Abd-B genetic cascade the

spiracle defects are caused we analyzed the expression of the early

Abd-B targets [5]. We observe that the expression of ct and sal is

downregulated in these embryos (Figure 3A–3D) suggesting that

overexpression of Exd/Hth interferes with the normal activation

of Abd-B downstream targets. The ems gene is required for spiracle

development and its expression in the posterior spiracles is

regulated by an enhancer that depends on Abd-B function [25].

We observe that expression of the ems spiracle enhancer is also

downregulated in embryos overexpressing Exd/Hth (Figure 3E–

3F). Taken together, these results suggest that in the presence of

the Exd/Hth complex Abd-B proteins are less efficient in the

activation of their direct targets. These results indicate that

although Exd/Hth are positive cofactors of anterior-Hox proteins,

they may also have a previously unnoticed negative effect on Abd-

B function.

Exd/Hth affect the function of both Abd-B isoforms
To test if Exd/Hth expression affects the function of both Abd-

B isoforms, we first studied how the phenotypes obtained after

Author Summary

Hox genes encode transcription factors necessary to
achieve the morphological differences between anterior
and posterior regions of the body. These genes have been
functionally conserved during animal evolution, and
similar classes can be recognized in vertebrates and
invertebrates. To bind DNA and regulate many of their
targets, Hox proteins interact with the MEIS and PBC
transcriptional cofactors. However, this is not always the
case for the most posteriorly expressed genes belonging
to the Abdominal-B class. Here we show a new interaction
between the Abd-B protein and these cofactors where,
rather than cooperating with Abd-B, the cofactors antag-
onize its function. Given the conservation of the Hox
proteins and their cofactors, this new mode of interaction
may be also happening in other species, including
vertebrates.

Exd/Hth Cofactors Antagonize Abd-B Function
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ectopically expressing Abd-Bm are affected by the simultaneous

expression of Exd/Hth. As previously reported with other Gal4

drivers [31], ectopic expression in the ectoderm of UAS-Abd-Bm

with arm-Gal4 causes the formation of ectopic posterior spiracles in

all trunk segments (Figure 4A) and the same is true if Abd-Bm is

coexpressed with two irrelevant UAS constructs (see materials and

methods). In contrast, simultaneous expression of Hth and Exd

with Abd-Bm severely reduces the length of the ectopic spiracles

(Figure 4B) confirming that Abd-Bm cannot fully function in the

presence of these Hox cofactors.

Ectopic expression of the Abd-Br isoform with arm-Gal4 does

not induce ectopic spiracles (Figure 4C) despite the fact that

antibody stainings indicate that the protein is expressed at high

levels (Figure S1A–S1C). This is probably due to Abd-Br having

an inefficient morphogenetic function, as using stronger Gal4 lines

or increasing the expression levels of Abd-Br by performing the

experiment at 29uC, a temperature favouring Gal4 activity, results

in the formation of ectopic posterior spiracles (Figure S1D–S1E).

This confirms previous experiments using heat shock inducible

constructs that demonstrated that both the Abd-Bm and r isoforms

perform the morphogenetic function albeit Abd-Br is less efficient

[25,26,27].

To test if Abd-Br is also competed by Exd/Hth we took

advantage of the weak morphogenetic capacity shown by Abd-Br

at 25uC (Figure 4C) and studied how varying the levels of

endogenous Exd or Hth affects its function. Ectopic expression of

Abd-Br in a hth homozygous mutant background induces ectopic

spiracles similar to what Abd-Bm does in a wild type background

(Figure 4 compare 4D to 4A), indicating that endogenous Hth can

partially block Abd-Br activity. This effect is dependent on Hth

protein concentration, as in heterozygous hth/+ embryos, expres-

sion of Abd-Br at 25uC can induce small ectopic spiracles

(Figure 4E). We also observe that the ectopic spiracles appear to be

more complete in the A2–A7 segments where antibody stainings

show there are lower levels of endogenous Hth protein. Similar to

hth mutants, ectopic Abd-Br expression in exd zygotic mutants

results in the formation of ectopic spiracles (Figure 4G–4H). These

spiracles are smaller than those observed in a hth mutant

background probably due to the maternal exd contribution. Taken

together, the above results show that the function of both Abd-B

isoforms is sensitive to the Exd/Hth protein levels.

Molecular characterization of a minimal posterior spiracle
Abd-B regulated enhancer

Abd-B has been suggested to control directly ems transcription in the

spiracle through an enhancer located in a 1.2 kb region upstream of

the promoter but the Abd-B binding sites mediating this interaction

have not been identified [25]. As we found that the ems spiracle

enhancer is downregulated in embryos where Exd/Hth expression is

maintained (Figure 3E–3F), we decided to confirm its direct regulation

by Abd-B and study how Exd/Hth can affect its expression.

Subdivision of the 1.2 kb fragment shows that the central

0.35 kb element is responsible for spiracle expression (Figure S2A–

Figure 1. Hth and Exd downregulation by Abd-B in the posterior abdominal segments. (A–B) Hth and Abd-B expression in wild type
embryos at stage 12 (A) and stage13 (B). Hth protein disappears from the dorsal area where the spiracles are formed (A9 and A0 show a close up of A
rotated 180u to keep dorsal up and anterior left). Note that in the spiracle region only a cluster of 8 cells retain high Hth levels. (C) Abd-B mutant
showing elevated levels of Hth in the dorsal region. (D) Wild type st14 embryo stained with anti-Exd (D, green) and anti-AbdB (D9, red). Exd protein
localizes to the nucleus in anterior segments (T2 inset) while is cytoplasmic in the posterior domain where Abd-B is expressed (A8 insets). (E) Dorsal
view of a st11 embryo overexpressing Exd and Hth. Insets in E9 show that although the posterior A8 segment has high levels of nuclear Exd/Hth
expression (only Hth shown in E) Abd-B expression is normal (E9). White arrows point to the A8 segment. Anterior left in all panels, and dorsal up in A–
C.
doi:10.1371/journal.pgen.1003252.g001

Exd/Hth Cofactors Antagonize Abd-B Function
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S2D). The 0.35 kb element is regulated by Abd-B and behaves like

the original 1.2 kb fragment, responding to ectopic Abd-B

expression (Figure S2E) and losing its expression in Abd-B null

mutants (Figure S2F). Further reduction of the 350 bp element

from the 59 or the 39 end abolishes spiracle expression (Figure S2I–

S2L). This 350 bp element contains six putative Abd-B binding

sites (TTAT) five of which are conserved in twelve Drosophila

species analyzed (Figure S3, red boxes). Chromatin Immunopre-

cipitation (ChIP) in S2 cells transfected with HA-tagged Abd-B

shows that Abd-B can bind the ems posterior spiracle enhancer in

vivo (Figure S2G).

Electrophoresis mobility shift assays (EMSA) confirm the

binding of Abd-B to the 350 bp element (Figure 5B). To test if

all putative Abd-B sites in the 350 fragment are bound by Abd-B

with equal affinity we made six similar sized oligos covering the

whole fragment (Figure 5A grey boxes) and tested their capacity to

compete for Abd-B binding to the whole 0.35 fragment. At high

concentration all oligos, except oligo three that does not contain

Figure 2. Downregulation of Exd/Hth expression is required for the normal development of the posterior abdominal segments. (A)
Ectopic expression of Exd results in viable larvae with normal posterior spiracles (psp, black arrow A9) and a normal denticle pattern with the A8
denticle belt immediately abutting the anal pads (ap, white arrow A0). (B) Simultaneous ectopic expression of Exd/Hth results in larvae that form
aberrant posterior spiracles (B9), a reduced A8 denticle belt and an extra A9 belt anterior to the anal pad (B0).
doi:10.1371/journal.pgen.1003252.g002

Exd/Hth Cofactors Antagonize Abd-B Function
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predicted Abd-B binding sites, can compete for Abd-B binding

(Figure 5C). However, at lower concentrations only oligo 4 and

oligo 6 are able to compete efficiently (Figure 5C) indicating that

these sites have higher affinity for Abd-B.

To confirm that Abd-B binds the oligos through the predicted

sites, we mutated the TTAT sites in oligos 4 and 6, and analyzed

the capacity of Abd-B to bind these oligos in EMSA. Mutation of

both putative binding sites in oligo 4 abolishes Abd-B binding to it

(Figure 5E compare lane 3 with 15); with mutation of site 4A (lane

7) having a stronger effect than mutation of site 4B (lane 11) when

mutated independently. Similarly, mutation of the putative

binding site in oligo 6 strongly decreases its ability to be bound

by Abd-B in EMSA (Figure 5E compare lane 18 with 22). This

confirms that Abd-B binds to the predicted sites, and shows that in

vitro each site binds Abd-B with different affinities.

We next tested the capacity of mutant and wild-type cold oligos

4 and 6 to compete the ems0.35 fragment for Abd-B binding. As

expected, even at the high concentration, oligos with mutant Abd-

B sites cannot compete for binding (Figure 5D). Mutation of the

only putative Abd-B binding site in oligo 6 almost abolishes its

ability to compete (Figure 5D compare lanes 19–22 with 23–26).

Mutation of both putative binding sites in oligo 4 almost abolishes

Abd-B binding (Figure 5D lanes 3–6 compared with 15–18); again

with site 4A (lanes 7–10) having more effect than site 4B (lanes 11–

14) when mutated independently.

To test their in vivo requirement, we mutated single Abd-B sites

in the ems0.35 enhancer. While mutation of site 1 or site 2 does not

affect spiracle expression noticeably (Figure 6B and Figure S2H),

single mutation of putative sites 4A, 4B or 6 slightly reduces

expression (Figure 6C–6E). Simultaneous mutation in ems0.35 of

sites 4A and 6 strongly reduces spiracle expression (Figure 6F) with

only occasional spiracles having residual expression; while

mutation of sites 4A and 4B completely abolishes spiracle

expression in all embryos (Figure 6G). These results are consistent

with Abd-B controlling the expression of the ems spiracle enhancer

by binding to several sites in an additive manner. These

experiments and the deletion series show that sites 4A, 4B and 6

are necessary but not sufficient for spiracle expression, as

fragments D and E that do not affect these sites also lose spiracle

expression (Figure S2J, S2L).

Abd-B binding to its target DNA is competed by Exd/Hth
To understand how Exd/Hth compete Abd-B activation of ems

we first analyzed the capacity of these cofactors to bind the ems

spiracle enhancer. In EMSA experiments we could not detect

Exd/Hth binding to any of the six ems oligos (Figure 7A lanes

5,10,15,20,25,30) in conditions where we could detect Abd-B

binding to oligos 4 and 6 (Figure 7A lanes 18,28 asterisks).

We next analyzed the effect of adding Exd, Hth or Exd/Hth to

oligo 6 where the Abd-B site overlaps a predicted Exd/Hth site

(Figure S3). Separate addition of Exd or Hth has a small effect on

Abd-B binding to the DNA, while adding simultaneously Exd/Hth

decreases the affinity of Abd-B for oligo 6 in a concentration

dependent manner (Figure 7B lanes 12–14). Interestingly, adding

Exd/Hth to oligo 4 that does not contain any predicted Exd/Hth

sites also interferes with Abd-B binding (Figure 7C lanes 12–14) as

Figure 3. Expression of early Abd-B downstream targets after Exd/Hth ectopic induction. Expression of Cut protein (A–B), spalt RNA (C–D)
and the ems posterior spiracle reporter gene (E–F) in wild type (A,C,E) or embryos expressing ectopically Hth and Exd with the arm-Gal4 line (B, D, F).
Arrows point to the posterior spiracle site. Embryos in (A–D) have retracted the germ band while those in (E–F) are at extended germ band, and are
thus folded with the A8 segment close to the head.
doi:10.1371/journal.pgen.1003252.g003

Exd/Hth Cofactors Antagonize Abd-B Function
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efficiently as with oligo 6 where the predicted Abd-B Exd/Hth

binding sites overlap. These results suggest that Exd/Hth

interference with Abd-B is not due to competition for occupancy

of overlapping binding sites.

A Hth homeodomainless protein can interfere Abd-B
function

As Exd/Hth does not bind oligos 4 and 6 in vitro, it is possible

that interference with Abd-B binding to DNA is not due to

competition for DNA binding but due to direct binding of Abd-B

to the Exd/Hth complex.

In the embryo, there are several naturally expressed Hth

isoforms. Some isoforms contain the DNA binding homeodomain,

while others lack the homeodomain but still include the HM

domain [32]. To test if Hth proteins without the homeodomain

are capable of competing Abd-B function in vivo, we studied the

hth100-1 allele that only affects the homeodomain containing

isoform [32]. In hth100-1 embryos, ectopic expression of UAS-

AbdBr at 25uC does not form well-developed ectopic spiracles as

those formed in hthP2 alleles (compare Figure 4F and 4D),

indicating that the homeodomainless Hth isoform can compete

Abd-Br morphogenetic function in vivo. However, in these

embryos some small spiracle structures are formed not seen in a

wild type background (compare Figure 4F and 4C), suggesting that

although the homeodomain of Hth is not strictly necessary, the full

isoform competes Abd-Br posterior spiracle morphogenetic

function more efficiently.

Abd-B protein domains required for Exd/Hth functional
antagonism

Exd binds anterior Hox proteins trough several domains,

among them the YPWM domain. Although Abd-B lacks this

element, many Abd-B like proteins contain at a similar position

with respect to the homeodomain a conserved tryptophan (W)

amino acid [33]. To investigate the possibility that Abd-B and

Exd/Hth interact through this amino acid we analyzed the

capacity of Exd/Hth to interfere with an Abd-B protein where this

tryptophan residue has been mutated to Alanine (Abd-B W*). As

shown in Figure 8A (lanes 8–10), mutation of this tryptophan does

not prevent Exd/Hth interference with Abd-Bm DNA binding.

Figure 4. Effect of the ectopic expression of Abd-B isoforms on the development of embryos expressing different levels of Hth and
Exd. (A) Abd-Bm ectopic expression with the arm-Gal4 line induces posterior spiracles in ectopic positions (In this figure arrows point to normal A8
posterior spiracles and arrowheads to ectopic spiracles). (B) Ectopic expression of Abd-Bm can only form small remnants of posterior spiracles when
co-expressed with the Hth and Exd proteins. (C) Abd-Br ectopic expression with the arm-Gal4 line is not capable of inducing ectopic posterior
spiracles in a wild type background. (D) Abd-Br can induce ectopic posterior spiracles in hthP2 null embryos. (E) Abd-Br can induce small ectopic
posterior spiracles in hthP2 heterozygous embryos. Note that the ectopic spiracles in the posterior segments are more complete. (F) In hypomorphic
hth100-1 alleles lacking the homeodomain containing isoform but still expressing the homeodomainless protein Abd-Br is not capable of efficiently
inducing ectopic posterior spiracles (compare to panel D). These embryos have tiny spiracles that can be explained by the reduction of total Hth
protein caused by this allele, resulting in levels more similar to those present in heterozygous hthP2 embryos shown in panel E. (G) Abd-Br expression
in zygotic exdYO12 mutant embryos induces ectopic spiracles. (H) Close up of (G) showing some ectopic spiracles. All experiments in this figure were
performed at 25uC.
doi:10.1371/journal.pgen.1003252.g004

Exd/Hth Cofactors Antagonize Abd-B Function
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To investigate if the competitive interaction requires a

particular Abd-B protein domain, we analyzed if the competition

occurs with both Abd-B isoforms. We observe that adding Exd/

Hth interferes with both Abd-Bm and Abd-Br isoforms binding to

oligo 4 (Figure 8A lanes 3–5 and 13–15). In these experiments we

observe the formation of different size bands (Figure 8A lane 1

black arrows and lane 11 grey arrowheads). These bands are

specific as they are supershifted by anti-AbdB (Figure 8A lanes 2

and 12). As the smaller Abd-Bm band in lane 1 coincides with the

larger Abd-Br band in lane 11 we interpret these bands as being

the result of in vitro translation from internal Abd-B methionines.

The observation that Exd/Hth can compete with even the smallest

Abd-Br fragment suggests that the interference is due to

interaction with the C-terminal end of Abd-B where the

homeodomain is located.

To find out if Exd or Hth interact directly with the Abd-B C-

terminal region we performed GST pull-down experiments. We

observed that Exd interacts with GST fused to Abd-B313, a C-

terminal fragment including the last 181a.a (from 313 to 493)

(Figure 8B, lane 3). We observed that Exd interaction with this

fragment is reduced if we remove the homeodomain

(AbdB313DHD, lane 4) and found that Exd can interact directly

with the Abd-B HD fragment (lane 5). In contrast, GST fused to

the Abd-B homeodomain has a weak interaction with Hth

(Figure 8C lane 3). However, when cold Exd is added to the

mixture higher levels of Hth are isolated (Figure 8C lane 5). These

experiments show that in the absence of DNA, the Exd/Hth

complex can bind the Abd-B homeodomain, providing a

mechanistic explanation for the observed in vivo antagonistic

effect between these proteins.

Discussion

The evolution of Hox proteins was fundamental for the

acquisition of morphological differences in the antero-posterior

axis of animals. Comparison between all extant animals indicates

that the difference between posterior (Abd-B like) and anterior-

Hox genes occurred early in evolution. This happened before the

Hox and ParaHox clusters diverged, in what has been called a

protoHox cluster [34]. This early divergence has resulted in Abd-B

having a different character to all other anterior-Hox proteins,

with the most striking difference being Abd-B binding to a TTAT

DNA core site [and TTAC with lower affinity [35]] while other

Hox proteins bind to a TAAT core [10,11]. The divergence is also

reflected at the protein sequence level with all anterior-Hox

proteins having a YPWM motif that is absent or highly reduced

from Abd-B like proteins [3,33]. At the functional level, a major

difference is the use anterior-Hox proteins do of the Exd/Hth

complex as a positive cofactor to increase target DNA-binding

efficiency, while Abd-B does not require it [14,18]. Here we have

shown in vivo and in vitro a new relationship between Abd-B and

Exd/Hth where these positive Hox cofactors can also have an

antagonistic interaction with Abd-B protein function, providing an

explanation to why Abd-B represses the transcription of exd and hth

genes during development.

Abd-B activates ems transcription through the action of
additive binding sites

The ems gene had been suggested to be a direct target of Abd-B

in the posterior spiracles [25]. Despite being one of the first

putative Hox targets analyzed, the lack of direct mutational

evidence has resulted in ems being excluded from most Hox-target

compilations [1,9]. Here we have trimmed down this element to

350 bp and demonstrated that the spiracle enhancer is directly

activated by Abd-B. This enhancer contains several sites with

different Abd-B affinities all of which conform to the TTAT core

sequence. Mutation of single sites does not eliminate enhancer

expression, while simultaneous mutation of two high affinity sites

abolishes the in vivo enhancer function. This suggests that similarly

to yellow and bric-a-brac, two confirmed Abd-B direct targets

analyzed to date [35,36], Abd-B sites act additively. Our

observation that mutating the low affinity Abd-B binding site 1

has no effect on the ems spiracle enhancer expression, while the

deletion of the element abolishes expression (Figure S2H, S2L)

indicates the presence of binding sites for cofactor or collaborator

proteins acting in concert with Abd-B to achieve intrasegmental

specificity.

Exd/Hth as a competitor of Abd-B transcriptional
activation

Although additional bona fide targets should be analyzed to test

how general is Exd/Hth competition on Abd-B function, our

results indicate that this may be widespread during embryogenesis.

We have found that induction of Exd/Hth in the A8–A9 segments

not only affects the posterior spiracles, but also perturbs

ectodermal cuticular structures controlled by Abd-B as well as

downregulates the expression of the Abd-B early spiracle targets

analyzed [37]. Moreover, it was described that the ectopic

expression of Hth in the Drosophila melanogaster male abdomen

causes a lack of pigmentation [15]. As it has been found that Abd-

B induces male abdominal pigmentation by activating transcrip-

tion of the yellow gene in the A5 and A6 segments [36], the effect of

Hth expression on male pigmentation could also be explained by

Exd/Hth interfering during larval development with the activation

of yellow by Abd-B. Similarly, in the accompanying paper, Graba

and collaborators [38] show that Dll repression by Abd-B in the

posterior abdominal segments is also competed by Hth activation.

This differs from our results as we only observe effects when both

Exd and Hth are expressed in vivo. The difference may be

explained as due to certain targets being more sensitive than others

to the competition. In fact, our in vitro experiments show that Hth

can bind weakly to Abd-B, and that this binding is increased by the

addition of Exd (Figure 8C). The effect on Abd-B function, rather

Figure 5. Characterization of the Abd-B binding sites in the ems posterior spiracle enhancer. (A) Dissection of the ems1.2 posterior
spiracle enhancer. Black bars represent fragments tested in transgenic lacZ constructs. Grey bars represent oligos tested in EMSA. Asterisks indicate
the location of putative Abd-B binding sites in the ems0.35 fragment. (B) EMSA showing Abd-B binding to the ems0.35 enhancer (lane 2 arrow), this
band is supershifted by anti-AbdB confirming that the complex contains Abd-B (lane 3 arrowhead). (C) Abd-B binding to the ems0.35 enhancer is
competed by cold oligos containing Abd-B sites. Oligos 4 and 6 show higher affinity for Abd-B. Oligo 3 that does not contain putative Abd-B sites
does not compete (lanes 11–14). (D) EMSA showing that wild type cold oligo 4 (lanes 3–6) and oligo 6 (lanes 19–22) can compete for Abd-B binding
to the ems0.35 enhancer while cold oligo 4 with a mutation on both 4A and 4B sites (lanes 15–18) or oligo 6 with a mutation on its only site (lanes 23–
26) cannot compete Abd-B binding. Note that separately mutating in oligo 4 site 4A (lanes 7–10) or site 4B (lanes 11–14) shows that site 4A has
higher affinity for Abd-B. However, comparison of the independent mutations to the double 4A4B mutant suggests both sites are functional (lanes
15–18). Triangles in panels C and D represent increasing amounts of the indicated cold oligo competitor. (E) EMSA showing that Abd-B binds to wild
type oligos 4 and 6 through the predicted putative Abd-B sites, as binding to the oligos decreases when these sites are mutated (compare WT lanes
3–4 and 18–19 with lanes labelled as mut). Site 4A and 6 bind to Abd-B with higher affinity than site 4B.
doi:10.1371/journal.pgen.1003252.g005
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than a competition for binding sites in each specific target, could

be due to a blocking interaction of Exd/Hth on Abd-B a possibility

that is suggested by the direct binding we observe between Abd-B

and the Exd/Hth complex. This is also supported by our

observation that binding of Abd-B to oligo 4 is competed by

Exd/Hth despite the absence of putative binding sites for these

cofactors on this element. The direct interaction of Exd/Hth with

the Abd-B homeodomain offers a plausible explanation for the

observed antagonistic effect that Exd/Hth causes in vivo and in vitro.

How general is Exd/Hth competition for Abd-B?
Despite the many instances where we show competition

between Abd-B and Exd/Hth during embryogenesis, there is at

least one important case where the competition does not seem to

happen, and this is the regulation of hth and exd transcription itself.

Maternal and zygotic Exd and Hth proteins are expressed

homogeneously along the antero-posterior axis until extended

germ band (st11) when posterior Hox proteins downregulate their

expression in the posterior abdomen [28,29,30]. Thus, at least in

this case, the presence of Exd/Hth is incapable of blocking the

Abd-B repressive function on hth transcription on the dorsal side of

A8 and A9. Why competition does not occur on hth downregu-

lation during this stage of embryogenesis is unclear. A simple

explanation could be that although Abd-B function is also

competed by the presence of Exd/Hth, Abd-B’s maintained

expression will eventually overturn the blocking effect of the Exd/

Hth protein therefore repressing exd and hth transcription.

Alternatively, we cannot discard the existence of a dedicated

factor expressed at this stage preventing the competition of Exd/

Hth with Abd-B. The expression of such factor in some cells but

not in others would explain why Abd-B represses Hth in only some

but not all cells of A8 and A9. The existence of this additional

factor could also explain the surprising observation that some cells

in the Abd-B domain have nuclear Hth without corresponding

nuclear Exd. Our results open up the possibility of the existence of

a dual Hth/Exd interaction with Abd-B: the antagonistic

interaction we uncover here and, a different one, where Abd-B

may not be competed by Exd/Hth and in fact could be acting as a

positive cofactor as it happens with more anterior Hox genes. This

may be happening in the genital discs where both Exd/Hth and

Abd-B are co-expressed [39].

Possible function of the Abd-B Exd/Hth competitive
interactions

No cofactors have yet been identified for the Abd-B protein.

The finding that the main positive cofactor of the anterior-Hox

proteins is a competitor for the posterior Hox proteins is

interesting. It is well established that Abd-B represses anterior-

Hox gene transcription [40]. The fact that it also represses the

positive cofactors of anterior-Hox proteins reinforces the preva-

lence of Abd-B expression and function in posterior segments. Our

finding that not only Exd/Hth reinforces anterior Hox function

but also counteracts Abd-B function uncovers a complementary

mechanism for the stabilization of the anterior vs posterior

segment information, where any accidental ectopic Abd-B

Figure 6. Expression of different ems0.35 enhancer variants in
st11 embryos. (A) ßGal expression of the ems0.35 wild type enhancer.
(B) Expression of ems0.35 with a mutation on the second putative Abd-B
site. (C–E) Reduced expression of ems0.35 constructs carrying a single
mutation on either the 4A (C), 4B (D) or 6 (E) putative Abd-B sites. (F)
Expression of ems0.35 double mutant in site 4A and 6. (G) ems0.35
constructs double mutant for site 4A and 4B show no spiracle
expression. Arrows point to the posterior spiracle primordium.
doi:10.1371/journal.pgen.1003252.g006
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expression in anterior segments would be quickly dampened down

by the presence of the Exd/Hth complex before it has had a

significant transcriptional effect on the repression of anterior Hox

genes or on hth and exd transcription.

Another important function could be in cells where Abd-B and

anterior-Hox proteins are coexpressed. Although the negative

cross-regulatory interactions between Hox genes in Drosophila

results in most cells expressing either an anterior or a posterior

Hox protein [40], in the central nervous system or the ventral

ectoderm of the embryo there are well documented cases where

both proteins are coexpressed. This is illustrated by the dMP2 and

MP1 pioneer neurons in the central nerve cord [41], or by the A8

segment that requires both Abd-A and Abd-B function to shape

the denticle belt [24]. It is easy to imagine that in cells where both

anterior-Hox proteins and Abd-B are coexpressed, the levels of

Exd/Hth complex present can modulate the transcriptional

output favouring either the function of one or the other Hox

protein. In addition Abd-B repression of exd and hth transcription

would limit the targets Abd-A could activate to those bound with

high affinity in the absence of the cofactors as it has been found for

Ubx in the distal part of the appendage (haltere) [42].

Evidence for Pbx/Meis competing posterior Abd-B like
Hox in vertebrates

An open question is to what extent a similar interference also

happens in mammals where the Hox proteins have expanded to

39 orthologs and multiple MEIS and PBX proteins exist [2,13,43].

In vertebrates there is evidence of Pbx1 binding to posterior Abd-

B like Hox proteins. HoxA9-Pbx1 crystal structure showed that

the conserved W amino acid present in HoxA9 at a position

homologous to the YPWM sequence interacts with Pbx-1 [44].

HoxB9 and HoxA10 that posses this conserved W increase their

DNA binding affinity in the presence of Pbx-1 in a similar manner

as what happens with anterior-Hox proteins [33]. In contrast,

Pbx1 does not increase the affinity to DNA of HoxA11, HoxD12

and HoxD13, which lack this W amino acid [33]. In fact,

observation of the published results suggest that some competition

to DNA binding similar to what we observe with Abd-B in

Drosophila may happen in vertebrates (see Figure 1A in [33]).

Several papers have reported detailed analysis of the molecular

interaction of PBX/MEIS proteins with either HoxA9 or

HoxA10. Similar to our findings in Drosophila, addition of

increasing amounts of MEIS leads to a decrease of HoxA9 or

Pbx/Hoxa9 binding to the DNA (see Figure 2 in [45]). Although

in this work the authors observed the formation of a trimeric

complex on DNA that we have failed to detect, binding of the

trimeric complex to the promoter was unable to increase

transcription [45].

More recently, it has been reported that during osteoblastogen-

esis Pbx1 negatively regulates HoxA10 mediated transcription

[46]. Although both results coincide with our observations in

Drosophila where Exd/Hth compete instead of collaborating with

Abd-B, there is one case where PBX1a and MEIS1b interact with

HoxA10 as positive cofactors in the transcriptional regulation of

p21 [47]. Thus, although further experiments should be done in

Drosophila and vertebrates to clarify if there is a dual function of

Exd/Hth and Pbx/Meis on Abd-B like Hox proteins, we believe

that the existing results are indicative of a novel antagonistic

function that contrasts with their well known cooperative effect

with anterior-Hox proteins. Our in vivo observations indicating

the existence of antagonistic interactions and recent results

showing that, in vitro, Hth/Exd interaction with Abd-B transforms

the unique DNA binding specificity of Abd-B from TTAT to that

of a more anterior Hox gene [48] show the enormous modulatory

potential that these cofactors can have on the Abd-B like Hox

protein output.

Materials and Methods

Fly strains and crosses
The following Gal4 driver and UAS lines were used: arm-Gal4,

69B-Gal4, prd-Gal4, nullo-Gal4, UAS-hth-gfp (isoform containing

both the HM and homeodomain), UAS-exd, UAS-Abd-Bm, UAS-y,

UAS-t. We used the hthP2 (null mutant affecting all isoforms), hth101-

1 (mutant only affecting the homeodomain containing isoform),

exdYO12, and the Abd-B loss-of-function allele UabX23-1 affecting

only the Abd-Br function. The ems1.2-lacZ reporter line was a gift

from Bill McGinnis [25].

To test the interference of Exd/Hth with Abd-Bm function we

crossed homozygous arm-Gal4 males to UAS-exd; UAS-AbdBm; UAS-

hth-GFP e/TM6B females. As a control we crossed the arm-Gal4

males to w; UAS-AbdBm; UAS-y, UAS-t/TM6B females. In both

crosses we expect at least 50% of the embryos to have well

developed ectopic spiracles due to the expression of UAS-Abd-Bm

and absence of the two accompanying UAS constructs (either

UAS-exd, UAS-hth in experimental or UAS-y, UAS-t in control

embryos). We observed that in the cross generating arm-Gal4; UAS-

exd; UAS-Abd-Bm; UAS-hth-GFP embryos, 54.7% of them had well

developed spiracles and the rest formed small and medium

spiracles as those shown in Figure 4B (n = 86). In the control cross

generating arm-Gal4; UAS-Abd-Bm; UAS-y, UAS-t embryos, 85,4%

had well developed ectopic spiracle formation (n = 76). These

results indicate that coexpression of UAS-exd UAS-hth strongly

reduces the effect of UAS-Abd-Bm expression while UAS-y UAS-t

does not.

Antibodies and RNA in situ probes
Anti-Exd and anti-Hth (Kindly donated by R. Mann and N.

Azpiazu); anti-AbdB 1A2E and anti-ct 2B10 (Hybridoma Bank);

and anti-ßGal mouse (Promega) primary antibodies were used. For

sal in situ we used an antisense RNA probe.

Constructs
The UAS-Abd-Br construct was made from an Abd-Bm cDNA

cutting with appropriate enzymes to delete the first exon and the

resulting fragment was cloned in UASp [This construct has

already been donated for the experiments performed in [41]]. We

also generated a mutant Abd-B where the conserved tryptophan at

position 381 was substituted by Alanine (Abd-B*W) and subcloned

into pCDNA3.

Fragments of the ems1.2 enhancer (Figure S2A) were subcloned

into phs43-lacZ to create the following reporter genes ems0.9,

ems0.26, ems0.35, ems0.3, emsFragA, emsFragD, emsFragE and

emsFragF. In the ems0.35 enhancer we mutated the putative Abd-

B sites 1, 2, 4A, 4B and 6 individually or in combination to create

the single ems0.35mut1, ems0.35mut2, ems0.35mut4A, ems0.35mut4B,

Figure 7. Exd/Hth interfere with Abd-B binding to the ems spiracle enhancer. (A) EMSA showing that Exd/Hth does not bind to the ems0.35
oligos (lanes 5,10,15,20,25,30) in conditions where Abd-B binds to oligos 4 and 6 (lanes 18–19 and 28–29, asterisks). (B–C) EMSA showing that Abd-B
binding to oligos 4 and 6 is partially competed by increasing amounts of Exd/Hth proteins (lanes 12–14). Separate expression of Hth or Exd has only a
small effect on Abd-B binding to these oligos.
doi:10.1371/journal.pgen.1003252.g007

Exd/Hth Cofactors Antagonize Abd-B Function

PLOS Genetics | www.plosgenetics.org 11 February 2013 | Volume 9 | Issue 2 | e1003252



ems0.35mut6 or double mutant ems0.35mut4A4B and ems0.35mut4A6

reporter constructs. Site 1 TCATAAA was mutated to

.TCTTCAA, site 2 ATAATGA.ATCCCGA, site 4A TCATA

AA.TCGGGAA, site 4B TTTATTT.TTCCCTT and site 6

TCATAAA.TCGGGAA. Constructs were injected in D. melano-

gaster by Bestgene (USA) and the Drosophila Consolider-Ingenio

Figure 8. Direct Abd-B homeodomain binding to the Exd/Hth complex. (A) EMSA showing that both Abd-Bm (lanes 3–5) and Abd-Br
(lanes13–15) binding for oligo 4 is competed in the presence of Exd/Hth. Similar competition is observed over an Abd-B variant with a conserved W
residue mutated (lanes 8–10). Note that in each lane several size bands appear (black arrows and grey arrowheads in panel A). These bands are
specific as they are supershifted by anti-AbdB. We interpret them as due to Abd-B being translated in vitro from internal methionines as the smaller
band in lane 1 coincides with the larger Abd-Br band in lane 11. (B–C) GST-Abd-B pull-down experiments with Exd and Hth. Beads binding GST or GST
fused to the Abd-B C-terminal fragments were incubated with methionine-S35 labelled Exd (B) or Hth (C). (B) An Abd-B C-terminal fragment binds S35-
Exd. This interaction is reduced when the homeodomain is deleted from the fragment, and the Abd-B homeodomain by itself can bind Exd. (C) Abd-B
homeodomain only weakly binds S35-Hth (GST-AbdBHD, third lane), but the interaction is enhanced by the presence of unlabelled Exd protein (GST-
AbdBHD+Exd, fifth lane) indicating the formation of a trimeric complex. For each of the S35-labelled proteins, 25% of the amount used in the binding
reactions was directly loaded in the first lanes (Input).
doi:10.1371/journal.pgen.1003252.g008
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2007 transformation platform (Spain). Four to ten independent

inserts were analyzed for each line.

DNA sequence analysis to identify conservation regions and

DNA binding sites was performed with the JASPAR and the

GENOMATIX programs.

Electrophoretic mobility shift assays (EMSA)
Complementary oligonucleotides (Table S1) were synthesized

(Sigma Aldrich). Radioactively labelled probes were generated by

annealing and subsequent end filling with [a-32P]dCTP. The

conditions used were similar to those described previously [49,50].

Briefly, double-stranded, end-labelled DNA (50,000 cpm/binding

reaction; 10 nM) was incubated with 2 ml of reticulocyte lysate

reaction mixture containing each test protein or 2 ml of the lysate

control and 50 mM NaCl, 5 mM EDTA, 0,5 mM DTT, 10 mM

Tris-HCl (pH 7.8), 4% glycerol, 1 mM mgCl2, and 1 mg of poly

dI-dC as nonspecific competitors, in a final reaction volume of

20 ml.

Experiments designed to detect DNA-protein complex forma-

tion were performed with a 30-min incubation at 4uC. Reaction

mixtures were run on a 5% polyacrylamide gel to visualize

complex formation by retardation of the 32P-labeled target DNA.

In some experiments monoclonal anti-AbdB was incubated with

aliquots of the reaction mixture for an additional 30 min.

The amount of Hth, Exd and Hth/Exd expressing protein

lysate used in the experiments detecting Abd-B DNA binding

interference, was 26, 46 and 86 the quantity of protein lysate

expressing Abd-B. In all cases the final amount of protein lysate

was the same, using non-expressing lysate to equalize the final

volume.

Gel electrophoresis was performed in 0.56 Tris-borate-EDTA

buffer as described previously [51]. For each gel shift reaction, a

control containing the reticulocyte lysate was used to detect

possible DNA binding by endogenous lysate factors. Gel was dry at

80uC in vacuum, exposed to a phosphorimager screen and

detected by a typhoon scanner.

Chromatin immunoprecipitation (ChIP) assay
ChIP was performed using transiently transfected Drosophila S2

cells [52]. 106106 cells were seeded in 10 cm cell culture dish, and

transfected one day later with either 5 mg pUASt-Abd-B-HA and

5 mg pAC-GAL4 plasmids or 5 mg empty pUASt and 5 mg pAC-

GAL4 plasmids. 1/10 of cells were collected to monitor the

protein expression by Western blot. The remaining cells were

cross-linked, lysed and sheared to 350–1000 bp as described in

[53]. Six microliters of anti-HA antibody (Abcam) was used per

100 mg sheared chromatin, and the immunoprecipitation was

performed according to [54].

qRT-PCR was done using primers emsQPCR2for and

emsQPCR2rev (Table S1) amplifying inside the ems0.35 enhancer

sequence. The data are represented as recovered percentage from

the input in AbdB-HA-transfected cells against GAL4-transfected

cells.

GST pull-down
Exd, Hth and Abd-B GST pull-down assays were performed

[55] after cloning the Hth or Exd ORF in pCDNA3 (Invitrogen)

and labeled in vitro with S35 by the TNT T7 Quick Coupled

Transcription/Translation System (Promega).

From 1000 ml of bacterial culture expressing either GST

(negative control), GST-Abd-B313 (a.a. 313 to 493), GST-Abd-

B313DHD (lacking HD a.a. 384–445) or GST-AbdB-HD (a.a.

386–446), crude extracts were generated and mixed with 70 mg of

glutathione agarose beads. After 5 hr of incubation at 4uC, the

beads were washed three times in lysis buffer (50 mM Tris-Cl

pH 8, 1 mM EDTA, 100 mM ClNa, PMSF 250 mM, DOC 0.1%,

CaCl2 5 mM, lysozime 330 mg/ml, DNasaI 66 mg/ml, Triton X-

100 1% and complete protease inhibitor 16 (Roche)), then 30 mg

of beads-conjugated protein mixed with 300 ml of binding buffer

(10 mM Tris-Cl pH 8, 5 mM EDTA, 0.5% DTT, 1 mM MgCl2,

150 mM ClNa, 0.1 mM PMSF and complete protease inhibitor

16 (Roche)), plus 30 ml of S35-labelled protein, and incubated for

an additional 4 hr at 4uC. The beads were washed four times with

binding buffer. A total of 40 ml of SDS loading buffer was added to

the beads, which were boiled, spun, and half of supernatant loaded

onto an 8% SDS-polyacrylamide gel. After electrophoresis, the gel

was dried and detected by phosphorimager method.

Supporting Information

Figure S1 Ectopic expression of Abd-Bm and r isoforms in

embryos using the Gal4 system. (A) Wild type expression of both

Abd-B isoforms in st14 embryos. (B) Ectopic Abd-Bm expression

in arm-Gal4 UAS-AbdBm embryos. (C) Ectopic Abd-Br expression

in arm-Gal4 UAS-AbdBr embryos. (D) Expression of Abd-Br with

the nullo-Gal4 line at 25uC weakly induces spiracle structures. (E)

The same line as in E but grown at 29uC to increase Gal4

efficiency shows some spiracle induction confirming the weak

morphogenetic function of this isoform.

(TIF)

Figure S2 Dissection of the ems posterior spiracle enhancer. (A)

Scheme showing different constructs tested in this work. Asterisks

represent putative Abd-B binding sites in ems0.35. (B–D) Spiracle

expression driven by the ems0.9 (B) and the ems0.35 fragment (C–

D) is similar to that in the original ems1.2 construct. (E) Ectopic

activation of ems0.35 after ectopic expression of Abd-Bm driven

with 69B-Gal4. (F) Lack of expression of ems0.35 in Abd-BM1 null

mutants. (G) Abd-B binding of the ems0.35 region in transfected

UAS-Abd-B-HA S2 cells compared to control cells. (I–L)

Constructs deleting portions of the ems0.35 fragment as indicated

in panel A result in the complete loss of posterior spiracle

expression. Note that in Fragment E (L) deletion of the area

around site 1 results in the absence of spiracle expression, while

point mutation of Abd-B binding site 1 in ems0.35 (H) does not

affect the posterior spiracle expression of the construct indicating

the presence of cofactor or collaborator binding sites in the area.

(B,C,F) st14 embryos, (D–E,H–L) st11 embryos. Black arrows

point to the site of the posterior spiracle primordium, white arrows

in (E) point at two ectopic spiracles.

(TIF)

Figure S3 Sequence conservation of the ems0.35 posterior

spiracle enhancer in twelve Drosophila species. Alignment of D.

melanogaster, D. simulans, D. sechellia, D. yakuba, D. erecta, D. ananassae,

D. pseudobscura, D. persimilis, D. wilistoni, D. mojavensis, D. virilis and D.

grimshawi species. Different shades of blue indicate the degree of

conservation with dark blue bases being conserved in all twelve

species. Dashes indicate inserts in some of the species analyzed.

The consensus is labelled underneath with the Drosophila

melanogaster Abd-B putative binding sites marked as red boxes

and Exd and Hth sites as orange and green boxes. The sequence is

presented in six fragments that correspond to the six oligos tested

in this work. Putative binding sites in this figure were identified

using the JASPAR program.

(TIF)

Table S1 Sequence of oligos used in this work.

(DOC)
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