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Abstract—Object association is often a prior step in the
data fusion process, especially for multiple objects tracking
and multisensor data fusion. The approach introduced in this
paper associates objects detected in a scene by two sensors,
while modeling uncertainty using the Dempster-Shafer theory of
belief functions. Sensor information is transformed into pairwise
mass functions, which are combined using Dempster’s rule of
combination. The result of this combination allows us to find the
most plausible relation between two sets of objects by solving
a linear programming problem. Experimental results with real
data acquired from sensors embedded in intelligent vehicles are
presented.

I. INTRODUCTION

Object association is often a prior step in the data fusion
process. This paper deals with the association of objects
detected by two sensors in their area of interest. Sensors treat
observations and provide information about objects such as
number of detected objects, kinematic information (position,
velocity), identification information (status, class, dimensions,
etc.). Associating objects is a difficult problem since the
number of objects in the scene is usually unknown and data
provided by sensors can be uncertain and incomplete (with
possible false alarms and non detections).

Many papers have dealt with this problem in order to
associate objects perceived by different sensors or by the same
sensor at different times. Classical data association methods are
described in several books, such as Bar-Shalom and Fortmann
[1] and Blackman and Popoli [2]. The NN (Nearest Neighbor),
GNN (Global Nearest Neighbor), PDA (Probabilistic Data
Association), JPDA (Joint Probabilistic Data Association) and
MHT (Multi Hypothesis Tracking) methods are the main tech-
niques associating observations with predictions for objects
tracking. Some of them are dedicated to multiple sensors
application called track-to-track association [3], [4]. Most
of these methods require a probability measure to evaluate
different hypotheses. These different methods, and others [5],
[6], differ in their complexity as well as their ability to manage
uncertainty and to handle ambiguities in the associations.

In this paper, we propose a formalization of the association
problem using belief functions, in order to model uncertainties
related to the object detector (the sensor) and to occlusion
issues. Our method finds the most plausible relation between
two sets of objects, such that each object in one set is matched
with at most one object in the other set.

Several researchers have previously investigated this prob-
lem in the belief function framework. In [7], the authors
present a method that determines the presence of different
objects observed by different sensors. They use the degree of
conflict to solve the problem of data association and apply
their procedure to the detection of submarines. A method
based on belief functions for data association for multiple
target tracking problems was proposed in [8]. Schubert in [9]
manages inconsistent intelligence as a preprocessing step to
information fusion. Several techniques have been proposed for
associating perceived objects and known objects for object
tracking applications. Gruyer and Cherfaoui [10], based on
[11], have developed an algorithm for multi-object association.
To make a decision, they remove the ambiguity and pro-
vide heuristically a “good” solution for multi-object tracking.
Mercier et al. [12], based on previous work by Rombaut [13]
and Gruyer et al. [14], present a method that deals with object
appearance and disappearance. They associate objects detected
at time t with known objects (or tracks) at previous time. Their
method takes into account two points of view: perceived and
known objects. It is based on the similarity between object
positions. However, this method is very time-consuming and
it lacks a fundamental symmetry property, as it may give
different results if the sets of known and perceived objects
are interchanged. Ristic and Smets [15] proposed a method to
associate objects based on information about their class.

In this paper, we are interested in associating mobile
objects by taking into account all the available attributes such
as position, velocity and class, together with their uncertainties.
As in [13], [14], [12], dissimilarities between object attributes
are considered as pieces of evidence and formalized as pair-
wise mass functions mij regarding the association of any pair
of objects (ei, fj) ∈ E × F , where E and F denote the two
sets of objects to be associated. Based on this information, we
show that the problem of finding the most plausible relation
between E and F can be formalized as a binary linear program
and solved very efficiently.

This paper is organized as follows. Belief functions are
recalled in Section II. In Section III, we present our new
object association formalism using belief functions. Then,
the computation of mass functions from object attributes is
explained in Section IV. Experimental results are presented in
Section V. Finally, Section VI concludes the paper.



II. BACKGROUND ON BELIEF FUNCTIONS

The theory of belief functions has two main components:
equivalent representations of a body of evidence (in the form
of mass, belief and plausibility functions), and a combination
rule for combining independent items of evidence. These
two components are reviewed in Subsection II-A and II-B,
respectively.

A. Representation of evidence

The theory of belief function is a framework for reasoning
under uncertain based on the modeling of evidence [16]. More
precisely, let us assume that we are interested in the value of
some variable θ taking values in a finite domain Θ, called
the frame of discernment. Uncertain evidence about θ may be
represented by a (normalized) mass function m on Θ, defined
as a function from the powerset of Θ, denoted as 2Θ, to the
interval [0, 1], such that m(∅) = 0 and

∑

A⊆Θ

m(A) = 1. (1)

Each number m(A) is interpreted as a degree of belief attached
to the proposition θ ∈ A and to no more specific proposition,
based on some evidence.

To each normalized mass function m, we may associate
belief and plausibility functions from 2Θ to [0, 1] defined as
follows:

Bel(A) =
∑

B⊆A

m(B) (2a)

Pl(A) =
∑

B∩A 6=∅

m(B), (2b)

for all A ⊆ Θ. These two functions are linked by the
relation Pl(A) = 1 − Bel(A), for all A ⊆ Θ. Each quantity
Bel(A) may be interpreted as the degree to which the evidence
supports A, while Pl(A) can be interpreted as the degree to
which the evidence is not contradictory to A. The following
inequalities always hold: Bel(A) ≤ Pl(A), for all A ⊆ Θ.
The function pl : Θ → [0, 1] such that pl(θ) = Pl({θ}) for all
θ ∈ Θ is called the contour function associated to m.

B. Combination of evidence

A key idea in DS theory is that beliefs are elaborated by
aggregating different items of evidence. The basic mechanism
for evidence combination is Dempster’s rule of combination
[16], defined as follows:

(m1 ⊕m2)(A) =
1

1− κ

∑

B∩C=A

m1(B)m2(C) (3)

for all A ⊆ Θ, A 6= ∅ and (m1 ⊕m2)(∅) = 0, where

κ =
∑

B∩C=∅

m1(B)m2(C) (4)

is the degree of conflict between m1 and m2. If κ = 1, there
is a logical contradiction between the two pieces of evidence
and they cannot be combined. Dempster’s rule is commutative,
associative, and it admits as neutral element the vacuous mass
function, defined by m(Θ) = 1.

Dempster’s rule can be easily expressed in terms of contour
functions: if pl1 and pl2 are the contour functions of two mass
functions m1 and m2, then the contour function of m1 ⊕m2

is, using the same symbol ⊕ as used for mass functions and
contour functions

(pl1 ⊕ pl2)(θ) =
pl1(θ)pl2(θ)

1− κ
, (5)

for all θ ∈ Θ.

III. OBJECT ASSOCIATION FORMALISM

A. Association algorithm

We consider objects detected in a scene by two different
sources S1 and S2. Each sensor detects a set of objects denoted
by E = {e1, e2, . . . , eN} for S1 and F = {f1, f2, . . . , fM} for
S2. We suppose that data are aligned in space and time, thanks
to sensors calibration and evolution models. Mathematically,
we are searching for a relation R ⊆ E × F such that, for all
i, j and k:

(ei, fj) ∈ R and (ei, fk) ∈ R⇒ j = k (6a)

and
(ei, fk) ∈ R and (ej , fk) ∈ R⇒ i = j. (6b)

Any such relation may be described by a matrix1 R of size
(n, p) such that Rij = 1 if (ei, fj) ∈ R and Rij = 0.

We assume the available evidence about the association
between the sets E and F to consist in NM mass functions
mi,j , 1 ≤ i ≤ N , 1 ≤ j ≤ M . Each mi,j defined on the
frame Θij = {0, 1} encodes a piece of evidence about a binary
variable Ri,j that equals 1 if ei and ej correspond to the same
entity, and 0 otherwise. The masses mij({1}) and mij({0})
quantify the support in the propositions Rij = 1 and Rij =
0, respectively, while mij({0, 1}) is a mass that cannot be
committed to any specific hypothesis because of ignorance.
Typically, mi,j is based on a measure of similarity between
some attributes describing the objects, as will be shown in
Section IV.

The key idea behind our approach is to express all the
available evidence in the frame of discernment R, i.e., the
set of all possible matchings between E and F verifying
(6a)-(6b). Assuming independence between the NM items of
evidence, the NM mass functions can then be combined using
Dempster’s rule (3), and the plausibility of any relation R ∈ R
may be simply calculated.

Let Rij denote the set of relations that match objects ei
and ej :

Rij = {R ∈ R|Rij = 1}. (7)

Each mass function mij on Θij = {0, 1} may be expressed
in R by transferring the mass mij({1}) = αij to Rij ,

mij({0}) = βij to Rij and mij({0, 1}) = 1 − αij − βij
to R, where Rij denotes the complement of Rij . Let plij
denote the corresponding contour function. It has the following
expression:

plij(R) =

{

1− βij if R ∈ Rij ,

1− αij otherwise,
(8)

1By abuse of notation but without any risk of confusion, we use the same
notation for the relation and its corresponding matrix.



for all R ∈ R, which can be expressed more concisely as
follows:

plij(R) = (1− βij)
Rij (1− αij)

1−Rij . (9)

Let m denote the mass function on R obtained by com-
bining the NM mass functions using Dempster’s rule. From
(5), its contour function pl is proportional to the product of
the NM mass functions plij :

pl(R) ∝
∏

i,j

(1− βij)
Rij (1− αij)

1−Rij , (10)

and its logarithm is

ln pl(R) ∝
∑

i,j

Rij ln(1−βij)+(1−Rij) ln(1−αij)+C, (11)

where C is a constant.

The most plausible relation R∗ can thus be found by
solving the following linear optimization problem:

max
∑

i,j

wijRij (12a)

with

wij = ln
1− βij
1− αij

, (12b)

subject to

M
∑

j=1

Rij ≤ 1 ∀i (12c)

N
∑

i=1

Rij ≤ 1 ∀j (12d)

Rij ∈ {0, 1} ∀(i, j), (12e)

where constraints (12c) and (12d) are related to Equations (6a)
and (6b), respectively. The basic mathematical structure of
the problem makes constraint (12e) unnecessary, as there will
always be an optimal linear programming solution in which
all Rijs are either 0 or 1.

B. Comparison with the Mercier’s approach

Following previous work by Rombaut [13] and Gruyer
et al. [14], Mercier et al. [12] attempted to find a relation
between two sets of objects E and F (referred to as “known”
and “perceived” objects, respectively), based on pairwise mass
functions, as considered in this paper. Their approach involves
computing, for each known object, a mass function over the set
of all perceived objects. They then propose an algorithm trying
to find an association with maximum pignistic probability [17].
However, the method involves enumerating (N+1)M possible
associations and thus quickly becomes intractable when more
than a few objects have to be matched. Furthermore, it may
yield different results if the sets of known and perceived
objects are interchanged, which suggest that there is a fun-
damental flaw in the approach.

To illustrate this point, let us consider the following very
simple example from [12]. Assume that we have N = 1, M =
2 and the following weights (with our notations):

α11 = 0.5, β11 = 0, α12 = 0.7, β12 = 0.3.

By adopting the “known objects” points of view, Mercier et al.
find the following relation R = R1 = [0 1], meaning that ob-
ject e1 is associated with object f2. In contrast, when adopting
the “perceived object” point of view, they find R = R2 = [1 0],
i.e., object e1 is associated with object f1. Using (10), we can
check that pl(R1)/pl(R2) = 4.67, meaning that R1 is much
more plausible than R2. Actually, it is the unique solution
found by solving the optimization problem presented above.

IV. COMPUTATION OF PAIRWISE MASS FUNCTIONS FROM

OBJECT ATTRIBUTES

Our aim is to associate objects using all available attributes,
including position, velocity, class and possibly others. Let mp

ij ,
mv

ij and mc
ij denote, respectively, the pairwise mass functions

obtained from position, velocity and class information. These
mass functions will be combined using Dempster’s rule (3):

mij = mp
ij ⊕mv

ij ⊕mc
ij . (13)

The computation of mp
ij , mv

ij and mc
ij is explained below.

A. Position and velocity

Let us first consider how knowledge about the relative
position of two objects can be expressed as a pairwise mass
function mp

ij . Let dij denote the (Euclidean, Mahalanobis or
other) distance between the positions objects ei and fj . It is
clear that a single object cannot have two distinct positions and,
conversely, two objects cannot occupy exactly the same posi-
tion. Consequently, a small value of dij supports the hypothesis
Rij = 1, while a large value of dij supports the hypothesis
Rij = 0. Depending on the sensor reliability, a fraction of the
unit mass should also be assigned to Θij = {0, 1}. This line
of reasoning justifies a mass function mp

ij of the form:

mp
ij({1}) = αϕ(dij) (14a)

mp
ij({0}) = α (1− ϕ(dij)) (14b)

mp
ij(Θij) = α, (14c)

where α ∈ [0, 1] is a degree of confidence in the information
and ϕ is a decreasing function taking values in [0, 1]. For
instance, the following form may be chosen for ϕ:

ϕ(d) = exp(−γd), (15)

where γ is a positive coefficient.

Let us now consider velocity. Let d′ij denote the distance
between the velocities of objects ei and fj . Here, this piece of
evidence does not have the same interpretation as the previous
one: a large value of d′ij supports the hypothesis Rij = 0,

whereas a small value of d′ij does not support specifically
Rij = 1 or Rij = 0, as two distinct objects may have
similar velocities. Consequently, the following form of the
mass function mv

ij induce by d′ij seems appropriate:

mv
ij({0}) = α′

(

1− ψ(d′ij)
)

(16a)

mv
ij(Θij) = 1− α′

(

1− ψ(d′ij)
)

, (16b)

where, as before, α′ ∈ [0, 1] is a degree of confidence in the
information and ψ is a decreasing function taking values in
[0, 1]. This function can be chosen to have the same form as
(15), possibly with a different coefficient γ′.



B. Class information

Class information can be exploited as evidence about object
association. Clearly, two objects from different classes cannot
be matched. Ristic and Smets in [15] make a much stronger
assumption and postulate that two objects belonging to the
same class should be considered as identical. This assumption
is obviously not tenable when the number of classes is smaller
than the number of objects. We will not make this assumption
here.

Let mi and mj denote the mass functions on Ω =
{ω1 . . . , ωc}, quantifying our knowledge about the class of
each object i and j. Let Sij denote the proposition that objects
i and j belong to the same class. As shown in [18], the
plausibility of Sij and its negation Sij have the following
expressions:

plij(Sij) = 1−
∑

A∩B=∅

mi(A)mj(B)

= 1− κij

plij(Sij) = 1−
c

∑

k=1

mi({ωk})mj({ωk})

= 1− γij ,

(17)

where κij is the degree of conflict between mi and mj .

The corresponding function µij on Ωij = {Sij , Sij} has the
following expression:

µij({Sij}) = γij
µij({Sij}) = κij
µij(Ωij}) = 1− γij − κij .

(18)

Now, the following implication holds: Sij ⇒ Rij = 1. In
contrast, nothing can be said about Rij whenever Sij holds.
Consequently, expression µij in the frame Θij yields the
following mass function mc

ij :

mc
ij({0}) = κij

mc
ij(Θij) = 1− κij .

(19)

V. RESULTS

Our approach was experimented on real data. Objects were
detected by two different sensors: a Mobileye (S1) and a
Lidar Ibeo Alasca XT (S2). The Mobileye sensor uses mono
camera only; it has pattern recognition capabilities based on
image processing and optic flow analysis. This sensor provides
information about objects such as: id, status, type, position,
age and width. The Ibeo Alasca-XT Laser scanner supports
four scan layers. We used the information processing system
developed by Fayad et al. [19], [20]. This system detects and
recognizes pedestrians from laser scanner information.

Results were evaluated on a sequence of 58 frames with an
average of 8 objects in each frame. Our approach was applied
to all the objects detected in the scene. Figure 1 shows an
example of object detection using S2. The figure on the right
is just an image projection used for the visualization of objects
on the road (it projects objects between the two red lines).
It shows the detection of two objects. The figure on the left
represents the circles encompassing all the detected objects. In
this experiment, only two attributes were used: position and
class.

Fig. 1: Object detection system. The figure on the right is an
image projection used for the visualization of two objects on
the road.The left figure shows the circles encompassing all the
detected objects.

TABLE I: mp
ij

m
p

ij
({1}) f1 f2 f3 f4

e1 0.45 0.01 0.32 0.68

e2 0.71 0.02 0.34 0.39

e3 0.01 0.73 0.02 0.01

m
p

ij
({0}) f1 f2 f3 f4

e1 0.45 0.89 0.58 0.22

e2 0.18 0.88 0.56 0.51

e3 0.9 0.17 0.88 0.89

A. Computation of mass function

The Mahalanobis distance between each pair objects was
computed as follows:

dij =

√

(

xi − xj
yi − yj

)T

(Pi + Pj)
−1

(

xi − xj
yi − yj

)

(20)

where (x, y) denote the coordinates of the center of each
object, and P is the covariance matrix. The mass function
mp

ij was computed using (14) with α = 0.9 and γ = 0.1.

Sensor S2 provides a mass function mi about the class of
each object i. The set of classes is Ω2 = {P,NP}, where P
and NP represent pedestrian and non pedestrian, respectively.
Sensor S1 provides the type of each object but it does not com-
pute any corresponding confidence; the set of classes for this
sensor Ω1 = {V ehicle, Pedestrian, Truck,Bike,Bicycle},
it is thus a refinement of Ω2. Consequently, evidence expressed
in Ω1 can easily be expressed in Ω2. A mass function mj

encoding the class information provided by S2 was constructed
by assigning the mass 0.9 to {P} or {NP} depending on the
sensor’s decision, and a mass 0.1 to {P,NP}.

Mass functions mi and mj were used to compute mc
ij using

(19).

B. Example

In this section, we detail an example presented in Figure
2, where sensor S1 detects three objects shown in Figure 2b
(two pedestrians (e1,e2) and one car e3) and S2 detects four
objects shown in Figure 2c (two pedestrians (f1,f4), one car
f2 and a false detection f3). The results can be projected on
images through the calibration method introduced in [21]. The
corresponding position mass function is presented in Table I.

Sensor S2 provides the following class mass function:



TABLE II: mc
ij

mc
ij({0}) f1 f2 f3 f4
e1 0 0.77 0 0

e2 0 0.77 0 0

e3 0.5 0 0.57 0.76

mc
ij(Θij) f1 f2 f3 f4
e1 1 0.23 1 1

e2 1 0.23 1 1

e3 0.5 1 0.43 0.24

TABLE III: Contour functions plij . The two numbers on each
cell are plij(1) and plij(0).

plij f1 f2 f3 f4

e1
0.55 0.02 0.41 0.78

0.55 0.99 0.68 0.31

e2
0.81 0.03 0.43 0.49

0.28 0.99 0.66 0.6

e3
0.05 0.82 0.05 0.02

0.99 0.27 0.99 0.99

m1({P}) = 0.55
m1({NP}) = 0
m1(Ω) = 0.45

m2({P}) = 0
m2({NP}) = 0.86
m2(Ω) = 0.14

m3(P ) = 0.63
m3({NP}) = 0
m3(Ω) = 0.37

m4({P}) = 0.84
m4({NP}) = 0
m4(Ω) = 0.16

After combination, we obtain the mass functions mc
ij shown

in Table II. These mass functions were then combined using
the Dempster’s rule and the contour functions shown in Table
III were then computed using (9).

The most plausible relation R∗ in this case is found to be:

R∗ =

[

0 0 0 1
1 0 0 0
0 1 0 0

]

. (21)

We can conclude that the pedestrians e1 and e2 detected by
S1 are associated to the pedestrians f4 andf1 detected by S2.
The car e3 detected by S1 is associated to the car f2 detected
by S2 and the false detection f3 of S2 is not associated. These
results are shown in Figure 2d.

C. Comparison with Mercier’s approach

We tried to compare our results with those obtained using
the method developed by Mercier et al. [12]. However, we
were confronted to the combinatorial complexity of Mercier’s
method. For that reason, we filtered objects in order to decrease
the size of the problem. We compared these two methods on
58 frames with three to five objects in each one. The results
are similar in most cases. However, they differ when the class
information is important. The performances can be assessed
using precision and recall, defined as follows:

Precision =
|{true pairs} ∩ {matched pairs}|

|{matched pairs}|
(22)

Recall =
|{true pairs} ∩ {matched pairs}|

|{true pairs}|
. (23)

Precision is thus the proportion of matched pairs that really
correspond to the same object, while Recall is the proportion
of true pairs of objects that were matched correctly.

(a) The scene where we can see three objects: two
pedestrians “P” and one car “C”.

(b) Objects detection with S1, the green bar shows
objects that are associated in Figure 2e.

(c) Objects detection with S2, the green bar shows
objects that are associated in Figure 2e.

(d) Laser detection bird view.

(e) Association results.

Fig. 2: Association between the two sensors S1 and S2. Figure
2a shows the scene. Figure 2c presents the detection of four
objects (two pedestrians, a car and a false alarm) with S2. In
Figure 2b, the Mobileye detects three objects (two pedestrians
and a car). Figure 2d is a bird view of objects detected by S2.
Figure 2e shows the result of the association.



TABLE IV: Performance comparison

Optimal approach Mercier’s approach

Average computing time (s) 0.0175 36.41

Time for N = 3 and M = 10 (s) 0.014 9.36

Precision 0.78 0.73

Recall 0.9 0.9

The results are summarized in Table IV.

D. Case of conflicting evidences

In order to explore conflicting evidences, we tested the as-
sociation algorithm on simulated data, created by A. Houenou
[4]. One vehicle V0 is equipped with two sensors: S1 (field
of view : maxrange = 60m and α = 45◦) and S2 (field
of view : maxrange = 100m and α = 120◦). It can detect
other vehicles on the highway (up to 9 vehicles) as shown in
figure 3. Each vehicle detected by V0 is characterized by its
kinematic information (position and velocity), its covariance
matrix and its class. We associate all the detected objects by
S1 and S2 at each time step. In this simulation, we do not
consider the occlusions in order to detect most of the objects
on the road.

To evaluate the conflict, we calculate equation 12a by using
the most plausible relation R∗, the result of the association,
and we deduce the countour function pl as defined in eq.
10. Conflicting evidences will lead to a lower plausibility.
We tested the scenario for 25s (the time step is 0.01) and
we simulate different conflicting situations. The result of the
plausibility is shown in figure 4. The plausibility is low
between [5s,18s]. The plausibility equal to 1 refers to the cases
where one sensor could not detect objects in its field of view,
so there is no ambiguities in the association process.

Figure 6 presents the case at t = 4.8s where the plausibility
is not low (pl = 0.18) where S2 of V0 detects {V1, V5} while
S1 detects {V1}. V1 is associated to V1.
In figure 5, S2 detects, at t = 17.3s, 7 objects:
{V1, V2, V3, V4, V5, V6, V7} while S1 detects, at the same time,
3 objects: {V1, V2, V7}. The most plausible relation R∗ in this
case is found to be:

R∗ =

[

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1

]

. (24)

and pl is equal to 0.013. It is a low value that presents a high
degree of conflict because other nearby vehicles are candidate
for association, but its shown that the association algorithm
can find the most plausible solution in spite of the conflict.

VI. CONCLUSION

In this paper, we have presented a new object association
method within the belief function framework. Given two sets
of objects, this method encodes attribute information provided
by sensors into pairwise mass functions representing evidence
about the possible matching of each pair of objects from both
sets. These mass functions are combined using Dempster’s rule
of combination. The result of this combination is then used to
find the most plausible relation between the two sets of objects.
The optimal solution can be found by a linear programming

Fig. 3: Example of simulated data

Fig. 4: Plausibility of R∗

Fig. 5: Scenario at t=17.3s



Fig. 6: Scenario at t=4.8s

approach. This method is both optimal and much faster than
the one recently introduced in [12] to solve the same problem.
Our method has been validated by experiments with real data.
It is being currently implemented as part of a distributed data
fusion system for intelligent vehicles. Results will be reported
in future publications.
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