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Abstract. This paper presents a detailed analysis of 10 flash
flood events in the Mediterranean region using the distributed
hydrological model MARINE. Characterizing catchment re-
sponse during flash flood events may provide new and valu-
able insight into the dynamics involved for extreme catch-
ment response and their dependency on physiographic prop-
erties and flood severity. The main objective of this study
is to analyze flash-flood-dedicated hydrologic model sensi-
tivity with a new approach in hydrology, allowing model
outputs variance decomposition for temporal patterns of pa-
rameter sensitivity analysis. Such approaches enable rank-
ing of uncertainty sources for nonlinear and nonmonotonic
mappings with a low computational cost. Hydrologic model
and sensitivity analysis are used as learning tools on a large
flash flood dataset. With Nash performances above 0.73 on
average for this extended set of 10 validation events, the
five sensitive parameters of MARINE process-oriented dis-
tributed model are analyzed. This contribution shows that
soil depth explains more than 80 % of model output variance
when most hydrographs are peaking. Moreover, the lateral
subsurface transfer is responsible for 80 % of model vari-
ance for some catchment-flood events’ hydrographs during
slow-declining limbs. The unexplained variance of model
output representing interactions between parameters reveals
to be very low during modeled flood peaks and informs
that model-parsimonious parameterization is appropriate to
tackle the problem of flash floods. Interactions observed af-
ter model initialization or rainfall intensity peaks incite to

improve water partition representation between flow com-
ponents and initialization itself. This paper gives a practi-
cal framework for application of this method to other mod-
els, landscapes and climatic conditions, potentially helping
to improve processes understanding and representation.

1 Problem framework

1.1 Flash flood modeling complexity

The Mediterranean climatic zone is prone to heavy rain-
fall events especially during the fall season. Either quasi-
stationary mesoscale convective systems, which can last sev-
eral hours, or frontal disturbances blocked by the mountains
can produce high precipitation totals (Nuissier et al., 2008)
that trigger severe flash floods. The high variability of pre-
cipitations (Moussa et al., 2007) along with topography in-
fluence and spatial distribution of soil and land use proper-
ties makes hydrological processes largely variable both in
time and space (Pilgrim et al., 1988). Flash floods are ex-
treme catchment responses with high peak discharge often
produced by severe localized thunderstorms. They are one of
the most destructive hazards in the Mediterranean region and
have caused casualties and billions of euros of damages in
France over the last two decades (Gaume et al., 2009).

These events often reveal aspects of hydrological behav-
ior that either were unexpected on the basis of weaker re-
sponses or highlight anticipated but previously unobserved



behavior (Delrieu et al., 2005). Characterizing the response
of a catchment during flash flood events thus may provide
new and valuable insight into processes for extreme flood
response and their dependency on catchment properties and
flood severity (Borga et al., 2008).

In the literature, several approaches are proposed for flash
flood events modeling and/or prediction, each with its speci-
ficities depending on perception and parameterization of
the dominant hydrological processes (Moussa et al., 2007;
Saulnier and le Lay, 2009; Braud et al., 2010; Roux et al.,
2011) among others for the Mediterranean region. These
models often take advantage of available data in order to as-
sign spatially distributed forcing as well as distributed catch-
ment parameters. However, increasing model complexity can
lead to overparameterization and equifinality problems be-
cause of high dimensionality and multi-modal response sur-
face. As a result, parameter values might not be identifiable
in the calibration process (Beven, 1989). Sieber and Uhlen-
brook (2005) have highlighted that sensitivity analysis (SA)
can not only identify the most important parameters but also
contribute to understanding and improving the structure of
hydrologic model.

1.2 Understanding uncertainty with sensitivity analysis

Sensitivity analysis (SA) assesses the impact of model pa-
rameters on the output, and is therefore a convenient tool
to investigate model behavior and especially the importance
of particular parameterizations within the model. SA has be-
come a popular tool in catchment modeling to explore high
dimensional parameter spaces, assess parameter identifiabil-
ity, and understand sources of uncertainty (Hornberger and
Spear, 1981; Freer et al., 1996; Wagener et al., 2001; Hall
et al., 2005; van Griensven et al., 2006; Tang et al., 2007).
Some studies highlight the usefulness of sensitivity analysis
for the improvement of hydrological models (Andréassian et
al., 2001; Oudin et al., 2006; Castaings et al., 2007; Ratto et
al., 2007b; Tang et al., 2007; Pushpalatha et al., 2011). Other
studies used SA to better understand model behavior with re-
spect to inputs such as precipitation (Xu et al., 2006; Meselhe
et al., 2009).

With the current shift toward model complexification
and/or real-time hydrometeorological forecasts, of prior im-
portance is the understanding of uncertainty and its sources.
In catchment modeling it can be achieved with various meth-
ods, of which formal Bayesian methods (Kuczera and Parent,
1998) and the GLUE method (Beven and Binley, 1992) are
the most popular, as well as recursive application of RSA
for dynamic identifiability analysis (Wagener et al., 2003)
or Bayesian total error analysis (BATEA) method (Kavet-
ski et al., 2006) for comprehensive calibration and uncer-
tainty estimation. According to Saltelli et al. (2004) sensi-
tivity analysis is the study of how uncertainty in the output
of a model can be apportioned to different sources of uncer-
tainty in the model input. Sensitivity analysis is recognized

as a helpful parameter-space screening tool to identify key
parameters controlling the performances. It can help in re-
ducing problem dimensionality with factor fixing (FF) for
noninfluential parameters, and factor prioritization (FP) for
those controlling the most model output uncertainty (Saltelli
et al., 2000). Besides the selection of the appropriate method
for analyzing parameter sensitivity depends strongly on the
goal of the sensitivity analysis (Saltelli et al., 2006). Of par-
ticular interest is the analysis of the dependence of the model
output variance to simultaneously modified parameters; this
can be achieved with methods based on variance decomposi-
tion (Efron and Stein, 1981; Sobol, 1993). The application of
three sensitivity analysis methods including Sobol’s method
by Massmann and Holzmann (2012) shows that the two most
important parameters of their conceptual continuous rainfall–
runoff model are correctly identified as being sensitive by all
methods.

1.3 Variance-based methods and temporal sensitivity
analysis

Variance-based methods result in reliable estimates of sensi-
tivities even for nonlinear and nonmonotonic models, as was
often demonstrated using examples where analytical solu-
tions can be calculated (Saltelli and Bolado, 1998). The price
to be paid in order to relax all assumptions on model behavior
is that the required number of model runs is relatively high
(>1000) for most approaches. Some variants of this method,
in terms of partial variances calculation, are Sobol’s method
(Sobol, 1990, 2001) and the extended Fourier amplitude sen-
sitivity test ((E)FAST) (Cukier et al., 1973; Saltelli and Bo-
lado, 1998; Fang et al., 2003; Reusser et al., 2011).

Variance-based sensitivity analysis methods aim to quan-
tify the amount of variance that each parameter contributes
to the unconditional variance of the model output. These
amounts are characterized by first order or interaction effects
expressed as sensitivity indices (Si ’s). Despite its high com-
putational demands contributions (Saltelli, 2002) and try-
ing to make it more effective, the powerful Sobol SA tech-
nique, for example, has recently become more popular in en-
vironmental modeling (Pappenberger et al., 2007, 2008; Van
Werkhoven et al., 2008; Jing, 2011; Li et al., 2012).

Tang et al. (2007) compared state of the art in sensitiv-
ity analysis including Sobol’s method and found it to be the
most effective in estimating first-order parametric sensitivi-
ties and overall influence including interaction effects. Tang
et al. (2007) make a step-wise analysis of a conceptual grid-
base-distributed rainfall–runoff model (HL-RDHM). Their
sensitivity analysis reveals the impact of rainfall distribution
on spatial sensitivities and input variables mostly controlling
HL-RDHM’s behavior. The use of Sobol indices for sensitiv-
ity analysis purposes is investigated by Nossent et al. (2011)
in the case of a SWAT model. They conclude that in general
the Sobol sensitivity analysis can be successfully applied for
factor fixing and factor prioritization with respect to the input



parameters of a SWAT model, even with a limited number of
model evaluations. The analysis also supports the identifi-
cation of model processes, parameter values and parameter
interaction effects. Some of the recent studies applying SA
to rainfall–runoff, flood inundation, and water quality mod-
els are listed by Reusser et al. (2011); 8 out of the 18 studies
use variance-based methods. In seven studies, on the order of
10 000 model runs were computed to calculate sensitivities,
which is impossible for computationally expensive models.
As highlighted by Reusser et al. (2011), analyzing tempo-
ral dynamics of parameter sensitivity (TEDPAS) of model
output variables, such as discharge, we can quantify which
model components dominate the simulation response. Their
analysis reveals that temporal dynamics of model parame-
ter sensitivity can be a powerful tool for hydrological model
analysis, especially to identify parameter interaction as well
as the dominant hydrological response modes. Reusser and
Zehe (2011) with TEDPAS (temporal dynamics of parameter
sensitivity) and TIGER (time series of grouped error) meth-
ods investigate parameter uncertainty for periods of poor
model efficiencies. With modeling and temporal sensitivity
analysis used as learning tools, WaSIM-ETH complex grid-
based model hypotheses are shown to be insufficient to de-
scribe Weisseritz headwater catchment behavior and future
developments seem required.

1.4 Scope of the paper

The core idea of this paper is to approach hydrologic model
sensitivity with temporal sensitivity analysis, here in the
case of quick and strong catchment flash flood responses.
The originality lies in TEDPAS analysis calculated from
variance-based decomposition that may reveal sensitivity
peaks and thus flow dynamics at key instants. This kind of
analysis is new for hydrologic models especially for event-
process-oriented distributed models. Using TEDPAS as a di-
agnostic tool joins the idea of dynamic identifiability intro-
duced by Wagener et al. (2003). But these two methods serve
a different purpose since it is a necessary but insufficient con-
dition that parameters must be sensitive in order to be identi-
fiable whereas sensitive parameters may not be identifiable.

In this contribution, a temporal sensitivity analysis of the
process-oriented spatially distributed MARINE model dedi-
cated to flash floods is carried out. Based on the understand-
ing of Mediterranean catchments hydrological processes the
hydrological rainfall–runoff model MARINE (Mod́elisation
et Anticipation du Ruissellement et des Inondations pour des
évèNements Extr̂emes) aims at (i) exploiting the potential of
distributed models (ii) using physically meaningful parame-
ters, while (iii) maintaining a simple and parsimonious pa-
rameterization (Roux et al., 2011). Given a validated model
structure for flash floods in the French Mediterranean region,
the question of sensitivity is approached in a probabilistic
framework. One parameter set for each of the six catchments
is tested on validations events for which the analysis of TED-

PAS is performed. The procedure is implemented for con-
trasted hydrometeorological events in the Cévennes and the
Pyrenean region (France) with the view to bring understand-
ing in model behavior for contrasted catchments and flash
flood events on steep terrains and complex geo-pedological
formations.

The paper is organized as follows. Section 2 describes
variance decomposition method and sensitivity indices cal-
culation. MARINE model and the six Mediterranean catch-
ments of interest are presented in Sect. 3. Catchment param-
eter sets and their efficiencies on 10 validation events are
calculated and temporal sensitivity analysis hypotheses are
tested in Sect. 4. Then TEDPAS on these validation events
are examined in Sect. 5. After a conclusion on the results,
processes, variables and parameters that require further de-
scription or observations are emphasized and the possibility
of applying this method to improve the understanding of the
major processes involved in flood events is discussed.

2 Background on model analysis with variance
decomposition methods

Thoughtful descriptions of sensitivity analysis methods can
be found in Saltelli et al. (2000). Variance-based meth-
ods are part of the practices Saltelli and Annoni (2010)
recommended as an alternative to OAT analysis (one at a
time method: local analysis evaluating separately the effect
of each individual parameter). Variance-based methods are
based on a decomposition of the model output variance.

Let �k ∈ <
k denote the set of all possible values that the

model parameters can assume. LetX ∈�k be a possible
value of thek model parameters normalized by their varia-
tion range. We denote byY = g(X)= g(X1, . . .,Xk) the re-
lationship that links the model inputs to the model output.
The parametersX have a domain of validity linked to the
uncertainty about their precise value.

Assuming thatg is a square integrable function over�k =

{X |0 ≤Xi ≤ 1;i = 1, . . .,k}, it can be decomposed using an
expansion with summandgi...p (X1, . . .,Xp) of increasing
dimensionalityp<k:

Y = g(X)= g0 +

k∑
i=1

gi(Xi)+

k∑
i=1

∑
i>j

gij (Xi,Xj )

+. . .+ g1,2,...,k(X1,X2, . . .,Xk). (1)

Sobol (1993) proved that this HDMR decomposition (high-
dimension model representation) was unique if each term in
the expansion has zero mean, then all the terms of the de-
composition are orthogonal in pairs:∫
�k

gi1,...,ipgi1,...,isdX= 0. (2)



The total unconditional variance of model output can be de-
fined as

V (Y )=

∫
�k

g2(X)dX− g2
0. (3)

The partial variances which are the components of the to-
tal variance decomposition are computed from each term in
Eq. (1) as

Vi,...,p =

1∫
0

1∫
0

g2
i1,...,ip

(Xi1, . . .,Xip )dXi1, . . .,dXip . (4)

The relation (3) expressed with Eqs. (1) and (4) leads to the
so-called functional ANOVA decomposition:

V (Y )=

∑
i

Vi +
∑
i

∑
j>i

Vij + . . .+V1,2,...,k, (5)

whereV (Y ) is the total variance,Vi is the variance caused
by parameterXi (first-order variance),Vij is the covariance
caused byXi andXj (second-order variance), and higher or-
der terms show the variance contribution from multiple pa-
rameters. The two factorsXi andXj are said to interact when
their effect onY cannot be expressed as the sum of their sin-
gle effectsVi andVj . Interactions may imply, for instance,
that extreme values of the model output are uniquely associ-
ated with particular combinations of model inputs in a way
that is not described by first-order effectsSi .

From this relation (5), sensitivity indices can be defined
in order to assess the sensitivity ofY to X whenX is un-
certain. The first-order effect representing the average output
variance reduction that can be achieved whenXi is fixed is
defined by

Si =
Vi

V
=
V (Y )−EXi [V (Y |Xi )]

V (Y )
=
VXi [E(Y |Xi )]

V (Y )
. (6)

The partial varianceVi in Eq. (6) is given by the variance of
the conditional expectationVi = VXi [E(Y |Xi )] and is also
called the main effect ofXi on Y . The impact on the model
output variance of the interactions between parametersXi
andXj is given bySij = Vij/V and it can be generalized in
interactions effects up to orderk by replacing the indexi by
the corresponding set of input factors.

The estimation of partial variances could be very expen-
sive with brute-force methods, but a shortcut was proposed
by Sobol to reduce the calculation of the double-loop inte-
grals of Eq. (4). Efficient methods such as extended FAST
from Saltelli (1999) or improved Sobol from Saltelli (2002)
were proposed in order to estimate bothSi andST i for all in-
puts factors for a computational cost ofN(k+ 2). However,
alternatives techniques were introduced recently, allowing
the estimation ofS′

is and low interaction effects (up to order
3) for a computational cost independent fromk (i.e., equal to

N the sample size) (RBD-FAST from Tarantola et al., 2006;
Mara, 2009; Storlie and Helton, 2007; Oakley and O’Hagan,
2004; Sudret, 2008; Crestaux et al., 2009).

The method used in this paper is the state-dependent pa-
rameter (SDP) metamodeling method (Ratto et al., 2007a)
which is based on recursive filtering and smoothing estima-
tion to build an approximation of the computational model.
Ideas and tools from signal processing and time series analy-
sis are used to estimate the terms in the ANOVA-HDMR de-
composition using a special recursive fixed-interval smooth-
ing algorithm that estimates the parameters in an SDP for-
mulation of the input–output mapping (Ratto et al., 2007a).
It is a very efficient method that does not require any spe-
cific rule for sampling inputs, and provides fastly accurate
and unbiaised results for both sensitive and insensitive in-
puts according to (Gatelli et al., 2009). Ratto et al. (2007a)
show that even for a large number of parameters the SDP
method allows a good estimation of variance-based sensi-
tivity indices with a mild computational cost for models
with up to 20 input factors. In the following we use the
routine SS-ANOVA (available athttp://sensitivity-analysis.
jrc.ec.europa.eu/software/index.htm). The recursive filtering
and smoothing procedure provides standard errors of the esti-
mated state-dependant parameters and hence the relative sig-
nificance of estimated HDMR terms and sensitivity indices.

3 Model and site description

3.1 MARINE flash flood model

The modeling approach is the distributed model MARINE
for flash flood forecasting (Roux et al., 2011) with a sub-
surface transfer module. The predominant factor determin-
ing the formation of runoff is represented by the topogra-
phy: slope and downhill directions. MARINE runs on a fixed
time step and is structured into three main modules (Fig. 1).
The first module allows separating the precipitation into sur-
face runoff and infiltration using the Green and Ampt model;
the second module represents subsurface downhill flow with
an approximation of the Darcy’s law and the standard TOP-
MODEL transmissivity profile (Beven and Kirkby, 1979)
and the third one the overland flow (over hillslopes and in
the drainage network): the transfer function component al-
lows routing the rainfall excess to the catchment outlet us-
ing the kinematic wave approximation. Both infiltration ex-
cess and saturation excess are represented within MARINE.
The spatial discretization of the catchment is performed us-
ing the digital elevation model grid resolution, a regular grid
of squared cells. Evapotranspiration is not represented since
the model purpose was to simulate individual flood events
during which such process is negligible. Cell soil moisture
deficit is initialized from a continuously distributed water
balance model output briefly described later. For a complete

http://sensitivity-analysis.jrc.ec.europa.eu/software/index.htm
http://sensitivity-analysis.jrc.ec.europa.eu/software/index.htm
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Figure 1: MARINE model structure, parameters and variables. Green and Ampt 3 

infiltration equation: infiltration rate i (m.s−1), cumulative infiltration I (mm), saturated 4 

hydraulic conductivity K (m.s−1), soil suction at wetting front ψ (m), saturated and initial 5 

water contents are respectively θs and θi (m
3 m−3). Subsurface flow: local transmissivity of 6 

fully saturated soil T0 (m
2s−1), saturated and local water contents are θs and θ (m3 m−3), 7 

transmissivity decay parameter is m (–), local slope angle β (rad). Kinematic wave: water 8 

depth h (m), time t (s), overland flow velocity u (m.s−1), space variable x (m), rainfall rate 9 

r (m.s−1), infiltration rate i (m.s−1), bed slope S (m.m−1), Manning roughness coefficient n 10 

(m−1/3.s).  11 
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Fig. 1. MARINE model structure, parameters and variables. Green
and Ampt infiltration equation: infiltration ratei (m s−1), cumula-
tive infiltrationI (mm), saturated hydraulic conductivityK (m s−1),
soil suction at wetting frontψ (m), saturated and initial water con-
tents are respectivelyθs and θi (m3 m−3). Subsurface flow: local
transmissivity of fully saturated soilT0 (m2 s−1), saturated and lo-
cal water contents areθs andθ (m3 m−3), transmissivity decay pa-
rameter is m (–), local slope angleβ (rad). Kinematic wave: water
depthh (m), timet (s), overland flow velocityu (m s−1), space vari-
ablex (m), rainfall rater (m s−1), infiltration ratei (m s−1), bed
slopeS (m m−1), Manning roughness coefficientn (m−1/3s−1).

description of the MARINE model the reader can refer to
Roux et al. (2011).

3.2 Study zone

The proximity of the Mediterranean Sea and the steep sur-
rounding orography can promote low-level flow lifting in an
unstable atmosphere, as for the Alps and Pyrenees (Davolio
et al., 2009; Tarolli et al., 2012). The highest flooding risk is
in autumn with wet soils and maximum rainfall rates. Sum-
mers are hot and dry; however summer storms also represent
a nonnegligible flooding risk. The density of both hydrom-
eteorological radar and hourly rain gauge coverage offers
interesting possibilities for flood-triggering rainfall monitor-
ing and quantitative precipitation estimation (Fig. 2). Thus
the French Mediterranean region rather frequently affected
by intense rainfalls represents an interesting area for flash
flood study in a regional manner (Garambois et al., 2012b)
with contrasted catchment properties, rainfall distributions
and hydrological response characteristics (Garambois et al.,
2012a).

From the Pyrenean foothills and the Corbières Mountains
in the south to the Ćevennes foothills and the Ardèche region,
six flood-prone catchments with areas ranging from 144 to
619 km2 and contrasted physiographic properties are selected
(Table 1). They present a highly marked topography with nar-
row valleys and steep hillslopes (Fig. 2). A DEM data file of
the study site with a grid scale of 25 m was available from the
National Geographic Institute (BD TOPO®© IGN – Paris –
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Figure 2: (Left) France topography (source: SRTM image, NASA/JPL). (Right) (white 3 

contour) Topography of the six catchments of interest (France), BD TOPO® IGN, 4 

(concentric circles) Hydrometeorological radars, (white dots) operational raingauges.  5 

 6 

Fig. 2. (Left) Topography of France (source: SRTM image,
NASA/JPL). (Right) (white contour) Topography of the six catch-
ments of interest (France) from BD TOPO® IGN, (concentric
circles) hydrometeorological radars, (white dots) operational rain
gauges.

2008.© (SCHAPI)). The mean elevation ratios of the whole
river basins are above 0.025 m m−1.

The Salz and Verdouble catchment areas mainly develop
on sedimentary formations contrarily to the other catch-
ments, where substrates develop on metamorphic and plu-
tonic terrains. Soil thicknesses and textures were available
from the BDSol-LR (Robbez-Masson et al., 2002) (IGCS –
BDSol-LR – version no. 2006, INRA – Montpellier SupA-
gro) (Table 1). Soil-saturated hydraulic conductivities, satu-
rated water contents and soil suctions are determined with
(Rawls and Brakensiek, 1985) pedotransfer functions as pro-
posed by Manus et al. (2009). Braud et al. (2010) and Roux et
al. (2011) highlight the importance of soil thickness and tex-
ture on hydrological process and catchment flood response.
It has recently been shown with a comparative hydrologic
study that flood response in Austria is significantly controlled
by geology (Gáal et al., 2012).

For the Gardon, Beaume and Ardèche catchments, vege-
tation is dense and mainly composed of chestnut trees, pas-
ture, holm oaks, conifers, waste land and garrigue. Chest-
nut trees are located in the upstream area and on the
south-facing slopes (sunny sides or adret), while forested
garrigues and holm oaks are located in the downstream
area and on the north-facing slopes (shady sides or ubac).
The Tech catchment’s vegetation is rather dense also, with
broadleaved and coniferous forests. Mainly Mediterranean
forest, garrigue, holm oaks and vineyards are encountered
on the Salz and Verdouble catchments. A vegetation and
land use map (Corine Land Cover provided by the Service
de l’Observation et des Statistiques (SOeS) of the French



Table 1.Catchments physiographic properties, elevation ration is height difference divided by longest flow path length, K mean is the mean
soil saturated hydraulic conductivity. Hsol is the spatially distributed soil depth estimated from pedologic data.

Max.
Height flow Elevation Hsol Hsol Hsol Hsol Soil K

Area diff. length ratio min. max. mean std volume mean
Catchments (km2) (m) (km) (m m−1) (m) (m) (m) (m) (m3) (mm h−1)

Tech (Pas-du-Loup) 250 2730 34.5 0.079 0.00 0.69 0.16 0.13 5.3× 107 2.5
Verdouble (Tautavel) 299 915 37.0 0.025 0.08 0.63 0.33 0.16 1.0× 108 2.4
Salz (Cassaignes) 144 995 17.2 0.058 0.00 0.74 0.31 0.19 4.2× 107 3.9
Gardon (Anduze) 543 1065 45.1 0.024 0.08 0.64 0.28 0.12 1.5× 108 05.0
Beaume (Rosières) 212 1360 29.0 0.047 0.05 0.49 0.25 0.07 5.2× 104 8.7
Ardèche (Vog̈ué) 619 1380 52.5 0.026 0.05 0.50 0.28 0.08 1.7× 108 8.7
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Figure 3: Simulated peak discharge versus observed peak discharge for validation events 3 

with first bisector (blue line). 4 

Fig. 3. Simulated peak discharge versus observed peak discharge
for validation events with first bisector (blue line).

Ministry of Environment, www.ifen.fr) is used to derive
distributed surface roughness.

4 Preliminary analysis

Initialization is an important step in the case of flash flood
event-based models running on a time window of few days.
Soil saturation at the beginning of each event is estimated
with SAFRAN-ISBA-MODCOU (SIM), a continuous hy-
drometeorological model (Habets et al., 2008). This contin-
uous water balance model is run over the whole country on
8 km× 8 km cells and outputs such as soil moisture with at
least daily time step are available. This systematically avail-
able spatial–temporal model outputs for catchment initial
soil moisture accountancy is chosen. We keep in mind that
soil moisture is related to soil parameters in defining catch-
ment soil infiltrability and storage capacity. But an accurate
estimation of soil moisture at the catchment scale is still
difficult even if combining spatialized superficial remotely
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Figure 4: (Top) Gardon d’Anduze 08/09/2002 flash flood event and quintiles Q10 and Q90 3 

of simulated discharges for α = 5, 10 and 15 %. (Bottom) First order effects for CZ and 4 

three sampling ranges. 5 

 6 

Fig. 4. (Top) Gardon d’Anduze: 8 September 2002 flash flood event
and quintilesQ10 andQ90 of simulated discharges forα = 5, 10
and 15 %. (Bottom) First-order effects forCZ and three sampling
ranges.

sensed data and numerous in situ point measurements lead to
promising results (Brocca et al., 2012; Albergel et al., 2012).
An estimation of uncertainty for soil moisture model outputs
would be welcome but it remains a hard task given that a very
good knowledge of soil properties and structure seems to be
required.

4.1 Calibrated parameter sets

In order to avoid a model overparameterization, spatial pat-
terns of several parameters are derived from soil surveys, and
a unique correction coefficient is then applied to each param-
eter map. This approach has been chosen for three parame-
ters – namely the distributed saturated hydraulic conductivity
K, the lateral transmissivityT0 and soil thicknessesZ. The
calibration procedure consists in estimating the following:

www.ifen.fr


 

42 

Time (h)

O
bs

er
ve

d 
di

sc
ha

rg
es

 (
m3 /s

)

R
ai

nf
al

l i
nt

en
si

ty
 (

m
m

/h
)

0 50 100 150 200 2500

500

1000

1500 0

20

40

60

80

100

QObs 3evs Vogüé

Rainfall (mm/h)

Q10  
Sim

Q90  
Sim

Time (h)

F
irs

t o
rd

er
 s

en
si

tiv
ity

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1

CKss

KD2

KD1

Ck

CZ

 1 

 2 

Figure 5: (Top) Ardèche at Vogüé (619 km²), 20/10/2008, 31/10/2008 and 03/11/2011 3 

flash flood events and quintiles Q10 and Q90 of simulated discharge. (Bottom) first order 4 

effects representing first order contribution, partial variances out of model output variance 5 

(-). 6 

Fig. 5. (Top) Ardèche at Vog̈ué (619 km2): 20 October 2008, 31 October 2008 and 3 November 2011 flash flood events and quintilesQ10
andQ90 of simulated discharge. (Bottom) First-order effects representing first-order contribution and partial variances out of model output
variance (–).
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Figure 6: (Top) Gardon at Anduze (543 km²), 28/09/2000, 08/09/2002 and 18/10/2006 3 

flash flood events and quintiles Q10 and Q90 of simulated discharge. (Bottom) first order 4 

effects. 5 

 6 

Fig. 6. (Top) Gardon at Anduze (543 km2): 28 September 2000, 8 September 2002 and 18 October 2006 flash flood events and quintilesQ10
andQ90 of simulated discharge. (Bottom) First-order effects.

three coefficients of correction for spatialized data; one for
the saturated hydraulic conductivities, namedCK ; another
one,CKSS, for the lateral subsurface flow transmissivity (T0);
and the last one for the soil thicknesses, namedCZ, the
Strickler roughness of the main channelKD1 and the Strick-
ler roughness of the overbank of the drainage networkKD2
(Roux et al., 2011; Garambois et al., 2012a). Concerning the
transmissivityT0 the spatial variability is taken from the hy-
draulic conductivity map. Catchment parameter sets that will
be used in this paper are given in Table 2. For each catch-
ment, model calibration is performed by estimating a param-
eter set over several flash flood events (Table 3); that is, a cost
function equal to 1-Nash is minimized over multiple flood

events (called global Nash hereafter). The minimization tech-
nique is a BFGS (Broyden–Fletcher–Goldfarb–Shanno) al-
gorithm considering multiple starting points in the parameter
space. The validation is performed on other available flash
flood events, and efficiencies are given in Table 3. We do not
pretend to have reached “the best parameter sets” for these
catchments, the word optimal needing to be defined in func-
tion of the modeling goals, especially if modeling (and data)
uncertainties and parameter values are considered variable in
time. Nevertheless, performances of the model on the events
considered in calibration and in validation are rather high
over the six catchments of interest (Table 3). Performance de-
crease is slight for the whole catchment set from calibration



to validation with mean Nash values of 0.86 and 0.7, respec-
tively (Table 3).

4.2 Selected validation flash flood events for sensitivity
analysis

Monitoring flash floods remains a hard exercise (Borga et
al., 2008) since conventional measurement networks of rain
and river discharges are not able to sample effectively be-
cause of scales problems. Hydrometric data are provided by
the SCHAPI (Service Central Hydromét́eorologique d’Appui
à la Pŕevision des Inondations – French central flood fore-
cast center) and the SPC Grand Delta located in Nı̂mes and
the SPC Mediterrańee Ouest located in Carcassone (Service
de Pŕevision des Crues – Regional flood forecast center).
Radar rainfall measurements (Mét́eo France – N̂ımes radar)
combined with rain gauge data are available at 5 min time
steps and 1 km× 1 km spatial resolution since 2002 for the
whole French Mediterranean region and since 1994 on the
Cévennes region. Few floods of several years return period
have been experienced in the six catchments of interest catch-
ment since 2002 (resp. 1994). In this paper an interesting set
of 10 validation events is used. This constitutes a large val-
idation dataset given the scarcity of data about flash flood
events in general.

Validation event hydrographs with distinct shapes rep-
resent contrasted hydrological responses to different res-
onances between rainfall spatio-temporal distribution and
catchment physiographic properties, in other words a catch-
ment’s spatial and temporal dampening effect (cf. Table 4
and Figs. 5 to 8):

– single-peak medium events (15 March 2011 at Pas-du-
Loup, 20 December 2000 at Cassaignes, 28 Septem-
ber 2000 and 18 October 2006 with a slow-rising limb
at Anduze),

– single-peak medium events with slow-rising and/or -
declining limb (16 November 2006 at Rosières, 20 Oc-
tober 2008 and 31 October 2008 at Vogüé),

– multipeak events (15 March 2011 at Tautavel, 3 Novem-
ber 2011 at Vog̈ué),

– and a 50 yr return period extreme event (8 Septem-
ber 2002 at Anduze).

In addition to classical normalized least-squares criterion,
LNP (Table 5) considers features characterizing the flood
peak (discharge value and time to peak) (Roux et al., 2011).
Efficiencies for these validation events considered in the fol-
lowing are high, withLNP efficiencies above 0.73 and of 0.83
on average. Mean peak flow discharge and timing relative er-
rors are inferior to 0.17 and 0.13.

Most validation events present observed specific peak dis-
charge ranging from 1.13 to 2.69 m3 s−1 km−2 (Fig. 3). The
extreme event of September 2002 at Anduze has an estimated

peak discharge of 6.08 m3 s−1 km−2. Differences between
simulated and observed discharges are satisfactory with an
R2 of 0.87 with respect to the first bisector, so the model
presents no significant bias for these catchments floods.

Performances of the model on the events considered in cal-
ibration and in validation are rather high over the six catch-
ments of interest and may therefore be considered as suffi-
cient for flash flood prediction purpose. Yet we would like to
point out that the aim of this paper is not to test the predictive
performances of the model, which would require a larger set
of events under various conditions.

4.3 Evaluation of temporal sensitivity analysis method

Using the variance-based sensitivity analysis method de-
scribed in Sect. 2, a region of the parameter space around
calibration point is explored and sensitivity indices are es-
timated in order to analyze the relative importance of MA-
RINE model inputs for validation events. Concerning the
locality (in the parameter space) of the proposed analysis,
global sensitivity analysis of MARINE model has already
been tested (Roux et al., 2011). The present paper investi-
gates the other types of information that a temporal sensi-
tivity analysis can provide. The answer to the question of
how sensitivities change for different parameter sets is not
straightforward, and further studies would be welcome – for
example with several parameter sets for one catchment.

For each catchment we use the calibrated parameter sets
of Section 4.1 for validation events and temporal parame-
ter sensitivity (S′is) calculation. The tested input factors are
the five calibrated ones: three coefficients of correctionCK ,
CKss, CZ, the Strickler roughness of the overbank of the
drainage networkKD2 and the main channel roughness co-
efficientKD1.

We use a 1024-parameter-set quasi-random Monte Carlo
sample. TheS′

is are calculated for MARINE discharge at
each time step in a±α % interval around the nominal pa-
rameter value with the method described in section above.
Ideally for each parameter, the sampling range around nom-
inal parameter value could be defined with information on
parameter posterior distribution function with the strength of
methods such as Markov chain Monte Carlo (Smith and Mar-
shall, 2008; Vrugt et al., 2009; Kuczera et al., 2010). These
methods are, however, too computationally demanding for
our extended study and the choice ofα is tested here.

From 5 to 15 % around the nominal parameter values, the
choice ofα reveals to have a rather limited influence on tem-
poral dynamics of parameter sensitivity (TEDPAS) and their
values (Table 6). The first-order effectSi1 measures the rel-
ative importance of an individual input variableXi in driv-
ing the uncertainty. Parameter ranking remains the same with
a total standard error lower than 0.03. Low error and high
first-order metamodelR2 attest the good convergence of the
SDR algorithm on the 1024 sample size.Si values quanti-
fying model output sensitivity to each parameter are quite



Table 2.Catchment parameter sets and Nash efficiencies for multiple events calibration.

Area Global
Catchments (km2) CZ CK CKSS KD1 KD2 Nash

Tech (Pas-du-Loup) 250 4.34 11.0 1515 4.83 3.24 0.90
Verdouble (Tautavel) 299 1.30 15.0 4486 5.00 3.99 0.88
Salz (Cassaignes) 144 0.95 20.0 5595 5.00 2.54 0.89
Gardon (Anduze) 543 4.60 10.3 4540 11.70 9.70 0.88
Beaume (at Rosières) 212 5.30 7.40 3712 21.40 14.70 0.80
Ardèche (at Vog̈ué) 619 3.40 2.10 4891 10.00 19.10 0.80
Calibration ranges 0.1–10 0.1–15 100–10 000 4–40 2–30

Table 3.Number of events used for calibration and validation, event and global model efficiencies of parameter sets presented in Table 2.

Number of Nash Min. event Max. event Number of Mean Nash Min. event Max. event
calibration global Nash Nash validation (LNP) Nash (LNP) Nash (LNP)

Catchments events calibration calibration calibration events validation validation validation

Tech (Pas-du-Loup) 3 0.90 0.80 0.91 3 0.50 (0.41) 0.20 (0.00) 0.70 (0.73)
Verdouble (Tautavel) 4 0.88 0.74 0.95 2 0.74 (0.73) 0.63 (0.66) 0.82 (0.79)
Salz (Cassaignes) 3 0.88 0.83 0.90 1 0.76 (0.75) 0.76 (0.75) 0.76 (0.75)
Gardon (Anduze) 6 0.88 0.60 0.95 4 0.86 (0.88) 0.60 (0.80) 0.97 (0.97)
Beaume (Rosières) 3 0.80 0.57 0.87 3 0.49 (0.72) 0.26 (0.58) 0.64 (0.82)
Ardèche (Vog̈ué) 5 0.80 0.60 0.94 3 0.88 (0.86) 0.85 (0.73) 0.93 (0.96)
Average 4 0.86 0.69 0.92 3 0.70 (0.72) 0.55 (0.59) 0.80 (0.81)

similar, with relative variation lower than 5 % for the three
alpha values.

Figure 4 shows a limited influence of sampling range on
temporal sensitivity index toCZ, which is the most sensi-
tive parameter on average.Si1 CZ estimation differences are
lower than 15 % after model initialization and during hydro-
graph late recession, and lower than 5 % for the rest of the
simulation, especially when most hydrographs are peaking
(t = 20 to 27 h).

Small to large parameter sampling ranges show limited in-
fluence on sensitivity calculations with similar event first-
order effects for each parameter. Observations made after
testingSi estimation lead us to select a±10 % sampling in-
terval around the nominal parameter values for TEDPAS cal-
culation with small errors in the following.

Temporal sensitivity presents the same pattern for the dif-
ferent sampling ranges with low standard errors. Rapid oscil-
lations (Fig. 4, bottom) can be apportioned to strong tempo-
ral gradients in nonzero-simulated discharges and different
trends between the 1024 hydrographs. Let us recall that the
MARINE model runs on a 200 m mesh and a time step of a
few seconds verifying CFL (Courant–Friedrichs–Lewy) con-
ditions, it is then not surprising to obtain such temporal varia-
tions in sensitivities with 5 min time resolution radar rainfalls
inputs and observed discharges. Important oscillations can
also be remarked on TEDPAS calculated for TOPMODEL
and WaSIM-ETH models (Reusser et al., 2011).

5 Temporal analysis of flash flood model behavior

5.1 Event-averaged first-order effects

This measure indicates the relative importance of an individ-
ual input variableXi in driving the uncertainty. It is good
to notice that sensitivities are not calculated with a cost
function but with simulated discharge at the outlet. Differ-
ent phases in catchment saturation and runoff generation are
aggregated into discharge and their temporal variation is re-
ported in terms of the partial variance explained by an input
factor at this time step. For example, a value of around 0.8 at
23 h when most hydrographs (1024 parameter sets sample)
are peaking indicates that 80 % of the observed variation be-
tween model runs can be explained by this parameter (Fig. 4).

First-order sensitivity indices and the related standard er-
ror and first-order metamodelR2 constitute basic outputs of
SDR method; in a first time they are averaged on each vali-
dation event for the catchments of interest (Table 7).R2 of
first-order metamodel are above 0.93 and indicate a good
convergence of the method. Event-averaged standard error on
S′

is is 0.03 and the following parameter rankingCZ >CKSS
>KD1>KD2>CK is obtained for the whole catchment
flood dataset. According to results displayed in (Table 7), soil
profile storage capacity controlled by parameterCZ is the
most important input factor for 8 of the 10 events considered.
Soil storage capacity has a large impact on soil saturation
dynamics and thus runoff generation mechanisms. Relation
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Figure 7: (Top) 15/03/2011 flash flood event and Q10 and Q90 quintiles of simulated 3 

discharge on (Left) the Tech at Pas-du-Loup (250 km²) and (right) the Verdouble at 4 

Tautavel (299 km²). (Bottom) first order effects. 5 

Fig. 7. (Top)Flash flood event of 15 March 2011 andQ10 andQ90 quintiles of simulated discharge for (left) the Tech at Pas-du-Loup
(250 km2) and (right) the Verdouble at Tautavel (299 km2). (Bottom) First-order effects.

Table 4.Validation events characteristics in increasing order of specific peak flow. Mean initial soil moisture is the spatially averaged daily
SIM output over a catchment.

Mean Specific Cumulated
Area Validation initial soil peak flow rainfall

Catchments (km2) events moisture (%) (m3 s−1 km−2) (mm)

Beaume (Rosières) 212 16 November 2006 56 1.1 111
Verdouble (Tautavel) 299 15 March 2011 52 1.2 217
Gardon (Anduze) 543 28 September 2000 56 1.4 203
Salz (Cassaignes) 144 20 December 2000 48 1.5 141
Ardèche (Vog̈ué) 619 3 November 2011 50 1.5 370
Ardèche (Vog̈ué) 619 20 October 2008 48 1.6 195
Ardèche (Vog̈ué) 619 31 October 2008 59 1.6 211
Tech (Pas-du-Loup) 250 15 March 2011 62 2.2 270
Gardon (Anduze) 543 18 October 2006 62 2.6 237
Gardon (Anduze) 543 8 September 2002 58 6.7 284

between soil profile storage capacity and flood event magni-
tude seems nonmonotonous according to parameters sensi-
tivities (Tables 4 and 7). Previous global sensitivity analysis
studies already show that the model response is sensitive to
CZ (Bessìere, 2008; Roux et al., 2011), which seems to indi-
cate that sensitivity may change little for a different optimal
parameter set.

For the other parameters, relation is monotonous. The rel-
ative importance of catchment infiltrability (CK) and fric-
tion in the drainage network (i.e.,KD1 andKD2, channel and
overbank correction coefficients) increases with the magni-
tude of the event. On the contrary, given the reduction of the
proportion subsurface flow represents, the influence of sub-
surface flow velocity (i.e.,CKSS) decreases with the magni-
tude of the event (Table 3).CKSS is particularly sensitive for

the Ard̀eche and Salz catchments. Let us remark that the sum
of first-order effects

∑
i

Si is lower than one with low stan-

dard errors (Table 7) and the equality would mean that the
model is additive (Saltelli et al., 2000).

5.2 Temporal evolution of first-order effects

In order to analyze the temporal dynamics of model input
factors influence on the simulated discharge for the 10 flood
events on six catchments, the explored variability of model
response (top) and the temporally variable sensitivity indices
(bottom) are represented on Figs. 5 to 8. Whatever the rain-
fall patterns and volume, for some aspects of the model re-
sponse, catchments behaviors characterized by the first-order
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Figure 8: (Top) Q10 and Q90 quintiles of simulated discharge on (left) 20/12/2000 for the 3 

Salz at Cassaignes (144 km²), (right) 16/11/2006 for the Beaume at Rosières (212 km²). 4 

(Bottom) first order effects. 5 

 6 

Fig. 8. (Top) Q10 andQ90 quintiles of simulated discharge on (left) 20 December 2000 for the Salz at Cassaignes (144 km2), (right)
16 November 2006 for the Beaume at Rosières (212 km2). (Bottom) First-order effects.

Table 5.Validation events and efficiencies in terms of1Q comparing simulated and observed peak dischargeQs
P andQo

P, and1T comparing

simulated and observed peak time normalized by concentration timeT o
C, determined from Bransby formulaT o

C =
21.3L
A0.1S0.2 , whereL is channel

length (m),A is watershed area (m2) andS is linear profile slope (m m−1).

Area Validation
1Q= 1T =

LNP =
1
3(Nash+

Catchments (km2) events

∣∣∣Qs
p−Q

o
p

∣∣∣
Qo

p

∣∣∣T s
p−T o

p

∣∣∣
T o
C

Nash (1−1Q)+ (1−1T ))

Tech (Pas-du-Loup) 250 15 March 2011 0.15 0.32 0.70 0.73
Verdouble (Tautavel) 299 15 March 2011 0.13 0.32 0.82 0.79
Salz (Cassaignes) 144 20 December 2000 0.18 0.32 0.76 0.75

Gardon (Anduze) 543
28 September 2000 0.03 0.02 0.95 0.97
8 September 2002 0.12 0.00 0.97 0.95

18 October 2006 0.03 0.15 0.60 0.80

Beaume (Rosières) 212 16 November 2006 0.32 0.10 0.64 0.75

Ardèche (Vog̈ué) 619
20 October 2008 0.02 0.02 0.93 0.96
31 October 2008 0.13 0.04 0.87 0.89

3 November 2011 0.23 0.40 0.85 0.73

Average 0.13 0.17 0.81 0.83

sensitivity indices are similar. First, before rainfall starts,CZ,
CKSS andKD1 – i.e., soil depths, lateral subsurface flow and
main channel roughness – explain most of the variability be-
cause the initial soil water content (above 48 %, Table 4) ac-
tivates subsurface flow and exfiltration in the drainage net-
work. Only the main channel represented byKD1 is con-
cerned by these small amounts of water at the outlet (a few
m3 s−1).

Then we can distinguish the 16 November 2006 event at
Rosìeres (Fig. 8, right), the smallest one in terms of spe-

cific discharge, from the nine others obviously activating all
model flow components. This event is underestimated by
MARINE and is characterized by an important sensitivity to
CZ, especially at peak time and early recession (11 to 22 h)
of the hydrograph.CK andKD1 play a small role during the
rising limb. Moreover, while the influence of the parameter
driving infiltrability (i.e.,CK) is low, subsurface flow repre-
sented by parameterCKSS plays an important role (10 % of
total variance). Only “minor flow components” are activated



Table 6. Gardon d’Anduze: 8 September 2002 flash flood event, first-order effects and standard error averaged in time, and first-order
metamodelR2 for different sampling ranges around nominal parameter values.

α Si1 CZ Si1 CK Si1 CKSS Si1 KD1 Si1 KD2 Sum (Si1) Sum (Si1 std err) R2 Sum (Si1)

±5 % 0.392 0.183 0.119 0.198 0.091 0.983 0.020 0.972
±10 % 0.413 0.170 0.109 0.195 0.079 0.967 0.028 0.975
±15 % 0.376 0.169 0.117 0.196 0.081 0.940 0.030 0.971

Table 7. First-order effects (–), standard error and first-order metamodelR2 averaged in time for each event of the validation set sorted in
ascending order of specific peak flow. For each event 1024 events are analyzed.

Area Sum Sum
Catchments (km2) Validation events Si1 CZ Si1 CK Si1 CKSS Si1 KD1 Si1 KD2 (Si1) (Si1 stdev) R2

Beaume (Rosières) 212 16 November 2006 0.73 0.00 0.23 0.00 0.00 0.979 0.038 0.99
Verdouble (Tautavel) 299 15 March 2011 0.36 0.06 0.22 0.13 0.22 0.992 0.021 0.97
Gardon (Anduze) 543 28 September 2000 0.49 0.01 0.17 0.20 0.07 0.943 0.056 0.94
Salz (Cassaignes) 144 20 December 2000 0.29 0.03 0.42 0.11 0.09 0.941 0.038 0.99
Ardèche (Vog̈ué) 619 3 November 2011 0.51 0.04 0.27 0.05 0.13 0.997 0.019 0.98
Ardèche (Vog̈ué) 619 20 October 2008 0.47 0.15 0.23 0.07 0.07 0.993 0.016 0.99
Ardèche (Vog̈ué) 619 31 October 2008 0.33 0.04 0.49 0.04 0.07 0.967 0.011 0.99
Tech (Pas du Loup) 250 15 March 2011 0.49 0.02 0.26 0.16 0.02 0.948 0.046 0.94
Gardon (Anduze) 543 18 October 2006 0.57 0.00 0.15 0.14 0.08 0.947 0.035 0.93
Gardon (Anduze) 543 8 September 2002 0.41 0.17 0.11 0.20 0.08 0.966 0.028 0.98

Average 0.43 0.05 0.24 0.11 0.08 0.92 0.034 0.92

for that catchment and event – i.e., moderate solicitation of
flow components without floodplain invasion.

At the beginning of rainfalls, and during heavy rainfalls, a
similar general sensitivity pattern can be found for the nine
other events (Figs. 5 to 8); most flow components are ac-
tivated: infiltration, lateral subsurface flow, hillslope runoff,
main channel and floodplain flow. The temporal evolution
of parameter’s influence involves in the following order the
different processes: infiltrability, transfer and limitation by
maximum soil storage capacity. In fact,CK determining in-
filtration capacity is sensitive for significant rainfall intensity
variations (Fig. 5 at 15 h, Fig. 6 at 47 and 57 h, Fig. 7 (right) at
8 h, Fig. 8 (left) at 25 h). Before the hydrograph’s rising limb,
KD1, the main channel friction coefficient, drives the uncer-
tainty, and then soil depth coefficientCZ is sensitive, which
defines cells total storage capacity. This highlights sensitivity
to the soil volume, which influences saturation dynamics and
so on to water volumes partitioning among the catchment.
Let us remark thatCZ explains more than 80 % of model
output variance when most hydrographs are peaking.

However, the presence of some peaks ofCKSS influence
during simulations (Fig. 5 around 10, 60 and 160, 210 and
240 h; Fig. 6 around 15, 55 and 87 h; Fig. 7 (left) around
50 h, (right) around 52 h; Fig. 8 (left) around 15 h) can be
explained by a significant contribution of subsurface flow.
Indeed,CKSS is the adjustment parameter of soil lateral con-
ductivity for subsurface flow. It can have an impact on sim-
ulated discharge by modifying the distribution of soil wa-

ter content and thus infiltration dynamics. During recession,
CKSS sensitivity generally increases, which can show the role
of subsurface in recession dynamics according to the model.

Let us consider the highCKSS sensitivities explaining
more than 80 % of model output variance for slow recessions
in the case of 31 October 2008 and 3 November 2011 floods
on the Ard̀eche at Vog̈ué for instance (Fig. 5), as for slow hy-
drograph rising limb in the case of the 15 March 2011 flood
of the Verdouble at Tautavel (Fig. 7, right, at 51 h) or the
20 December 2000 flood of the Salz at Cassaignes (Fig. 8,
left, between 10 and 20 h)
KD2 the overbank roughness coefficient is sensitive during

late rising and early falling limbs, when saturation is high
and a huge amount of water is transferred to the outlet by
overbank flow (Fig. 5 around 20, 90 h and between 170 and
225 h; Fig. 6 around 35, 67 and 115 h; Fig. 7 (left) around
90 h, (right) around 40, 65 and 100 h; Fig. 8 (left) around
45 h).

Finally, it can be remarked that in the case of the 8 Septem-
ber 2002 extreme event at Anduze, a complex catchment be-
havior reflected by quickly variable and marked sensitivities
is caused by an extreme storm in the very lower part of the
catchment causing short response delays (more than 400 mm
cumulated rainfall on half of the catchment with maxima
greater than 700 mm located close to the outlet). On the con-
trary, the 18 October 2006 and 28 September 2000 gener-
ating storms hit the medium or upper part of the Gardon
d’Anduze catchment with less violence. For these longer rain
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Figure 9: (Top) Ardèche at Vogüé, 20/10/2008, 31/10/2008 and 03/11/2011 flash flood 3 

events and quintiles Q10 and Q90 of simulated discharge. (Bottom) ∑−
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Fig. 9. (Top) Ardèche at Vog̈ué: 20 October 2008, 31 October 2008 and 3 November 2011 flash flood events and quintilesQ10 andQ90 of
simulated discharge. (Bottom) 1−
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Figure 10: (Top) Gardon at Anduze, 28/09/2000, 08/09/2002 and 18/10/2006 flash flood 3 
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Fig. 10.(Top) Gardon at Anduze: 28 September 2000, 8 September 2002 and 18 October 2006 flash flood events and quintilesQ10 andQ90
of simulated discharge. (Bottom) 1−

∑
i

Si .

events the temporal sensitivities vary more slowly. Moreover,
for sensitivity peaks ofCZ and thenKD1, KD2, (Fig. 6 be-
tween 20 and 30 h, and between 95 and 122 h) corresponding
to rainfall peaks responses,CZ sensitivity stays above the
other during the flood. This can be attributed to a catchment
spatio-temporal dampening effect: when a storm hits catch-
ment headwaters, a larger soil storage volume is involved in
flood generation.

5.3 Analysis of temporal interaction effects

Using variance-based sensitivity analysis methods, an essen-
tial aspect is that the estimatedS′

is have interesting normal-
ization properties. Indeed, from Eq. (5) normalized byV (Y )

and with Eq. (6), the sum of nicely scaled sensitivity mea-
sures between 0 and 1 can be written as

1 =

∑
i

Si +
∑
i

∑
j

Sij + . . .+ S1,2,...,k. (7)
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Figure 11: (Top) 15/03/2011 flash flood event and Q10 and Q90 quintiles of simulated 3 

discharge on (left) the Tech at Pas-du-Loup and (right) the Verdouble at Tautavel. 4 
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Fig. 11.(Top) Flash flood event of 15 March 2011 andQ10 andQ90 quintiles of simulated discharge for (left) the Tech at Pas-du-Loup and
(right) the Verdouble at Tautavel. (Bottom) 1−
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Figure 12: (Top) Q10 and Q90 quintiles of simulated discharge on (left) 20/12/2000 for the 3 
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Fig. 12. (Top)Q10 andQ90 quintiles of simulated discharge on (left) 20 December 2000 for the Salz at Cassaignes and (right) 16 Novem-
ber 2006 for the Beaume at Rosières. (Bottom) 1−
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Given that the sum of all sensitivity indices (up to orderk,
with k the number of input factors) sum up to 1, it is possible
to apprehend the importance of interactions using first-order
sensitivity indices. By definition the difference 1−

∑
i

Si gives

the sum of all higher order sensitivities and is therefore an in-
dicator of the presence of interactions according to (Ratto et
al., 2007a; Saltelli et al., 2000). Indeed the formulation of
each summand of the HDMR (including second-order vari-
ances) is a conditional variance; that is to say the integral of
the square of a real function (cf. Eq. 4), which implies the
positivity of Vij ’s and thereforeSij ’s.

The difference 1−
∑
i

Si is presented for the validation

events from Figs. 9 to 12. During hydrograph peaks, less
than 10 % of model outputs variance is explained by corre-
lations between the five sensitive MARINE model parame-
ters. Moreover, the highest correlation is at 0.6 after initial-
ization (Fig. 9 at 1, 53 and 141 h; Fig. 10 at 5, 42, 53 and
77 h; Fig. 11 (left) at 8 h; and Fig. 11 (right) at 1 h) or af-
ter first rainfall intensity peak (Fig. 10 at 12, 53 and 84 h;
Fig. 11 (right) at 12 h). These interactions reaching 60 % of
model variance when the model starts running or when it is
first raining might be due to water partition among the model
components, which can lead to parameter interactions. This
indicates that water partitioning representation can be im-
proved and begs questions about initialization data.

This low interacting behavior of MARINE model in gen-
eral, with some differences in function of the catchment-
flood type and magnitude, can be interpreted as an indicator
of a correct process parameterization, especially during ris-
ing limbs. In summary, interactions play an important role at
the initial stage of the rising limb (with peaks corresponding
to the beginning of precipitation), and the model inputs influ-
ence tend to be more orthogonal (few interactions) when the
flow is significant.

6 Conclusions

The aim of this contribution was to analyze hydrologic model
sensitivity in the case of flash floods with a new approach
in hydrological modeling – namely model output variance
decomposition for temporal patterns of parameter sensitiv-
ity. Given a simple and parsimonious parameterization of
MARINE model structure, TEDPAS are calculated on a sig-
nificant number of contrasted validation flood events in the
Cévennes and the Pyrenean region (France). Our results
show the huge impact of soil depth on model sensitivity,
which is consistent with recent case studies of the Cévennes
(Braud et al., 2010; Roux et al., 2011). First-order sensitiv-
ity to the soil depth map multiplicative constantCZ explains
more than 80 % of model outputs variance when most hydro-
graphs are peaking. Moreover, first-order sensitivity to sub-
surface lateral transmissivity constantCKSS is responsible for
80 % of model output variance for slow recessions or multi-

ple peak hydrograph rises. Using models as learning tools
with TEDPAS gives information on the different processes
giving rise to the flood hydrograph in the following order: in-
filtrability, transfer and limitation by maximum soil storage
capacity. Concerning the transfer function, successive sen-
sitivity to drainage network’s main channel and flood plain
roughness likely depends on event dynamics and amplitude.

The small part of variance explained by correlations be-
tween MARINE parameters probably stems from model par-
simony. First hours of simulations or rainfall intensity peaks
are yet to be determined as the instant when correlation oc-
curs, pointing to soil water content initialization or water dis-
tribution problems. Reduction of model uncertainty can be
achieved by improving water partition between lateral flow
components and other mechanisms such as exfiltration in the
drainage network and its own representation. Measurements
at different scales are still necessary to better constrain these
flow dynamics. Moreover, in situ soil moisture measurements
and smaller scale water balance modeling (Vincendon et al.,
2010) would strengthen representation of soil saturation dy-
namics and increase simulation realism for catchment flash
flood responses.

A general pattern of model response is found for Mediter-
ranean flash flood events, but some peaks of sensitivity to
infiltrability, subsurface during recession or friction coeffi-
cients, for example, can indicate particular process dynam-
ics attributable to singular rainfall distributions. Combin-
ing variance-based sensitivity analysis in a regionalization
framework along with spatial and temporal sensitivities de-
rived from variational methods, following the intent of Cas-
taings et al. (2009), could bring understanding in spatial
temporal aggregation of flash-flood-generating processes and
data/modeling uncertainties. The resonance between rainfall
spatial and temporal distribution and catchment properties, in
other words the catchment temporal dampening effect, could
be accessible that way.

Ultimately it can be concluded that the variance-based
temporal sensitivity analysis method presented here can be
successfully applied to distributed hydrological models, al-
lowing the following:

– analysis of the model processes temporal dynamics for
each flood event,

– derivation of patterns of model responses according to
the different characteristics of each event,

– emphasis of model structure or parameterization prob-
lems when an important part of the model variance is
explained by correlations.

This method can be implemented with a very reasonable
computational cost, and studies for other litho-pedological
conditions, landscapes and climatic regions could bring in-
sight, for example, to help the number of possible hydrolog-
ical process representations to converge.



Appendix A

Table A1. Notations.

Notation Unit Meaning

ad [m2] Drainage area
CK [-] Correction coefficient of the

saturated hydraulic conductivity
CZ [-] Correction coefficient of the soil

thickness
I [m] Cumulative infiltration
T0 [m2 s−1] Local transmissivity of fully

saturated soil
CKSS [-] Correction coefficient of local trans-

missivity of fully saturated soil
M [-] Transmissivity decay parameter
H [m] Water depth
I [m s−1] Infiltration rate
R [m] Rainfall rate
K [m s−1] Saturated hydraulic conductivity
LNP [-] Performance criterion
Ko [m−1/3s−1] Strickler roughness coefficient of

the overland
KD1 [m−1/3s−1] Strickler coefficient of the main

channel (drainage network)
KD2 [m−1/3s−1] Strickler coefficient of the hack

overbanks (drainage network)
Q [m3 s−1] Discharge
Sf [m m−1] Friction slope
S0 [m m−1] Bed slope
tp [s] Time to ponding
U [m s−1] Overland flow velocity
Z [m] Soil thickness
θi [m3 m−3] Initial water content of the soil
θs [m3 m−3] Saturated water content of the soil
9 [m] Soil suction at wetting front
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