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Scientifique de Luminy, Marseille, France, 2 Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India

Abstract

The emergence following gene duplication of a large repertoire of Hox paralogue proteins underlies the importance taken
by Hox proteins in controlling animal body plans in development and evolution. Sequence divergence of paralogous
proteins accounts for functional specialization, promoting axial morphological diversification in bilaterian animals. Yet
functionally specialized paralogous Hox proteins also continue performing ancient common functions. In this study, we
investigate how highly divergent Hox proteins perform an identical function. This was achieved by comparing in Drosophila
the mode of limb suppression by the central (Ultrabithorax and AbdominalA) and posterior class (AbdominalB) Hox
proteins. Results highlight that Hox-mediated limb suppression relies on distinct modes of DNA binding and a distinct use
of TALE cofactors. Control of common functions by divergent Hox proteins, at least in the case studied, relies on evolving
novel molecular properties. Thus, changes in protein sequences not only provide the driving force for functional
specialization of Hox paralogue proteins, but also provide means to perform common ancient functions in distinct ways.
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Introduction

Hox genes encode homeodomain (HD) containing transcription

factors widely used for diversifying animal body plans in

development and evolution [1–3]. The Hox gene repertoire most

likely arose from tandem duplication events of ancestral genes,

followed by sequence divergence that promoted the emergence of

up to 14 paralogous groups in vertebrates [4]. The emergence of a

large repertoire of Hox proteins certainly underlies the importance

the Hox gene family has acquired in promoting morphological

diversification of most animal body parts in higher eukaryotes.

Sequence conservation/divergence within the HD allows

grouping paralogue proteins in three classes [5–8]. These classes

correlate with the A–P deployment of Hox gene expression

patterns as well as with the location within Hox clusters, and were

accordingly termed anterior, central and posterior. Anterior class

Hox genes (Hox1-3) are expressed most anteriorly and are located

39 in the Hox clusters; central class Hox genes (Hox4-8) are

expressed in medial region of the embryo and are located centrally

in the clusters; posterior class Hox genes (Hox9-13) are expressed

most posteriorly and are located most 59 in the clusters. The

sequence divergence of Hox proteins, including within the HD

that constitutes the unique DNA binding domain of the Hox

transcription factors, allows Hox paralogue proteins to display

distinct regulatory functions, promoting axial morphological

diversification in all bilaterian animals [3,5,9,10].

Yet, in addition to having specialized biological functions,

distinct Hox paralogue proteins also perform common (identical)

functions. A striking example is provided by the functional

equivalence of most Drosophila Hox paralogue proteins in

specifying tritocerebral commissure in the embryonic brain [11].

Such common biological functions may represent remanent

functions already assumed by the Hox gene from which the

paralogue genes originate, which may then rely on ancestral

properties still present in the divergent paralogue proteins.

Alternatively common functions may rely on evolving novel

properties.

We aimed at addressing this so far poorly investigated issue by

comparing in Drosophila the mode of action of central and

posterior class Hox proteins, which display the most extreme

divergence within Hox paralogues [4]. Ultrabithorax (Ubx) and

AbdominalA (AbdA), two central class Hox proteins, were

proposed to arise from a recent gene duplication, have highly

conserved HDs (8% of divergence within the HDs) and share

additional protein domains, including the Hexapeptide (HX)

motif upstream of the HD, as well as a short peptide downstream

of the HD, termed UbdA [3]. Although not limited to this

function, both motifs have been shown to promote the
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recruitment of the PBC class cofactor Extradenticle (Exd) [12–

15]. In contrast, AbdB that arose from a more ancient

duplication has a HD that largely diverges from that of Ubx

and AbdA (41% of divergence within the HDs). In addition AbdB

lacks the Ubx/AbdA specific UbdA domain, and lack a canonical

HX motif, although a key Exd interacting residue within this

domain remains conserved [16].

To assess molecularly how divergent Hox proteins as Ubx/

AbdA and AbdB can perform identical functions, we focused on

limb suppression. As all insects, Drosophila harbors limbs exclusively

in the thorax and not in the abdomen. This morphological

distinction relies on the regulation of the limb-promoting gene

Distalless (Dll), expressed in the thoracic limb primordia, but not in

the abdomen. Thoracic specific expression of Dll relies on

abdominal repression by Ubx and AbdA in the anterior abdomen

(segments A1-A7) and by AbdB in the posterior abdomen

(segments A8-9) [17]. Localized thoracic Dll expression was shown

to be mediated by multiple enhancers. This includes two

enhancers in the 59 and a distant one in the 39 of the gene

[17,18]. Each of this enhancer displays distinct temporal and

spatial specificities, which likely contribute to the developmental

dynamic expression pattern in the leg primordia. One of the 59

enhancer, Dll304, has been extensively analyzed, leading to a good

molecular understanding of Dll repression by Ubx and AbdA [13–

15,19–21]. The Ubx/AbdA-mediated transcriptional repression is

mediated within a 57-base-pair (bp) repressor element (DMX-R).

This element harbors functional binding sites for Ubx/AbdA

proteins, for two TALE proteins (a special class of HD containing

proteins with a Three Amino acid inserted in between Helix 1and

2), the PBC class cofactors Extradenticle (Exd) and the Meis/Prep

class cofactor Homothorax (Hth), and for the compartment

specific proteins Engrailed (En) and Sloppy paired (Slp). As is

the case for the regulation of other Hox target genes, Exd and Hth

were shown to cooperatively bind DNA with Ubx and AbdA,

while En and Slp, which both harbor a Groucho interacting

domain, may in turn recruit a Groucho containing corepressor

complex. In this study, we dissected the molecular modalities

underlying AbdB-mediated repression of Dll, which allows

addressing how posterior and central class Hox proteins perform

similar functions.

Results

AbdB represses Dll in abdominal segments A8 and A9
Loss and gain of function data supports a role of AbdB in

repressing Dll expression (Figure S1; [17]). To explore further the

mechanism of AbdB mediated Dll repression, we first asked if

AbdB is present in cells with the potential to express Dll. Dll

expression and regulation was followed using Dll reporter genes,

DMX or DME (when the experiments involved the paired(prd)-

Gal4 driver, see material and methods), that both accurately

reproduce Dll expression (Figure 1A) and that only differs in the 39

sequence by a few nucleotides that provide DMX with a second

Hox binding site [20]). We first took advantage of the

DMX(X2X5) that bears mutations in binding sites for the En

(X5) and Slp (X2) proteins [20]. DMX(X2X5) drives lacZ reporter

expression in the thorax, as wild type DMX (Figure 1A), but also

in the abdomen, including segments A8 and A9 (Figure 1B). Co-

staining with AbdB antibodies showed that cells normally

repressing DMX in A8 and A9, identified by DMX(X2X5)

activity, accumulate AbdB (Figure 1C).

The AbdB gene produces two isoforms: AbdBm in segments A8

(also expressed in A5–A7 albeit at lower levels) and AbdBr in

segment A9 [22]. In the absence of Ubx and AbdA proteins but in

the presence of an intact AbdB gene, DMX activity is de-repressed

in abdominal segments A1–A7, but not in A8 and A9 (Figure 1D,

1E). Removing in addition the AbdBm isoform results in

expanding the derepression of DMX to A8 (Figure 1F, 1G), while

further deleting the AbdBr isoform results in full abdominal

derepression, including A9 (Figure 1H, 1I). Taken together, these

results indicate that the AbdBm and AbdBr isoforms are

responsible for DMX repression in A8 and A9 segments

respectively. The repressive activity of AbdB isoforms was further

investigated in gain of function experiments. AbdB isoforms were

ectopically expressed in every other segments with the paired

(prd)-Gal4 driver [19]. Results indicate that both isoforms are

equally efficient in repression (Figure 1J–1M), further validating

repression by AbdB m and r isoforms. To investigate in more

depth the repression of Dll by AbdB we focused on the AbdBm

isoform that for simplicity will be referred to as AbdB in the

remaining text.

AbdB-mediated repression of Dll requires the
compartment specific cofactors En and Slp

Repression of DMX by Ubx and AbdA was shown to rely on

the compartment specific proteins En and Slp. We first asked

whether de-repression in A8 and A9 segments occurs both in

anterior and posterior compartment cells. This was achieved by

following the distribution of En, that identifies posterior compart-

ment cells, and LacZ driven by the DMX(X2X5), in the posterior

abdomen. Results unambiguously show that as in the anterior

abdomen, derepression in A8-9 occurs both in En negative and

positive cells (Figure 2A), indicating that AbdB-mediated repres-

sion occurs both in anterior and posterior compartments.

Next we investigated the contribution of En and Slp proteins for

AbdB-mediated DMX repression. The requirement of En and Slp

for proper Dll activation in thoracic segments precludes a loss of

function approach. The question was addressed in gain of function

experiments, making use of DMX enhancers mutated either on

the Slp or on the En binding sites [20]. Regarding the contribution

of En to AbdB-mediated repression, the rational behind the

experiment was to assay the role of En in anterior compartment

cells. Upon mutation of the Slp binding site (DMX(X2)),

expression of AbdB in T2 using the prd-Gal4 driver represses

DMX(X2) exclusively in posterior compartment cells. This

Author Summary

Animal body plan diversity is controlled by transcription
factors that select within each cell of a multi-cellular
organism the set of genes to be expressed, eventually
allowing distinct fate to emerge according to spatial
coordinates. Transcription factors can be grouped based
on their DNA binding domains in a few classes that likely
arise from a common ancestral protein. This raises the
question of how, within each class, transcription factors
have gained specific function, and while doing so how
they still continue performing ancient functions. Hox
proteins, which play key roles in diversifying animal
morphology, have largely been used to unravel the
mechanisms underlying functional diversification of tran-
scription factors. Here we use this family of transcription
factors to investigate how common functions are achieved
by divergent transcription factors. Results suggest that
changes in protein sequences not only provide the driving
force for defining novel and specific functions, but also
provide means to perform common ancient functions in
distinct ways.

Distinct Modes of Hox TALE Partnership
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repression uses the endogenous En protein and the intact En

binding site within DMX(X2) (Figure 2B, upper panel). In

contrast, repression in anterior compartment cells does not occur

as the endogenous Slp protein can not bind DMX(X2). However,

if En is crucial for AbdB-mediated DMX repression, the lack of

repression in these anterior compartment cells should be

compensated if En is provided in anterior compartment cells, as

repression then could occur by use of the En cofactor, for which

the binding site in DMX(X2) is not mutated. Co-expression of

AbdB and En in T2 results in repression of DMX(X2) both in

anterior and posterior compartment cells (Figure 2B, middle

panel). No repression was observed when En is expressed in the

absence of AbdB (Figure 2B, lower panel). Taken together these

experiments provide functional support for a role of En in AbdB-

mediated DMX repression. Through a similar strategy, using

DMX(X5) mutated in the En binding site, and comparing the

repressive effect of AbdB in the presence or absence of Slp in

posterior compartment cells, we also establish a requirement of Slp

for AbdB-mediated DMX repression (Figure 2C).

We concluded, as previously shown for Ubx/AbdA, that AbdB-

mediated repression of DMX occurs in anterior and posterior

compartment cells and uses the En and Slp co-repressors.

Dispensability/antagonism in AbdB TALE partnership
AbdA and Ubx efficiently bind DMX-R only in the presence of

Exd and Hth, and binding sites for these two TALE proteins are

required for efficient repression by Ubx and AbdA [19,20]. To

address the contribution of Exd/Hth to AbdB-mediated Dll

repression, we first examined the distribution of Exd. Consistent

with previous reports [23], we found that while being expressed at

high levels in the thorax and anterior abdomen, nuclear protein

accumulation decreases starting from segment A3, with no or

barely detectable levels present in A8 and A9, where AbdB is

expressed at high levels and represses Dll (Figure S2). We also

examined the expression of Hth, and found that it follows Exd

protein accumulation, consistent with its known function in

promoting nuclear accumulation of Exd (Figure 3A). These

observations indicate that unlike Ubx and AbdA, AbdB may not

require the TALE cofactors Exd and Hth for binding DMX-R

and repressing Dll.

The requirement of Exd and Hth for AbdB binding to DMX-R

element was investigated by EMSA. Results showed that AbdB

binds efficiently Dll cis sequences in the absence of Exd and Hth

(Figure 3B), and that full AbdB binding requires the integrity of the

Hox1 and Hox2 binding sites, but also that of the ‘‘Exd’’ binding site

(Figure S3A, S3B). Addition of Exd, Hth as well as En either

separately or in combination does not improve AbdB binding, and

does not allow the assembling of an AbdB-Exd-Hth (or AbdB-Exd-

Hth-En) on Dll sequences (Figure 3B and Figure S3C). It was rather

found that the presence of the Hth protein, either alone or within a

trimeric Exd-Hth-En complex, inhibits AbdB monomer binding

(Figure 3B). These results reveals a Hox/TALE partnership distinct

from that seen for Ubx and AbdA, with Exd, En and Hth being

dispensable for AbdB binding, and Hth and Hth-containing

complexes (Hth-Exd and Exd-Hth-En) providing an inhibitory

effect on AbdB binding (similar results are shown in [24]).

To further investigate the molecular bases of this competitive

partnership, we first investigated the DNA binding requirement of

Hth and Exd for proper competitive effect. Results showed that

mutation of the Hth or Exd binding sites do not impair the Hth-

mediated inhibition of AbdB binding. Normalizing AbdB binding

with reference to its binding to the mutated DII probes in absence

of Hth further showed the efficiency of AbdB binding is not

weaker than that observed with wild type probe (Figure 3C and

Figure S4), indicating that AbdB binding inhibition by Hth does

not require the Hth or Exd binding sites. This was further

confirmed by the observation that a HD deleted form of Hth,

HthHM, that does not bind DNA, still efficiently inhibits AbdB

binding (Figure 3D and Figure S4). Surprisingly however, the

presence of Exd increases the inhibitory role of HthHM, while it

decreases that of full length Hth (Figure 3D and Figure S4). This

could be explained by the assembling of a Exd-Hth-DNA complex

only in the case of the HD containing Hth protein (Figure S4),

which lowers the availability of free Hth for competing AbdB

DNA binding.

Similar experiments were conducted by adding the Hth and

Exd proteins, in order to assess the inhibitory role of the Hth-Exd

complex (Figure 3C, 3D and Figure S4). Results showed that as for

Hth alone, inhibition of AbdB binding by the Hth-Exd complex

does not require the Exd and Hth binding sites, although in the

case of the Hth mutated probe, inhibition is weaker than on the

wild type probe. We concluded that Hth and Hth-Exd mediated

inhibition of AbdB binding relies on a mechanisms that do not

require Hth or Hth-Exd binding to DNA, indicating that AbdB-

Hth (or AbdB-Hth-Exd) interaction occurring outside DNA

prevents AbdB binding (similar results are reported in [24]).

These results however do not exclude that Hth (and Exd-Hth) also

inhibits AbdB DNA binding by competing for overlapping binding

sites, as is the case for Exd.

AbdB- and Ubx/AbdA-mediated repression of Dll relies
on the same DMX cis sequences that are either
identically or distinctly used

The repressive function of DMX was shown to rely on a 57 bp

element, named DMX-R, which was scanned for mutations

affecting its capacity to mediate repression [20]. Among the 23

scanning mutations (2 to 5 base pair substitution), 8 were shown to

result in strong abdominal derepression, identifying binding sites

for the Hox proteins Ubx and AbdA, for the Hox TALE cofactors

Exd and Hth, as well as for the corepressors En and Slp. In

addition, mutations in the distal part of DMX-R result in weak

abdominal derepression, identifying a second Hox binding site

(Hox2). This Hox2 binding site is dispensable for proper repressive

activity as the DME element conveys full abdominal repression.

To see if the AbdB-mediated repression in A8-9 segments relies

on the use of the same cis sequences as repression by Ubx and

AbdA in the anterior abdomen (A1-7), we re-examined the effect

Figure 1. AbdB m and r isoforms repress Dll in the posterior abdominal segments A8 and A9. (A) Embryo stained for b-gal driven by the
DMX enhancer (red) showing restricted thoracic activity. (B–C) DMX(X2X5) embryos co-stained for b-gal (red) and AbdB (green). This modified DMX
enhancer is derepressed in all abdominal segments, including A8 and A9. Co-localization of b-gal and AbdB in A8 and A9 cells normally subject to
enhancer activity repression is highlighted in the magnified view. (D–E) Embryo lacking Ubx and AbdA function (Df(109)) shows DMX abdominal de-
repression (red) up to A7 (arrowhead) and remains repressed in A8 and A9 segments where AbdB is expressed at high levels (green). (F–G) Embryo
lacking Ubx, AbdA and the AbdBm isoform, but retaining the AbdB r isoform, shows derepression of DMX (red) till A8 (arrowhead). (H–I) Embryos
lacking Ubx, AbdA and the AbdB m and r isoforms (Df P9) show DMX de-repression (red) in all abdominal segments, including in A9 (arrowhead). (J–K)
prd-Gal4 driven ectopic expression of the AbdBm isoform represses DMX activity (arrow in T2). (L–M) prd-Gal4 driven ectopic expression of the AbdBr
isoform represses DMX activity (arrow in T2).
doi:10.1371/journal.pgen.1003307.g001
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associated to mutations spanning the DMX-R (19 of the 23 initial

mutations) by exploring if any of these result in distinct effects in

anterior abdominal segments, where repression is mediated by

Ubx/AbdA, and posterior abdominal segments where repression

is mediated by AbdB. This was achieved by quantifying the level of

derepression associated to each mutation, focusing on segments A1

and A8, as representatives of anterior and posterior abdominal

segments respectively. Results summarized in Figure 4 (see Figures

S5, S6 for full data) show that no qualitative differences for cis

requirements in A1 and A8 are seen: all positions of DMX-R not

involved in repression in A1 are also not involved in repression in

A8; all positions of DMX-R required for proper repression in A1

are also required for proper repression in A8. In one instance

however, mutation of the Hox1 binding site, the level of

derepression is distinct in A1 and A8, with a stronger derepression

in A1 than A8. This quantitative distinction suggests that AbdB

binds to additional cis sequences in DMX-R. In support of this, we

found that mutation of the ‘‘Exd’’ binding site affects AbdB

binding to DMX-R (see Figure 3C and Figure S3). We thus

concluded that the same cis sequences in DMX-R are used for

abdominal repression by AbdB in A8 and Ubx/AbdA in anterior

abdominal segments. Yet this common requirement of cis

sequences does not imply that these cis sequences are bound by

the same proteins, as illustrated by the requirement of the ‘‘Exd’’

binding site for AbdB binding to DMX-R.

AbdB represses Hth expression
The inhibitory role of Hth on AbdB binding to DMX-R

suggests that down regulating the levels of Hth in the posterior

abdomen is essential for proper AbdB-mediated Dll repression.

Since Hth levels decrease dramatically in the posterior abdomen,

we asked if AbdB itself mediates this down regulation. We found

that depleting the AbdBm (AbdBm3) or AbdBm and r proteins

(Df(P9)) results in increasing the level of Hth to a level similar to

the anterior abdomen and thorax region, from segment A4 and

including segments A8 and A9 respectively (Figure 5A). Although

we do not visualize AbdB protein in segments as anterior as A4

where Exd and Hth start decreasing, AbdB transcripts are present

till A4 and the functional domain of AbdB was delineated to

segments A4–A9 [25], consistent with derepression of Hth in

AbdB mutants starting from A4. The repressive role of AbdB on

Hth expression was further confirmed in gain of function

experiments, where it was found that AbdB has a strong repressive

capacity on hth transcription (Figure S7) and Hth protein

accumulation, when compared to Ubx (Figure 5B) or AbdA

(Figure S8). Consistent with previous reports, similar conclusions

could be reached for Exd nuclear accumulation in loss and gain of

function experiments (Figure S2).

Finally, the importance of Hth downregulation for proper

AbdB-mediated Dll repression was assessed by driving hth

expression in the posterior abdomen, using the arm-Gal4 driver

(Figure S9). In this condition however, we failed to efficiently

induce high level of Hth protein accumulation in the posterior

abdomen. This may suggest that low or absence of Hth protein

accumulation in the posterior abdomen may be ensured by a

double lock mechanism, one mediated by transcriptional repres-

sion, and the second one through a post-transcriptional mecha-

nism, both potentially under AbdB control. Only a few embryos

displayed a moderate level of Hth protein accumulation in the

posterior abdomen and exhibited posterior derepression of DMX

(Figure S9), indicating that absence of Hth is required for proper

AbdB-mediated repression.

These data demonstrate that unlike Ubx and AbdA, AbdB

binds DMX-R and represses Dll in cells where Hth and Exd have

been dramatically down regulated, avoiding a competitive AbdB/

Hth-Exd partnership.

Intrinsic protein requirements for AbdB-mediated Dll
repression: critical requirement of HD and HD C-terminal
flanking residues

To further examine the mode of AbdB-mediated Dll repression,

we aimed at identifying residues of AbdB that would be critical for

its repressive function. Sequence alignment of arthropod AbdB

proteins revealed sequence conservation immediately adjacent to

the HD (Figure 6). This includes a stretch of amino-acids flanking

the HD N-terminally (EWTGQVS), with the W possibly

representing a residual degenerated HX motif, which has only

retained the core residue required for PBC class protein

interaction [16,26–28]. While dispensable for Ubx-mediated

repression, the HX was shown to contribute to AbdA-mediated

Dll repression [13,15,29–31]. In addition, the region separating

the HX from the HD, termed the linker region (LR), was shown to

control the efficiency of Dll repression by Ubx and AbdA [14].

Sequence conservation also includes a QRQA sequences C-

terminally adjacent to the HD. Interestingly, this highly conserved

sequence follows positions with lower sequence conservation. The

sequence is in a position similar to the UbdA motifs, a motif shared

by Ubx and AbdA, which is either essential or contribute to Dll

repression in Ubx and AbdA respectively [13,15,31].

To address the functional importance of these regions for AbdB-

mediated Dll repression, mutations in these domains were

engineered in the Drosophila protein and transgenic lines allowing

the expression of these variants under UAS control were

generated. prd-Gal4 driven expression showed that single muta-

tion of the W residue, or combined mutation of several residues

within this region (TG, EWTG) do not alter AbdB potential to

repress DME activity (Figure 6 and Figure S6). We also mutated

the position that immediately precedes the initiation of the HD,

that is flanked by conserved residues, and whose identity, an S in

Drosophila or a T in some other arthropods, may suggest a potential

for post-translational modification by phosphorylation. As other

HD N-terminal located mutations, this mutation does not affect

Figure 2. AbdB-mediated repression of DMX requires the activity of posterior and anterior compartment specific cofactors En and
Slp. A) Embryo co-stained for b-gal driven by DMX(X2X5) (red) and En (green). Magnification of the posterior abdominal segments A8 and A9
highlights derepression of DMX(X2X5) in anterior (En negative) and posterior (En positive) compartment cells. B) Thoracic segments of embryos
bearing the DMX(X2) reporter and expressing ectopically AbdB, En or AbdB and En, in every other segments driven by the prd-GAL4 driver. The
repressive potential on DMX(X2) is evaluated in the thoracic T2 segment (arrow). Upper panels: In embryos ectopically expressing AbdB, repression
only occurs in posterior compartment cells (p). Middle panels: In embryos ectopically expressing AbdB and En, repression occurs in both posterior (p)
and anterior compartment cells (a). Lower panels: In embryos ectopically expressing En, only weak and compartment non-specific repression is
observed. C) Thoracic segments of embryo bearing the DMX(X5) reporter and expressing ectopically AbdB, Slp or AbdB and Slp, in every other
segments driven by the prd-GAL4 driver. The repressive potential on DMX(X5) is evaluated in the thoracic T2 segment (arrow). Upper panels: In
embryos ectopically expressing AbdB, repression occurs in anterior compartment cells (a). Middle panels: In embryos ectopically expressing AbdB and
Slp, repression occurs in both anterior (a) as well as in posterior compartment cells (p). Lower panels: In embryos ectopically expressing Slp, only weak
and compartment non specific repression is observed.
doi:10.1371/journal.pgen.1003307.g002
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Figure 3. Dispensability of Exd/Hth cofactors for AbdB-mediated DMX posterior repression in posterior segments. A) Embryos co-
stained for Hth (red) and AbdB (green). Arrowheads point to segments A1, A3 and A8. wild type embryo, decrease of Hth expression is seen from
segment A3 reaching almost undetectable levels in A8. B) EMSA of DMX-R (containing binding sites Slp,Hox1, Exd, En, Hth and Hox2) with AbdB and
increasing amounts of Exd, Hth, En, or En and with combined increasing amounts of Exd, Hth and En. The amount of AbdB remains constant
whenever present, except in the last lane (depicted by a thin pink line) where 1/3 of this quantity was used. Exd-Hth-En/DNA and AbdB/DNA
complexes are highlighted by arrows. C) Quantification of AbdB binding in EMSA to DIIR (containing binding sites Hox1, Exd, En, and Hth) mutated in
the Exd (DIIRexd) or Hth (DIIRHth) binding sites in the presence of AbdB alone, with Exd or Exd and Hth (see Figure S4). Note that mutation of the Exd
binding site affect the formation of AbdB/DNA complexes. For the ease of comparison, AbdB binding to DIIRexd and DIIRHth have been arbitrarily set
to 100%, allowing assessing the effect of Hth and Hth/Exd inhibitory effects independently off the effect of binding site mutations on AbdB/DNA
complex assembly. D) Quantification of AbdB binding in EMSA to DIIR with various combinations of AbdB, Exd, Hth and truncated HM (HD less) form
of Hth (See Figure S4). Note that the Exd-mediated release of inhibitory effect seen for full length Hth is lost with the truncated Hth HM protein.
doi:10.1371/journal.pgen.1003307.g003

Distinct Modes of Hox TALE Partnership

PLOS Genetics | www.plosgenetics.org 7 March 2013 | Volume 9 | Issue 3 | e1003307



AbdB repressive potential (Figure 6 and Figure S6). In contrast,

altering the QR sequence lying C-terminal to the HD (AbdBCter)

results in a strong reduction of the AbdB repressive potential

(Figure 6 and Figure S10).

We next investigated the importance of AbdB HD sequences for

DME repression. We first aimed at generating mutations that

would alleviate AbdB DNA binding. Based on DNA contacts seen

in the HoxA9-Pbx1-DNA crystal structure [16], we targeted

position 50 and 51 the HD recognition helix 3 (Figure 6 and

Figure S10). Individual mutation of these positions (AbdBH3a,

AbdBH3b) resulted in a complete loss of repressive activity,

demonstrating the essential character of AbdB DNA binding for

proper Dll repression (Figure 6 and Figure S10).

We then generated mutations in the HD N-terminal arm that in

some Hox proteins was shown to be crucial for functional

specificity [32–34]. This region of the HD contains all paralogue

specific signatures of posterior and central class Hox proteins,

defined by positions whose identity is shared by all members of a

paralogue group, but not by any other paralogue group [3]. A first

set of mutations aimed at altering the posterior class specific

signature was achieved by changing two lysines in positions 3 and

4 of HD to alanines (AbdBKK). Results showed that AbdBKK fails to

properly repress DME, with a loss of 60% of its repressive

potential (Figure 6 and Figure S10). We next asked if endowing the

AbdB N-terminal arm with the specificity of central Hox protein

(Ubx and AbdA) would allow a significant restoration of the

repressive function. Central Hox proteins display a paralogue

specific signature made of three residues, G,Q, and T, at positions

4, 6 and 7 respectively. These positions were changed to the

identity of central Hox proteins, which in part compromise the

posterior class signature, while grafting the central class signature

(AbdBCEN). Results showed that AbdBCEN has a very weak

repressive potential, even lower than that of AbdBKK (Figure 6

and Figure S10), indicating that HD paralogue specific signatures

are not sufficient to confer DME repression. This result is

consistent with the contribution of sequences outside the HD for

Ubx/AbdA-mediated Dll repression [13,15,31].

Taken together, this functional dissection of AbdB protein

domain requirement for DME repression demonstrates the

dispensability of sequences immediately N-terminal to the HD

(the HX and linker region), establishes a contribution of the HD N-

terminal arm and residues immediately C-terminal to the HD, and

reveals a strict requirement for AbdB DNA binding.

Endowing the central Hox protein Ubx with a posterior
AbdB like repressive mode

Mutations of helix 3 of the HD at positions 50 and 51, known to

provide strong DNA contacts in the DNA major groove, highlight

the strict requirement of AbdB DNA binding for proper Dll

repression. To address if the conclusion also holds true for central

Hox proteins, we investigated the requirement of position 50

within helix 3 of the Ubx HD for proper DME repression.

Mutation of position 50 of the HD was previously shown to be

essential for Ubx binding to DMX-R [35,36]. Yet, expression of

this helix 3 mutated Ubx protein (UbxH3) showed that it still

represses DME, with a limited loss (30%) of repressive potential.

(Figure 7 and Figure S11). Taken together with the strict

requirement in AbdB of residues contacting DNA within AbdB

helix 3, we concluded that a major difference in the mode of DME

repression by AbdB and the central Hox protein Ubx lies in the

requirement/dispensability of DNA binding in the absence of the

Exd and Hth TALE cofactors.

We next studied whether we could endow the Ubx protein with

an AbdB like mode of DME repression. We used as a recipient

protein a Ubx protein bearing a UbdA mutation, as well as a

mutation in the HX, which slightly enhance the loss of repressive

potential resulting from the UbdA mutation [15]. The first

chimera consisted in swapping the Ubx HD by that of AbdB

Figure 4. DMX-R cis sequence requirements for repression by Ubx/AbdA and AbdB. Schematic representation of cis sequence
requirements for DMX repressive activity in A1 (Ubx/AbdA- mediated, blue) and A8 (AbdB-mediated, red) segments. 100% derepresion was defined
by the level of abdominal DMX derepression in embryos fully deficient for Ubx, AbdA and AbdB m and r isoforms (Df P9). Cis sequence requirement
was evaluated by quantifying the levels of derepression of 18 mutated forms of DMX-R (see Figures S5 and S6). These scanning mutations (altering
simultaneously two to 5 nucleotide positions) cover 42 of the 57 nucleotide positions of the DMX-R element. Sequence is annotated according to
transcription factor binding site (Slp, Exd, Hth, En and Hox) allocation from [20].
doi:10.1371/journal.pgen.1003307.g004
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(UbxHX,UAAbdB(HD)), which significantly restored repressive

potential (68% instead of 17% for UbxHX,UA; (Figure 7 and Figure

S11)). As we found that sequences immediately Cter adjacent to

the AbdB HD contributed to full AbdB repressive activity, we also

generated a chimera which in addition included the AbdB QRQA

Cter residues. This addition did however not significantly

enhanced the repressive activity of the chimera (71% for

UbxHX,UAAbdB(HD+Cter) instead of 68% for Ubx

Figure 5. AbdB represses Hth expression. A) Embryos co-stained for Hth (red) and AbdB (green). Arrowheads highlight segments A3 and A8.
Upper panels: embryo lacking AbdB m isoform (AbdBm3), displaying posterior derepression till A8 (compare to wild type embryo (Figure 3A)).
Derepression does not spread to A9, where the AbdBr isoform is still expressed. Lower panels: embryo lacking both AbdB m and r isoforms show
extension of Hth derepression to segment A9. Right panels are magnifications of A3 and A8/9 segments. B) Embryos bearing the DME reporter co-
stained for b-gal (white), Hth (red) and AbdB (right panels, green) or Ubx (left panels, green). Ectopic AbdB expression was driven in every other
segments by prd-Gal4. AbdB, but not Ubx ectopic expression, strongly represses Hth expression. Magnifications of thoracic T2 segments are shown.
doi:10.1371/journal.pgen.1003307.g005
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HX,UAAbdB(HD); (Figure 7 and Figure S11). These results suggest

that swapping the HD is sufficient to endow Ubx with an AbdB

like repressive mode. To confirm this, we next asked if the

UbxHX,UAAbdB(HD) and UbxHX,UAAbdB(HD+Cter) use an AbdB

like mode of repression, by investigating if DNA binding is critical

for the activity of these chimeras. Mutations of position 51 of the

HD within the context of these two chimeras were generated, and

the resulting chimeras were assayed for DME repression. Results

showed that UbxHX,UAAbdB(HDH3) and UbxH-

X,UAAbdB(HDH3+Cter) are fully deficient in DME repression

(Figure 7 and Figure S11), indicating that these chimeras use a

mode of repression that strictly requires DNA binding. We

concluded that swapping the HD is sufficient to endow Ubx with

an AbdB mode of DME repression.

Discussion

Using the repression of the limb promoting gene Dll, we have

investigated how highly divergent central (Ubx/AbdA) and

posterior (AbdB) Hox proteins perform an identical function.

The comparison of Dll regulatory cis requirements, use of

cofactors, and requirements in Hox protein intrinsic domains

demonstrate distinct modes of Dll regulation, highlighting usage of

distinct molecular strategies by divergent Hox proteins to achieve

common biological functions (Figure 8).

Distinct intrinsic determinants within Ubx and AbdB for
Dll repression

As AbdB lacks motifs known in Ubx and AbdA to mediate Dll

repression [13–15,31], we searched for AbdB intrinsic determi-

nants responsible for Dll repression in A8 and A9. Our results

highlight that, as for Ubx, a short sequence immediately Cter to

the HD is required for full repression. The Cter peptides in Ubx/

AbdA and AbdB are however distinct, and serve different

functions: in the case of Ubx, its role is to recruit Exd, while in

AbdB its role must be different as Dll repression by AbdB does not

require Exd activity.

Most strikingly, we found that mutations that alleviate DNA

binding results in different outputs in Ubx and AbdB. A Ubx

protein that lacks DNA binding activity still represses Dll

efficiently, while a DNA binding deficient AbdB protein does

not. We interpret this difference as resulting from Ubx binding

DNA within the context of a multiprotein complex involving the

Exd and Hth proteins [14,15,19,20], which are also DNA binding

proteins that may compensate the loss of Ubx binding to DNA. In

Figure 6. Protein sequence requirements for AbdB-mediated DME repression. Sequence conservation in the AbdB HD (shown only for the
N-terminal arm and helix 3) and HD flanking regions HX/LR and C-ter region. Sequences upstream and downstream of these regions display
progressively weaker conservation. Web logo was obtained using sequences the following AbdB sequences (Drosophila (AAA84402), Tribolium
(AAF36721.1), Anophela (XM311628), Sacculine (AAQ49317.1), Folsomia (AAK52499.1) and human (BCO10023)). The Drosophila melanogaster
sequence is shown below the web logo. The position and the nature of the mutations generated are represented below the web logo. Effects of the
mutations on the repressive activity of AbdB on DME are displayed in a box plot representation. While mutations in the HX/LR region have little effect
on AbdB repressive activity, mutations within the HD, including the N-terminal arm, helix 3 and the Cter alter to different extent AbdB repressive
potential. Illustration of data is given in Figure S10.
doi:10.1371/journal.pgen.1003307.g006
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contrasts, AbdB binds DNA in the absence of these potential

compensating partners. Such compensatory roles were recently

reported for other Hox/TALE complexes [37]. The importance of

the AbdB HD for Dll repression was further demonstrated by the

ability of a HD swap between Ubx and AbdB. Thus, the intrinsic

requirements for Ubx and AbdB mediated Dll repression are

different, supporting that distinct molecular mechanisms are used

for Dll repression.

Different use of Exd and Hth cofactor for Dll repression
by Ubx and AbdB

We tested the role of the four protein partners previously

identified as crucial for Dll repression by Ubx and AbdA [20]. En

and Slp expressed at similar levels in the anterior and posterior

abdomen are required for AbdB-mediated repression of Dll, while

Exd and Hth are absent or present at very low levels in the

posterior abdomen where AbdB represses Dll. The differential

expression of Hth and Exd in the abdomen results from a strong

down regulation by AbdB, while Ubx and AbdA cause weaker

effects on Hth and Exd expression (this study and [23]). These

distinct properties of central and posterior class Hox proteins

Ubx/AbdA and AbdB allow to set up a pattern where Hth/Exd

are present in the anterior abdomen, in places where Dll

repression [19] as well as other Ubx/AbdA functions [30,38–40]

require these cofactors, and absent or at weak/barely detectable

levels in the posterior abdomen. Taken together with the

dispensability of Hth and Exd for proper posterior spiracle

morphogenesis [39,41], this indicates that AbdB, at least in the

embryo, functions without the aid of the Hth and Exd cofactors.

The dispensability of Exd/Hth needs to be correlated with the

effects of mutations in the Exd and Hth binding sites which in

DMX (or DME) results in de-repression all abdominal segments

including in A8 and A9 [19,20]. Mutation of the Exd binding sites

strongly reduces AbdB binding to DMX-R, providing a basis for

derepression in the posterior abdomen. Mutation of the Hth

binding site does not impact on AbdB binding, suggesting it may

serve binding to a protein that remains to be identified. Of note

mutations of the ‘‘Hth binding sites’’ result in posterior specific de-

repression [20], suggesting that it may affect binding/function of

the En compartment specific repressor.

Beyond dispensability, the absence of Exd and Hth in the

embryo may be required for proper AbdB function. This view is

supported by our in vitro EMSA’s on DMX-R showing a

competition effect of Hth and Hht/En/Exd complexes on AbdB

Figure 7. Requirement of protein domains in AbdB/Ubx chimeric proteins for DME repression. Left part of the figure depicts wild type
and mutated variants of Ubx (blue), including mutations (indicated by crosses) in the HX, and UbdA (UA) domains as previously described [15] and in
helix 3 (Q50 to K50) [55]. AbdB protein sequences, including or not the QR domain, either with a wild type or mutated helix 3, is represented in red.
Effects of the mutations on the repressive activity of AbdB on DME are displayed in a box plot representation. Switching the Ubx HD by that of AbdB
endows the chimera with a posterior AbdB like dependent mode of DME repression. Illustration of data is given in Figure S11.
doi:10.1371/journal.pgen.1003307.g007
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binding, and by de-repression of Dll in posterior segments A8 and

A9 following increased levels of Hth expression. Functional

antagonism between AbdB and the TALE cofactors Exd and

Hth is further demonstrated in the specification of several AbdB-

dependent specific features, including the posterior spiracle and

the suppression of ventral denticle belts [24]. While this set of data

support antagonistic AbdB/Exd/Hth partnership, cooperative

partnership may also exists, as suggested by the co-expression of

AbdB and Exd/Hth in the genital disc [42] and the assembling of

AbdB-Exd-Hth-DNA complexes in vitro [43]. The functional

significance of AbdB/TALE cooperative partnership remains

however to be established, and its contribution to AbdB mode of

action clarified, as this partnership decreases the binding selectivity

of AbdB, while it increases that of anterior and central Hox

proteins [43].

Our results also provide additional support for developmental

functions performed independently by Hox proteins and their

usual cofactors Exd and Hth. In Drosophila, some aspect of Hox

protein function do not require Exd, including the function of the

central Hox protein Ubx in specifying haltere development [44]

and reversely, Exd and Hth have functions that are not Hox

dependent, as illustrated by the control of embryonic trachea

development [45] and antennal identity [46]. Such independent

functions have also been described in vertebrates, for example

during face morphogenesis, a situation where Pbx proteins acts in

a Hox-free domain [47]. Altogether, this emphasizes that Hox

proteins and their cofactors may use in a context specific manner

multiple mode of interactions, ranging from cooperativity to

dispensability.

Modes of central and posterior class Hox DNA binding
and plasticity of Dll cis regulatory sequences

Although generally conserved, the mode of HD/DNA contacts

significantly varies between anterior/central and posterior para-

logue groups [48]. In particular, it was shown that posterior

paralogue proteins possess enhanced DNA binding affinities that

in part result from the ability to make extensive contacts with the

DNA backbone. Hox proteins of the anterior/central paralogue

bear residues critical for functional specificity within the N-

terminal arm of the HD [32–34]. Proper folding of the N-terminal

arm necessary for efficient binding requires the interaction with

Exd [28]. Our results are consistent with such distinct mode of

DNA binding: AbdB efficiently binds the Dll enhancer on its own,

while binding by Ubx or AbdA requires the assistance of the Exd

and Hth cofactors.

Taken together with previous data on Dll regulation by Ubx and

AbdA [13–15,19–21,31], our results indicate that Dll repression in

abdominal segments needs to accommodate the repression by

different molecular complexes. This relies on the plastic usage of

the same Dll cis sequences in the anterior and posterior abdomen.

First, Hox binding sites may accommodate binding by Hox

proteins displaying significantly divergent mode of DNA binding,

as shown by the use of Hox1 and Hox2 binding site for Ubx/

AbdA and AbdB DNA binding. Second, the same cis sequence

binds distinct proteins, as shown for the initially labeled ‘‘Exd

binding site’’ that also mediates AbdB binding to DMX-R. The

current mode of Dll cis sequence usage may reflect the

evolutionary history of Dll repression: Dll repression may have

initially been achieved by AbdB, and have later been extended to

repression by Ubx/AbdA by the acquisition/cooptation of Exd

and Hth binding sites, enabling Ubx and AbdA to bind the

enhancer, despite having a HD not optimized for efficient binding

to the Dll gene.

Materials and Methods

Fly stocks, transgenesis, gain-of-function experiments,
and in situ transcripts hybridization

The following stocks were used for the study: UAS-Ubx::HA

[49], UAS-Ubx, UAS-AbdA, UAS-AbdBm [50], UAS-AbdBr

(received from James Castelli-Gair Hombria), UAS-Slp and UAS-

En (received from Richard Mann), UAS-Exd and UAS-Hth

(received from Natalia Azpiazu), DMX-lacZ [20], prd-Gal4 [51]

and arm-Gal4 [52].

Transgenic flies were generated using P-element germline

transformation either in yw flies [53] or in flies with site specific

Figure 8. Models for distinct Hox cofactor partnership for Dll
repression. (A) Model for repression of Dll by Ubx/AbdA in anterior
abdominal segments A1-7. Repression relies on the assembly of a Hox/
Exd/Hth protein complex [20]. DNA binding by Hox proteins is not
essential (depicted by a dashed delineated pink zone of contact
between the Hox protein and the DNA), as supported by the limited
loss of repressive activity of a DNA binding deficient Ubx protein
(Figure 7), and by the limited dereprepression associated to mutation in
Hox binding sites. The non-essential character of Hox DNA binding may
result from acting in a context of a multiprotein complex containing
two additional DNA binding proteins (Exd and Hth). (B) Model for
repression of Dll by AbdB in posterior abdominal segments in A8-9.
AbdB represses Exd and Hth, and consequently act without the aid of
Exd and Hth to repress Dll. This difference likely imposes a strict
requirement for AbdB DNA binding for efficient repression.
doi:10.1371/journal.pgen.1003307.g008

Distinct Modes of Hox TALE Partnership

PLOS Genetics | www.plosgenetics.org 12 March 2013 | Volume 9 | Issue 3 | e1003307



integration sites (attb) [54]. All constructs were cloned in pUAST

vector and sequence verified.

AbdB variants and AbdB/Ubx chimeras were generated using

the SOE method, starting form UbxIa and AbdBm cDNAs, and

cloned into pUAST vector (EcoRI, XhoI). Primers were as follows:

AbdB variants:

AbdB m (59 AAAAGAATTCATGCAGCAGCACCATCTGCA;

59 CGGCGGTTCTACGTGGTTGAGCTCAAAA)

AbdB w (59 CCCGGACTGCACGAGGCAACGGGC; 59

GGGCCTGAGGTGCTCCGTTGCCCG)

AbdB TG (59 GAGTGGGCAGCACAGGTGTCCGTC CG;

59 CCTGACGTGCTCACCCGTGTCCAC)

AbdB EWTG (59 AATCCCGGACTGCACGCAGCAGCCG-

CACAGGTG; 59 TTAGGGCCTGACGTGCGTCGTTGG

CGTGTCCAC)

AbdB S (59 GGTCAGGTGGCAGTCCGGAAAAAGCGC; 59

CCACTGCACCGTCAGGCCTTTTTCGCG)

ABdB KK(59 CAGGTGTCCGTCCGGGCAGCACG-

CAAGCC5; 59 GTCCACAGGCAGGCCCGTCGTGCGTTCGG)

AbdB CEN (59 GTCCGGAAAGGACGCGAAACCTACTC-

CAAG; 59 CAGGCCTTTCCTGCGCTTTGGATGAGGTTC)

AbdB H3a (59 ATATGGTTCGCAAATCGCCGCATG; 59

CAGTTCTATACCAAGCGTTTAGCC)

AbdB H3b (59 ATATGGTTCCAGGCACGGCGGATGAA-

GAAC; TATACCAAGGTCCGTGCCGCCTACTTCTTG)

AbdB Cter(59 TCACAGGCAGCACAGGCGAATCAG; 59

TTCTTGAGTGTCCGTCGTGTCCGC)

Ubx/AbdB chimeras (Ubx HXUA and AbdBm were used as

templates):

AbdB HD amplification (59 ACAAATGGTCTGGTCCG-

GAAAAAG; 59 GATCGCCTGTGAGTTCTTCTT)

Ubx N-Ter amplification (59 AAAAGAATTCATGAACTCG-

TACTTT; 59 TGTTTACCAGACCAGGCCTTTTTC)

Ubx C-Ter amplification (59AAGAAGAACTCACAGGC-

GATCAAGGTG; 59 GTGAATCTAGTCGAGCTCAAAA)

For Ubx HXUA(AbdB H3) template used for AbdB HD amplifi-

cation was AbdB H3b.

For Ubx HXUA (AbdB HD+Cter) and Ubx HXUA (AbdB

HDH3+Cter), the procedure was similar using the AbdB HDCter

39 (59 TTCTTCTTGAGTGTCGCGGTCCGGCTCTTCGTC)

instead of (59 GATCGCCTGTGAGTTCTTCTT).

P insertions were genetically mapped. For each variant, two

lines were crossed with the prd-Gal4 and arm-Gal4 driver at 22,

25, or 29uC. Collected embryos were stained with anti-Ubx

(FP3.38, dilution 1/1000), anti-AbdB(DSHB, I/10) or anti-HA tag

(Eurogentec, dilution 1/1000) to select the conditions (line and

temperature) that result in expression levels similar (+/215%) to

Ubx and AbdB wild-type levels in A1 and A8, respectively [14,31].

Levels of Ubx and AbdB in wild-type embryos were assessed in a

sized region in the middle of A1 and T2, respectively. The mean

luminosity values for these regions were established by using the

AxioVision LE4.5 measurement tool. Hth and Dll Digoxigenin

RNA-labelled probes were generated by in vitro transcription

from plasmid containing hth and Dll cDNA. RNA in situ

hybridization were performed according to standard methods.

Quantification of DME repression in gain of function
experiments and of DMX bearing cis mutations
derepression

Embryo collections and immunostaining of embryos were

performed according to standard procedures. Quantification of

DME repression was achieved following anti-b-galactosidase

immunostainings (rabbit anti-b-galactosidase (Cappel, 1/1000)

by using the same DME-lacZ insertion. The levels of DME

enhancer repression were estimated by quantifying the surface

reduction in T2 of the DME-positive cell cluster by using the

AxioVision LE4.5 measurement tool. Quantification was done on

five individual experiments for each genotype. In case of de-

repression observed in DMX binding sites mutants, the area of de-

repressed b-gal was measured in A1 and A8 in at least 10

embryo’s. The average was taken and compared to levels of

DMX-lacZ de-repression levels observed in A1 and A8 segments

in Df P9 (BX-C mutant) embryos.

Protein, protein expression, and EMSA
AbdB variants and AbdB/Ubx chimeras generated as described

above were cloned into pcDNA3 (EcoRI, XhoI) for protein

synthesis. Exd and Hth were full-length, and En protein was

lacking the 60 N-terminal amino acids. AbdB and AbdB with HD

mutations were cloned in pCDNA3 vector and sequence verified.

Proteins were produced with the TNT (T7)-coupled in vitro

transcription/translation system (Promega). The following double

stranded oligos (only one strand is specified) spanning the Dll

repressive sequences were used:

DMX-R containing Slp, Hox1, Exd, En, Hth and Hox2

binding sites:

GACAATATTTGGGAAATTAAATCATTCCCGCGGA-

CAGTTTTATAGTGC

DIIRL: containing Hox1, Exd, En,and Hth and Hox2 binding

sites: TTTGGGAAATTAAATCATTCCCGCGGACAGTTT-

TATAGTGC

DIIR containing Hox1, Exd, En,and Hth binding sites:

TTTGGGAAATTAAATCATTCCCGCGGACAGT

Mutations in Hox1, Hox2, Exd and Hth were previously

described (Gebelein et al, 2004) and are:

Hox1: AAATTAA to AAGCCCG

Hox2: TTTATAG to GGGCTAG

Exd: AAATCAT to AAAGGAT

Hth: GGACAG to GGCCGG

Supporting Information

Figure S1 Ectopic expression of AbdBm represses thoracic Dll

expression. A) Embryos stained for the Dll transcript (red), showing

expression in the thoracic and head segments. B) prd-Gal-4 driven

anterior ectopic expression of AbdBm (green) results in Dll (red)

repression in thoracic segment T2 and head segment (arrowhead).

(TIF)

Figure S2 AbdB, but not Ubx, represses Exd expression. A)

Embryos co-stained for Exd (red) and AbdB (green). Arrowheads

highlight segments A3 and A8. Upper panels: wild type embryo,

decrease of Exd expression is seen from segment A3 and reaches

very low levels in A8; Lower panels: embryo lacking AbdB m

isoform (AbdBm3), displaying posterior Exd accumulation till A8.

B) Embryos co-stained for Exd (red) and Ubx (green). Ectopic Ubx

expression was driven in every other segments by prd-Gal4. While

AbdB ectopic expression (see Figure 5B, left panels) strongly

represses Hth expression, Ubx ectopic expression does not.

(TIF)

Figure S3 Binding site requirements for AbdB binding to Dll cis

sequences. A) EMSA of AbdB on DIIRL (containing binding sites

Hox1, Exd, En, Hth and Hox2) and DIIRL mutants for binding

sites Hox1, Hox2, Hox 1+2 and Exd. B)Quantification of AbdB

binding in EMSA to DIIRL wild type and mutated using the

lowest AbdB quantity. Single mutations in Hox1, Hox2 and Exd

similarly reduces the efficiency of AbdB binding to DMX-R, while

combined mutation of Hox1 and Hox2 results in stronger decrease
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in DNA binding. C) EMSA on DMX-R (containing binding sites

Slp, Hox1, Exd, En, Hth and Hox2) with AbdB, En, Exd, Hth,

Exd+En, Exd+Hth, Hth+En and Exd+Hth+En identifying AbdB-

DNA and Exd-Hth-En-DNA complexes.

(TIF)

Figure S4 Requirements for Hth/Exd inhibition of AbdB

binding to DIIR. EMSA of AbdB on DIIR with various

combinations of AbdB, Exd, Hth and truncated HM (HD less)

form of Hth, or on DIIR mutated in the Exd (DIIRexd) or Hth

(DIIRHth) binding sites. Note that the Exd-mediated release of

inhibitory effect seen for full length Hth is lost with the truncated

Hth HM protein, and that mutation of the Exd binding site affect

the formation of AbdB/DNA complexes.

(TIF)

Figure S5 Quantifications of DMX-R sequence requirements

for repression in A1 and A8. A) Schematic representation of

DMX-R mutations analysed. DMX lacZ reporter transgenic lines,

transcription factor binding site (Slp, Exd, Hth, En and Hox)

allocation, and name of DMX-R mutant enhancers are from [19].

DMX-R mutations that result in abdominal repression are

highlighted in red. B) Quantification of derepression observed in

A1 (blue) and A8 (red) for each DMX-R variant. 100%

derepresion was defined by the level of abdominal DMX

derepression in embryo deficient for Ubx, AbdA and AbdB m

and r isoforms (Df P9). Except for the DMX(Hox1S) and

DMX(Hox1, 2) binding sites, no difference in derepression was

observed between A1 and A8.

(TIF)

Figure S6 Illustrations of DMX-R sequence requirements for

repression in A1 and A8. Embryos bearing DMX-R lacZ reporter

transgenes mutated in one or multiple binding sites were stained

for b-gal. Note that for some of these mutations, a significant

variability was observed (see Figure S5) and is not illustrated by a

single embryo display as done in this figure. Derepression of

DMX-R activity in segments A1 and A8 are magnified.

(TIF)

Figure S7 AbdBm represses the transcription of Hth. A)

Embryos stained for the hth transcript (red). B) prd-Gal-4 driven

ectopic expression of AbdBm (green) results in hth (red) repression.

Right and left panel shows early (germ band extended) and late

(germ band retracted) embryos.

(TIF)

Figure S8 Lack (or low level) of AbdA repressive function on

Hth expression. Embryos bearing the DME reporter co-stained for

b-gal (green) and Hth (red).

(TIF)

Figure S9 Increasing Hth expression levels in the posterior

abdomen allows posterior derepression of DMX in A8 and A9

segments. Embryo bearing the DMX reporter co-stained for b-gal

(red) and Hth (green) ubiquitously driven by arm-Gal4. Note that

only moderate posterior accumulation of Hth could be reached in

posterior abdominal segments. Arrows point to derepression in A8

and A9 segments.

(TIF)

Figure S10 Protein sequence requirements for AbdB-mediated

DME repression. Thoracic centered magnifications of embryo

bearing the DME reporter co-stained for b-gal (red) and AbdB

variants (green) driven by prd-Gal4. Levels of repressive activity of

different AbdB murtations on DME were evaluated by defining

the ratio of b-gal staining in T2 and T3 (100% of repressive

activity was given when the T2/T3 ratio was 1, and 0% when the

T2/T3 ratio was O). Quantifications are shown in Figure 6.

(TIF)

Figure S11 Ubx/AbdB chimera protein sequence requirements

for DME repression. Thoracic centered magnifications of embryo

bearing the DME reporter co-stained for b-gal (red) and UbxH3 or

Ubx/AbdB chimeras (green) driven by prd-Gal4. Levels of UbxH3

or Ubx/AbdB chimeras repressive activity on DME was evaluated

by defining the ratio of b-gal staining in T2 and T3 (100% of

repressive activity was given when the T2/T3 ratio was 1, and 0%

when the T2/T3 ratio was O). Illustrations for wild type AbdB is

given in Figure 1J, 1K, and for UbxHX,UA in [15]. Quantifications

are shown in Figure 7.

(TIF)
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