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Identification of a mesoscale model with
multiscale experimental observations

M.T. Nguyen, C. Desceliers and C. Soize

Abstract This paper deals with a multiscale statistical inverse method for per-
forming the experimental identification of the elastic properties of materials at
macroscale and at mesoscale within the framework of a heterogeneous microstruc-
ture which is modeled by a random elastic media. New methods are required for
carrying out such multiscale identification using experimental measurements of the
displacement fields at macroscale and at mesoscale performed with only a single
specimen submitted to a given external load at macroscale. In this paper, for a het-
erogeneous microstructure, a new identification method is presented and is formu-
lated within the framework of the three dimensional linear elasticity. It permits the
identification of the effective elasticity tensor at macroscale and the identification
of the stochastic tensor field modeling the apparent elasticity at the mesoscale. A
validation is presented with experimental measurements simulated with a numerical
model with a 2D plane stresses hypothesis.
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1 Introduction

The inverse methods for the experimental identification of the elastic properties
of materials at the macroscale and/or mesoscale have been extensively studied.
The experimental identification of microstructural morphology by image analy-
sis began in the 1980s (see for instance [35, 36, 37]) and it has led to signif-
icant advances in the identification of mechanical properties (see, for instance
[2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 16, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44].
Concerning the identification of stochastic models, the methodologies for statisti-
cal inverse problems in finite and infinite dimension are numerous and have given
rise to numerous studies and publications. These methods make extensive use of the
formulations and the tools of the functional analysis of boundary value problems
as well as those of probability theory, including mathematical statistics (finite and
infinite dimensional cases). Concerning the mathematical statistics, one can refer
to [39, 45] and [15, 38, 52, 50] for the general principles on the statistical inverse
problems. Early work on the statistical inverse identification of stochastic fields for
random elastic media, using partial and limited experimental data, have primarily
be devoted to the identification of statistical parameters of prior stochastic mod-
els (such as the spatial correlation scales and the level of statistical fluctuations)
[1, 17, 18, 19, 20, 29, 48, 51]. Those probabilistic/statistical methods are able to
solve the statistical inverse problems related to the identification of prior stochastic
models for the apparent elastic fields at mesoscale. Nevertheless, such experimen-
tal identification, which is carried out using measurements on a single specimen
submitted to a given external load at macroscale and using measurements of the
displacement fields at macroscale and mesoscale, requires new methods for iden-
tifying the statistical mean value of the random apparent elasticity tensor and the
other parameters controlling its prior stochastic model as, for instance, the spatial
correlation lengths and the parameters allowing the statistical fluctuations of the
stochastic field to be controlled.

In this paper, a new identification method is presented. A statistical inverse mul-
tiscale method is formulated for a heterogeneous microstructure within the frame-
work of the three-dimensional linear elasticity. This method permits both the iden-
tification of the effective elasticity tensor at macroscale and the identification of the
stochastic tensor field which modelizes the apparent elasticity field at mesoscale. It
is assumed that the experimental measurements of the displacement field are avail-
able at macroscale and at mesoscale. The prior stochastic model is a non-Gaussian
tensor-valued random field adapted to the properties of the 3D-elasticity field and
to the corresponding stochastic elliptic boundary value problem. The parameters of
the prior stochastic model of the apparent elasticity random field at mesoscale, are
its statistical mean value, its spatial correlation lengths and its level of statistical
fluctuations. This identification of the stochastic model at mesoscale requires the
knowledge of the effective elasticity tensor of macroscale and measurements of the
displacements field at the two scales simultaneously for one given specimen submit-
ted to a given static external loads. Thus, the proposed method is new. The theory
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will be presented for the 3D case and a numerical validation will be presented for
the 2D plane stress in the framework of experimental measurements obtained by
optical measurements (but, in the present paper, the validation will be performed
with simulated experiments).

2 Multiscale experimental configuration

The specimen (whose microstructure is complex and heterogeneous at microscale)
occupies a bounded macroscopic domain Ω macro in R3. Surface forces, fmacro, are
applied on a part Σ macro of the boundary ∂Ω macro of Ω macro. The other part Γ macro

of ∂Ω macro is fixed such that there is no rigid body displacement. At macroscale
on Ω macro, the measured displacement field is denoted as umacro

exp and its associated
strain tensor is denoted as εmacro

exp .

Let Ω meso be a subdomain of the specimen at mesoscale (a REV) and let ∂Ω meso be
the boundary of Ω meso. Let umeso

exp be the experimental measurement on Ω meso of the
displacement field at mesoscale. The associated strain tensor is denoted as 3meso

exp . It
is assumed that the experimental measurements of umeso

exp are obtained only for one
subdomain Ω meso related to one specimen. The volume average at mesoscale, 3meso

exp ,
of 3meso

exp is introduced such that

3meso
exp =

1
|Ω meso|

∫
Ω meso

3meso
exp (x)dx . (1)

The statistical fluctuations level of the experimental linearized strain field at mesoscale
around the volume average, 3meso

exp , is estimated by δ meso
exp which is defined as

δ
meso
exp =

√
V meso

exp

‖ 3meso
exp ‖F

, (2)

in which
V meso

exp =
1

|Ω meso|

∫
Ω meso

‖ 3meso
exp (x)− 3meso

exp ‖2
F dx (3)

and where ‖T‖F is the Frobenius norm such that, for any second-order tensor T =
{Ti j}i j, one has

‖T‖2
F =

3

∑
i=1

3

∑
j=1

T 2
i j . (4)
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3 Multiscale statistical inverse problem

At macroscale, a deterministic boundary value problem is introduced for a 3D lin-
ear elastic medium, which modelizes the specimen in its experimental configuration
(geometry, surface forces and Dirichlet conditions). At macroscale, the constitu-
tive equation involves a prior model for the elasticity tensor Cmacro(a) which is
parameterized by a vector a. For the 3D anisotropic elasticity, a represents the 21
constants of the elasticity tensor. The boundary value problem is formulated in dis-
placement and the solution is denoted as umacro (deterministic macroscale displace-
ment field). The linearized strain tensor associated with umacro is denoted as εmacro.
Tensor Cmacro(a) is unknown and must experimentally be identified, which means
that parameter a must be identified using the measurements of the displacement field
at macroscale. Consequently, a first numerical indicator I1(a) is introduced in order
to quantify the distance between εmacro

exp and εmacro. For a fixed value of parameter a,
this indicator is defined by

I1(a) = |||εmacro
exp − ε

macro(a)|||2 , (5)

in which

|||εmacro
exp − ε

macro(a)|||2 =
∫

Ω macro
‖εmacro

exp (x)− ε
macro(x;a)‖2

F dx . (6)

At mesoscale, two additional numerical indicators, I2(b) and I3(a,b), are con-
structed to identify the parameters b involved in the prior stochastic model of the ap-
parent elasticity random field Cmeso(b) which is considered as the restriction to sub-
domain Ω meso of a statistically homogeneous random field {Cmeso(x;b),x ∈ R3}.

Concerning the construction of the second numerical indicator I2(b), a random
boundary value problem is introduced for a 3D linear elastic random media occupy-
ing subdomain Ω meso and for which the apparent elasticity random field is Cmeso(b).
This random boundary value problem is formulated in displacement and the solu-
tion is denoted as Umeso (displacement random field) with the Dirichlet condition
Umeso = umeso

exp on boundary ∂Ω meso. The random linearized strain tensor field as-
sociated with Umeso is denoted as 3meso. For any given parameters b, numerical
indicator I2(b) is defined as

I2(b) =
∫

Ω meso
(δ meso(x;b)−δ

meso
exp )2 dx , (7)

in which

δ
meso(x;b) =

√
V meso(x;b)
‖ 3meso(b)‖F

, (8)

where
3meso(b) =

1
|Ω meso|

∫
Ω meso

3meso(x;b)dx , (9)
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and
V meso(x;b) = E{‖ 3meso(x;b)− 3meso(b)‖2

F} , (10)

It should be noted that, for all b, 3meso(b) = 3meso
exp . The third numerical indica-

tor I3(a,b) depends on a and b since this numerical indicator quantifies the dis-
tance between the elasticity tensor Cmacro(a) used in boundary value problem at
macroscale and the effective tensor Ceff(b) calculated by homogenization of the
stochastic model at mesoscale on the REV, which depends on b only. We then have

I3(a,b) = ‖Cmacro(a)−E{Ceff(b)}‖2
F . (11)

The identification of parameters a and b that describe the stochastic model of the ap-
parent elasticity random field Cmeso(b) at mesoscale is obtained by solving a multi-
objective optimization problem for the three indicators I1(a), I2(b) and I3(a,b).

4 Validation of the method in 2D plane stresses

The validation is performed within the framework of the linear elasticity in 2D plane
stresses. It should be noted that the two directions are observed when the displace-
ment fields are measured at macroscale and at mesoscale with a camera.

4.1 Prior stochastic model of the apparent elasticity random field
in 2D plane stresses

At mesoscale, the prior stochastic model of the apparent elastic random field Cmeso

is indexed by subdomain Ω meso which is assumed to be a REV. A representation
of Cmeso with a minimum of parameters and adapted to elliptic problems is used.
Parametric stochastic models have been proposed for scalar-valued stochastic fields
[5, 6, 21, 24] and for non-Gaussian tensor-valued stochastic fields in the framework
of the heterogeneous anisotropic linear elasticity [14, 46, 47, 51], with important
enhancements to take into account the material symmetry and the existence of elas-
ticity bounds [25, 26, 27, 28]. Hereinafter, the stochastic model is based on [46].

In using the Voigt notation, the fourth-order elasticity tensor Cmeso(x) can be repre-
sented by a (6× 6) real matrix. The strain vector is then denoted as (ε11,ε22,2ε12,
ε33,2ε23,2ε13) and the associated stress vector is denoted as (σ11,σ22,σ12,σ33,
σ23,σ13). Such numbering of those vectors, which is not usual, has been chosen
for the sake of simplicity in 2D plane stresses, for which the (3× 3) compliance
matrix [S2D(x)] corresponds to the first (3×3) block of the (6×6) compliance ma-
trix [Smeso(x)] = [Cmeso(x)]−1 .
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The prior stochastic model of Cmeso is then constructed in choosing [Smeso] =
{[Smeso(x)] ,x ∈ Ω meso} in the set SFE+ [46, 49] of non-Gaussian second-order
stochastic fields with values in the set of all the positive-definite symmetric (6×6)
real matrices, for which the mean value is a given matrix [Smeso] =E{[Smeso(x)]} for
all x in Ω meso. As a result, the matrix-valued random field {[Smeso(x)],x ∈ Ω meso}
is described as a function of the entries of matrix [Smeso], of three spatial correlation
lengths `1, `2, `3 and of one parameter δ which controls the level of dispersion.

In the case of 2D plane stresses, random matrix [S2D(x)] (the left upper (3×3) block
matrix of [Smeso(x)]) can be written as a function of the entries of matrix [S2D] (left
upper (3× 3) block matrix of [Smeso]), one spatial correlation length ` = `1 = `2
and dispersion parameter δ . The prior model of the apparent elasticity random field
[C2D] = {[C2D(x)] ,x ∈Ω meso} with values in the set of the (3×3) real matrices is
then constructed, for all x in Ω meso, as the inverse of the random matrix [S2D(x)].
We then have

[C2D(x)] = [S2D(x)]−1 , a.s . (12)

Consequently, the parameter b of the prior stochastic model of the apparent elas-
ticity random field [C2D(b)] are b = (δ , `, entries of [S2D]). It should be noted that
random fields [C2D(b)] and [S2D(b)] do not belong to the set SFE+ of non-Gaussian
second-order stochastic fields with values in the set of all the positive-definite sym-
metric (3×3) real matrices.

4.2 Construction of a simulated ”experimental” database

To validate the methodology, ”experimental” measurements at macroscale and at
mesoscale are both simulated in using a computational model. The 2D domain
Ω macro in the plane (Ox1x2), is defined as a square whose dimensions are h =
10−2 m. At mesoscale, the material is heterogeneous, anisotropic and linear elas-
tic. A line force directed along −x2, with an intensity of 5× 10−2 N/m, is applied
on the edge x2 = h. The edge x2 = 0 is fixed. A 2D plane stress state is assumed.
At mesoscale, the 2D apparent elasticity field is constructed as a realization of the
prior stochastic model of [C2D(b)] with ` = 1.25×10−4 m, δ = 0.4 and where the
entries of [S2D] are defined below. It is assumed that the elastic medium is transverse
isotropic which yields

[Smeso] =



1
ET
− νT

ET
0 − νL

EL
0 0

− νT
ET

1
ET

0 0 0 0

0 0 2(1+νT )
ET

0 0 0
− νL

EL
− νL

EL
0 1

EL
0 0

0 0 0 0 1
GL

0
0 0 0 0 0 1

GL


, (13)
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where EL = 15.8×109 Pa, ET = 9.9×109 Pa, GL = 5.2×109 Pa, νL = 0.31 et νT =
0.38. Consequently, we have

[S2D] =


1

ET
− νT

ET
0

− νT
ET

1
ET

0

0 0 2(1+νT )
ET

 . (14)

Consequently, the vector b of parameters is then written as b = (δ , `,ET ,νT ). At
mesoscale, the realization of the apparent elasticity random field is simulated on the
whole domain Ω macro.

A computational model is constructed with the finite element method and a regu-
lar finite element mesh with one million quadrangle elements (1,000 along x1 and
1,000 along x2, see Fig. 1, left). The strain field is numerically simulated in using
a finite element interpolation in a regular grid of nodes with a mesoscale resolution
on the whole domain Ω macro (see Fig. 1, center). Measurements of the strain field
εmacro

exp is simulated at macroscale in extracting the values of the displacement field
in a regular grid of 10× 10 nodes and in using a finite element interpolation (see
Fig. 1, upper right). In addition, in the subdomain defined as a square with dimen-
sion 10−3 m (mesoscale), the measurements of the strain field εmeso

exp are simulated
at mesoscale in extracting the values of the displacement field in a regular grid of
100×100 nodes and in using a finite element interpolation (see Fig. 1, lower right).

Figure 2 shows the values of {εmacro
exp }22 for the simulated experimental strain field

at macroscale with a resolution 10×10. The square in black dashed line represents
the considered mesoscale subdomain. Figure 3 shows the values of {εmeso

exp }22 for
the simulated experimental strain field at mesoscale with a resolution 100×100.

4.3 Multi-objective optimization problem

The identification of parameter b is carried out in searching for the optimal values
amacro and bmeso which solve the following multi-objective minimization problem

(amacro,bmeso) = arg min
a∈A macro ,b∈Bmeso

I (a,b) , (15)

where A macro and Bmeso are the sets of the admissible values for a and b, and
where the components I1(a), I2(b) and I3(a,b) of vector I (a,b) are defined by
Eqs. (5), (7) et (11).

The multi-objective optimization problem defined by Eq. (15) is solved in using a
genetic algorithm with an initial population size of 50. Less than 100 generations
has been enough for constructing the Pareto front which is iteratively constructed,
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Fig. 1 Description of the methodology for the construction of the simulated experimental mea-
surements in using the finite element method at macroscale and at mesoscale: FE model of the
specimen at macroscale with a mesoscale resolution (left), component {11} of the strain field at
macroscale with a mesoscale resolution (center), component {11} of the strain field at macroscale
with a macroscale resolution (upper right) and component {11} of the strain field at mesoscale
with a mesoscale resolution (lower right).

at each generation of the genetic algorithm. The initial value of parameter a has
been set to a(0) and corresponds to the solution of the following partial optimization
problem: a(0) = argminI1(a) for a ∈ A macro, which is solved with the simplex
algorithm. Actually, the value of amacro is almost unchanged through the iterations
when the multi-objective problem is solved. The optimal value bmeso is chosen as
the point on the Pareto front that minimizes the distance between the Pareto front
and the origin.

4.4 Numerical results and validation

At macroscale, the prior model of the material is chosen as a transverse isotropic
model. Consequently, in 2D plane stress, parameter a = (Emacro

T ,νmacro
T ) is made up

of the transverse Young modulus and the transverse Poisson coefficient. The optimal
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exp }22 of the simulated experimental strain field at mesoscale with a reso-
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value of a = (Emacro
T ,νmacro

T ) is amacro = (9.565×109 Pa , 0.3987).

Table 1 shows the values of b = (`,δ ,ET ,νT ) for each point of the Pareto front
displayed in Fig. 4. The optimal values correspond to the points 5, 6, 7, 8 and 9
where points 6 et 7 are close. The optimal value bmeso is such that `meso = 9.66×
10−5 m, δ meso = 0.37, Emeso

T = 1.023×1010 Pa, νmeso
T = 0.376. This result yields a

validation of the proposed methodology since this identified optimal value bmeso is
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very close to the value b that has been used to construct the simulated experimental
database and for which `= 1.25×10−4 m, δ = 0.4, ET = 9.9×109 Pa, νT = 0.38.

Table 1 Optimization in using the genetic algorithm

k I2(b) I3(a,b) ` δ ET νT

1 5.006529×10−9 2.311672e-01×10−1 1.886667×10−4 0.400000 1.023000×1010 0.392667
2 5.006529×10−9 9.477024×10−2 2.500000×10−4 0.400000 1.023000×1010 0.392667
3 5.010827×10−9 9.469903×10−2 9.666667×10−5 0.366667 1.023000×1010 0.376200
4 5.132208×10−9 9.201960×10−2 1.273333×10−4 0.383333 1.023000×1010 0.392667
5 5.240100×10−9 3.467300×10−2 9.666667×10−5 0.366667 1.023000×1010 0.359733
6 5.259407×10−9 2.455275×10−2 5.066667×10−5 0.350000 8.943000×109 0.293867
7 5.259407×10−9 2.455275×10−2 9.666667×10−5 0.366667 1.023000×1010 0.376200
8 5.386876×10−9 2.064010×10−2 5.066667×10−5 0.350000 8.943000×109 0.310333
9 5.490529×10−9 1.968774×10−2 5.066667×10−5 0.350000 1.237500×1010 0.293867
10 6.57386×10−9 1.962839×10−2 2.193333×10−4 0.400000 1.023000×1010 0.392667
11 6.895467×10−9 1.885624×10−2 2.500000×10−4 0.383333 1.023000×1010 0.392667
12 7.254986×10−9 1.759584×10−2 2.500000×10−4 0.333333 1.023000×1010 0.392667
13 7.567184×10−9 1.688894×10−2 9.666667×10−5 0.383333 1.023000×1010 0.392667
14 7.996816×10−9 1.623193×10−2 2.000000×10−5 0.350000 8.943000×109 0.310333
15 9.129340×10−9 1.507042×10−2 2.500000×10−4 0.366667 1.023000×1010 0.392667
16 9.368447×10−9 1.333442×10−2 1.273333×10−4 0.266667 1.023000×1010 0.392667

5 6 7 8 9 10

x 10
−9

0

0.05

0.1

0.15

0.2

0.25

I2(b)

I
3
(a
,
b
)

Front Pareto

Fig. 4 Pareto front for the numerical indicators I2(b) et I3(a,b)
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5 Conclusions

A multiscale inverse statistical method has been presented for the identification, in
the framework of the 3D linear elasticity and in using experimental measurements
at macroscale and at mesoscale, of the stochastic model of the apparent elasticity
random field at mesoscale for a heterogeneous microstructure. A prior stochastic
model depending of vector-valued parameter has been proposed for the apparent
elasticity random field at mesoscale in the case of 2D plane stress. The identification
has been formulated as the a multi-objective minimization problem with respect
to the parameter of the prior stochastic model. The optimal value of the of the
parameter corresponds to the point that minimizes the distance of a Pareto front
to the origin. The proposed statistical inverse method has been validated with a
simulated experimental database.
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