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Introduction

The inverse methods for the experimental identification of the elastic properties of materials at the macroscale and/or mesoscale have been extensively studied. The experimental identification of microstructural morphology by image analysis began in the 1980s (see for instance [START_REF] Jeulin | Microstructure modeling by random textures[END_REF][START_REF] Jeulin | Morphological modeling of images by sequential random functions[END_REF][START_REF] Jeulin | Caractérisation morphologique et modèles de structures aléatoires[END_REF]) and it has led to significant advances in the identification of mechanical properties (see, for instance [START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF][START_REF] Avril | General framework for the identification of constitutive parameters from full-field measurements in linear elasticity[END_REF][START_REF] Avril | Stress reconstruction and constitutive parameter identification in plane-stress elastoplastic problems using surface measurements of deformation fields[END_REF][START_REF] Baxter | Characterization of random composites using a moving window technique[END_REF][START_REF] Besnard | Finite-element displacement fields analysis from digital images: Application to portevin-le chatelier bands[END_REF][START_REF] Bonnet | Inverse problems in elasticity[END_REF][START_REF] Bornert | Assessment of digital image correlation measurement errors: Methodology and results[END_REF][START_REF] Bornert | Multiscale full-field strain measurements for micromechanical investigations of the hydromechanical behaviour of clayey rocks[END_REF][START_REF] Calloch | Identification de modèles de comportement de matériaux solides: utilisation d'essais et de calculs[END_REF][START_REF] Chevalier | Digital image correlation used to analyze the multiaxial behavior of rubber-like materials[END_REF][START_REF] Constantinescu | On the identification of elastic moduli from displacement-force boundary measurements[END_REF][START_REF] Geymonat | Identification of elastic parameters by displacement field measurement[END_REF][START_REF] Geymonat | Identification of mechanical properties by displacement field measurement: a variational approach[END_REF][START_REF] Graham | Non-gaussian simulation of local material properties based on a moving-window technique[END_REF][START_REF] Hild | CORRELI LMT : a software for displacement field measurements by digital image correlation[END_REF][START_REF] Hild | Mesure de champs de déplacements 2D par intercorrélation d'images: CORRELI 2D. LMT-Cachan[END_REF][START_REF] Hild | Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation[END_REF][START_REF] Hild | Digital image correlation: from displacement measurement to identification of elastic properties -a review[END_REF][START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF][START_REF] Madi | Finite element simulations of the deformation of fused-cast refractories based on x-ray computed tomography[END_REF][START_REF] Rethore | Extended three-dimensional digital image correlation (X3D-DIC)[END_REF][START_REF] Roux | Digital image mechanical identification (DIMI)[END_REF][START_REF] Roux | Correlation image velocimetry: a spectral approach[END_REF][START_REF] Roux | Three-dimensional image correlation from X-ray computed tomography of solid foam[END_REF]. Concerning the identification of stochastic models, the methodologies for statistical inverse problems in finite and infinite dimension are numerous and have given rise to numerous studies and publications. These methods make extensive use of the formulations and the tools of the functional analysis of boundary value problems as well as those of probability theory, including mathematical statistics (finite and infinite dimensional cases). Concerning the mathematical statistics, one can refer to [START_REF] Lawson | Solving Least Squares Problems[END_REF][START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF] and [START_REF] Collins | Statistical identification of structures[END_REF][START_REF] Kaipio | Statistical and Computational Inverse Problems[END_REF][START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF] for the general principles on the statistical inverse problems. Early work on the statistical inverse identification of stochastic fields for random elastic media, using partial and limited experimental data, have primarily be devoted to the identification of statistical parameters of prior stochastic models (such as the spatial correlation scales and the level of statistical fluctuations) [START_REF] Arnst | Inversion of probabilistic structural models using measured transfer functions[END_REF][START_REF] Das | Polynomial chaos representation of spatiotemporal random field from experimental measurements[END_REF][START_REF] Das | Asymptotic sampling distribution for polynomial chaos representation of data: a maximum-entropy and fisher information approach[END_REF][START_REF] Desceliers | Maximum likelihood estimation of stochastic chaos representations from experimental data[END_REF][START_REF] Desceliers | Identification of chaos representations of elastic properties of random media using experimental vibration tests[END_REF][START_REF] Guilleminot | Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: Experimental identification and numerical aspects[END_REF][START_REF] Soize | Identification of high-dimension polynomial chaos expansions with random coefficients for non-gaussian tensor-valued random fields using partial and limited experimental data[END_REF][START_REF] Ta | Modeling of random anisotropic elastic media and impact on wave propagation[END_REF]. Those probabilistic/statistical methods are able to solve the statistical inverse problems related to the identification of prior stochastic models for the apparent elastic fields at mesoscale. Nevertheless, such experimental identification, which is carried out using measurements on a single specimen submitted to a given external load at macroscale and using measurements of the displacement fields at macroscale and mesoscale, requires new methods for identifying the statistical mean value of the random apparent elasticity tensor and the other parameters controlling its prior stochastic model as, for instance, the spatial correlation lengths and the parameters allowing the statistical fluctuations of the stochastic field to be controlled.

In this paper, a new identification method is presented. A statistical inverse multiscale method is formulated for a heterogeneous microstructure within the framework of the three-dimensional linear elasticity. This method permits both the identification of the effective elasticity tensor at macroscale and the identification of the stochastic tensor field which modelizes the apparent elasticity field at mesoscale. It is assumed that the experimental measurements of the displacement field are available at macroscale and at mesoscale. The prior stochastic model is a non-Gaussian tensor-valued random field adapted to the properties of the 3D-elasticity field and to the corresponding stochastic elliptic boundary value problem. The parameters of the prior stochastic model of the apparent elasticity random field at mesoscale, are its statistical mean value, its spatial correlation lengths and its level of statistical fluctuations. This identification of the stochastic model at mesoscale requires the knowledge of the effective elasticity tensor of macroscale and measurements of the displacements field at the two scales simultaneously for one given specimen submitted to a given static external loads. Thus, the proposed method is new. The theory will be presented for the 3D case and a numerical validation will be presented for the 2D plane stress in the framework of experimental measurements obtained by optical measurements (but, in the present paper, the validation will be performed with simulated experiments).

Multiscale experimental configuration

The specimen (whose microstructure is complex and heterogeneous at microscale) occupies a bounded macroscopic domain Ω macro in R 3 . Surface forces, f macro , are applied on a part Σ macro of the boundary ∂ Ω macro of Ω macro . The other part Γ macro of ∂ Ω macro is fixed such that there is no rigid body displacement. At macroscale on Ω macro , the measured displacement field is denoted as u macro exp and its associated strain tensor is denoted as ε macro exp .

Let Ω meso be a subdomain of the specimen at mesoscale (a REV) and let ∂ Ω meso be the boundary of Ω meso . Let u meso exp be the experimental measurement on Ω meso of the displacement field at mesoscale. The associated strain tensor is denoted as 3 meso exp . It is assumed that the experimental measurements of u meso exp are obtained only for one subdomain Ω meso related to one specimen. The volume average at mesoscale, 3 meso exp , of 3 meso exp is introduced such that

3 meso exp = 1 |Ω meso | Ω meso 3 meso exp (x) dx . (1) 
The statistical fluctuations level of the experimental linearized strain field at mesoscale around the volume average, 3 meso exp , is estimated by δ meso exp which is defined as

δ meso exp = V meso exp 3 meso exp F , (2) 
in which

V meso exp = 1 |Ω meso | Ω meso 3 meso exp (x) -3 meso exp 2 F dx (3) 
and where T F is the Frobenius norm such that, for any second-order tensor T = {T i j } i j , one has

T 2 F = 3 ∑ i=1 3 ∑ j=1 T 2 i j . (4) 

Multiscale statistical inverse problem

At macroscale, a deterministic boundary value problem is introduced for a 3D linear elastic medium, which modelizes the specimen in its experimental configuration (geometry, surface forces and Dirichlet conditions). At macroscale, the constitutive equation involves a prior model for the elasticity tensor C macro (a) which is parameterized by a vector a. For the 3D anisotropic elasticity, a represents the 21 constants of the elasticity tensor. The boundary value problem is formulated in displacement and the solution is denoted as u macro (deterministic macroscale displacement field). The linearized strain tensor associated with u macro is denoted as ε macro .

Tensor C macro (a) is unknown and must experimentally be identified, which means that parameter a must be identified using the measurements of the displacement field at macroscale. Consequently, a first numerical indicator I 1 (a) is introduced in order to quantify the distance between ε macro exp and ε macro . For a fixed value of parameter a, this indicator is defined by

I 1 (a) = |||ε macro exp -ε macro (a)||| 2 , (5) 
in which

|||ε macro exp -ε macro (a)||| 2 = Ω macro ε macro exp (x) -ε macro (x; a) 2 F dx . (6) 
At mesoscale, two additional numerical indicators, I 2 (b) and I 3 (a, b), are constructed to identify the parameters b involved in the prior stochastic model of the apparent elasticity random field C meso (b) which is considered as the restriction to subdomain Ω meso of a statistically homogeneous random field {C meso (x; b), x ∈ R 3 }.

Concerning the construction of the second numerical indicator I 2 (b), a random boundary value problem is introduced for a 3D linear elastic random media occupying subdomain Ω meso and for which the apparent elasticity random field is C meso (b). This random boundary value problem is formulated in displacement and the solution is denoted as U meso (displacement random field) with the Dirichlet condition U meso = u meso exp on boundary ∂ Ω meso . The random linearized strain tensor field associated with U meso is denoted as 3 meso . For any given parameters b, numerical indicator I 2 (b) is defined as

I 2 (b) = Ω meso (δ meso (x; b) -δ meso exp ) 2 dx , (7) 
in which

δ meso (x; b) = V meso (x; b) 3 meso (b) F , (8) 
where

3 meso (b) = 1 |Ω meso | Ω meso 3 meso (x; b) dx , (9) 
and

V meso (x; b) = E{ 3 meso (x; b) -3 meso (b) 2 F } , (10) 
It should be noted that, for all b, 3 meso (b) = 3 meso exp . The third numerical indicator I 3 (a, b) depends on a and b since this numerical indicator quantifies the distance between the elasticity tensor C macro (a) used in boundary value problem at macroscale and the effective tensor C eff (b) calculated by homogenization of the stochastic model at mesoscale on the REV, which depends on b only. We then have

I 3 (a, b) = C macro (a) -E{C eff (b)} 2 F . (11) 
The 4 Validation of the method in 2D plane stresses

The validation is performed within the framework of the linear elasticity in 2D plane stresses. It should be noted that the two directions are observed when the displacement fields are measured at macroscale and at mesoscale with a camera.

Prior stochastic model of the apparent elasticity random field in 2D plane stresses

At mesoscale, the prior stochastic model of the apparent elastic random field C meso is indexed by subdomain Ω meso which is assumed to be a REV. A representation of C meso with a minimum of parameters and adapted to elliptic problems is used. Parametric stochastic models have been proposed for scalar-valued stochastic fields [START_REF] Babuska | A stochastic collocation method for elliptic partial differential equations with random input data[END_REF][START_REF] Babuska | Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation[END_REF][START_REF] Desceliers | Probabilistic model of the human cortical bone with mechanical alterations in ultrasonic range[END_REF][START_REF] Graham | Non-gaussian simulation of local material properties based on a moving-window technique[END_REF] and for non-Gaussian tensor-valued stochastic fields in the framework of the heterogeneous anisotropic linear elasticity [START_REF] Clouteau | Dynamics of structures coupled with elastic media -a review of numerical models and methods[END_REF][START_REF] Soize | Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF][START_REF] Soize | Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size[END_REF][START_REF] Ta | Modeling of random anisotropic elastic media and impact on wave propagation[END_REF], with important enhancements to take into account the material symmetry and the existence of elasticity bounds [START_REF] Guilleminot | Non-gaussian positive-definite matrix-valued random fields with constrained eigenvalues: Application to random elasticity tensors with uncertain material symmetries[END_REF][START_REF] Guilleminot | Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model[END_REF][START_REF] Guilleminot | Probabilistic modeling of apparent tensors in elastostatics: A maxent approach under material symmetry and stochastic boundedness constraints[END_REF][START_REF] Guilleminot | On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties[END_REF]. Hereinafter, the stochastic model is based on [START_REF] Soize | Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF].

In using the Voigt notation, the fourth-order elasticity tensor C meso (x) can be represented by a (6 × 6) real matrix. The strain vector is then denoted as (ε 11 , ε 22 , 2 ε 12 , ε 33 , 2 ε 23 , 2 ε 13 ) and the associated stress vector is denoted as (σ 11 , σ 22 , σ 12 , σ 33 , σ 23 , σ 13 ). Such numbering of those vectors, which is not usual, has been chosen for the sake of simplicity in 2D plane stresses, for which the

(3 × 3) compliance matrix [S 2D (x)] corresponds to the first (3 × 3) block of the (6 × 6) compliance ma- trix [S meso (x)] = [C meso (x)] -1 .
The prior stochastic model of C meso is then constructed in choosing [S meso ] = {[S meso (x)] , x ∈ Ω meso } in the set SFE + [START_REF] Soize | Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF][START_REF] Soize | Stochastic Models of Uncertainties in Computational mechanics[END_REF] of non-Gaussian second-order stochastic fields with values in the set of all the positive-definite symmetric (6 × 6) real matrices, for which the mean value is a given matrix [S meso ] = E{[S meso (x)]} for all x in Ω meso . As a result, the matrix-valued random field {[S meso (x)], x ∈ Ω meso } is described as a function of the entries of matrix [S meso ], of three spatial correlation lengths 1 , 2 , 3 and of one parameter δ which controls the level of dispersion.

In the case of 2D plane stresses, random matrix [S 2D (x)] (the left upper (3×3) block matrix of [S meso (x)]) can be written as a function of the entries of matrix [S 2D ] (left upper (3 × 3) block matrix of [S meso ]), one spatial correlation length = 1 = 2 and dispersion parameter δ . The prior model of the apparent elasticity random field

[C 2D ] = {[C 2D (x)] ,
x ∈ Ω meso } with values in the set of the (3 × 3) real matrices is then constructed, for all x in Ω meso , as the inverse of the random matrix [S 2D (x)].

We then have

[C 2D (x)] = [S 2D (x)] -1 , a.s . (12) 
Consequently 

Construction of a simulated "experimental" database

To validate the methodology, "experimental" measurements at macroscale and at mesoscale are both simulated in using a computational model. The 2D domain Ω macro in the plane (Ox 1 x 2 ), is defined as a square whose dimensions are h = 10 -2 m. At mesoscale, the material is heterogeneous, anisotropic and linear elastic. A line force directed along -x 2 , with an intensity of 5 × 10 -2 N/m, is applied on the edge x 2 = h. The edge x 2 = 0 is fixed. A 2D plane stress state is assumed. At mesoscale, the 2D apparent elasticity field is constructed as a realization of the prior stochastic model of [C 2D (b)] with = 1.25 × 10 -4 m, δ = 0.4 and where the entries of [S 2D ] are defined below. It is assumed that the elastic medium is transverse isotropic which yields

[S meso ] =           1 E T -ν T E T 0 -ν L E L 0 0 -ν T E T 1 E T 0 0 0 0 0 0 2(1+ν T ) E T 0 0 0 -ν L E L -ν L E L 0 1 E L 0 0 0 0 0 0 1 G L 0 0 0 0 0 0 1 G L           , ( 13 
)
where E L = 15.8 × 10 9 Pa, E T = 9.9 × 10 9 Pa, G L = 5.2 × 10 9 Pa, ν L = 0.31 et ν T = 0.38. Consequently, we have

[S 2D ] =    1 E T -ν T E T 0 -ν T E T 1 E T 0 0 0 2(1+ν T ) E T    . ( 14 
)
Consequently, the vector b of parameters is then written as b = (δ , , E T , ν T ). At mesoscale, the realization of the apparent elasticity random field is simulated on the whole domain Ω macro .

A computational model is constructed with the finite element method and a regular finite element mesh with one million quadrangle elements (1, 000 along x 1 and 1, 000 along x 2 , see Fig. 1, left). The strain field is numerically simulated in using a finite element interpolation in a regular grid of nodes with a mesoscale resolution on the whole domain Ω macro (see Fig. 1, center). Measurements of the strain field ε macro exp is simulated at macroscale in extracting the values of the displacement field in a regular grid of 10 × 10 nodes and in using a finite element interpolation (see Fig. 1, upper right). In addition, in the subdomain defined as a square with dimension 10 -3 m (mesoscale), the measurements of the strain field ε meso exp are simulated at mesoscale in extracting the values of the displacement field in a regular grid of 100 × 100 nodes and in using a finite element interpolation (see Fig. 1, lower right).

Figure 2 shows the values of {ε macro exp } 22 for the simulated experimental strain field at macroscale with a resolution 10 × 10. The square in black dashed line represents the considered mesoscale subdomain. Figure 3 shows the values of {ε meso exp } 22 for the simulated experimental strain field at mesoscale with a resolution 100 × 100.

Multi-objective optimization problem

The identification of parameter b is carried out in searching for the optimal values a macro and b meso which solve the following multi-objective minimization problem

(a macro , b meso ) = arg min a∈A macro , b∈B meso I (a, b) , (15) 
where A macro and B meso are the sets of the admissible values for a and b, and where the components I 1 (a), I 2 (b) and I 3 (a, b) of vector I (a, b) are defined by Eqs. ( 5), ( 7) et [START_REF] Bornert | Multiscale full-field strain measurements for micromechanical investigations of the hydromechanical behaviour of clayey rocks[END_REF].

The multi-objective optimization problem defined by Eq. ( 15) is solved in using a genetic algorithm with an initial population size of 50. Less than 100 generations has been enough for constructing the Pareto front which is iteratively constructed, at each generation of the genetic algorithm. The initial value of parameter a has been set to a (0) and corresponds to the solution of the following partial optimization problem: a (0) = arg min I 1 (a) for a ∈ A macro , which is solved with the simplex algorithm. Actually, the value of a macro is almost unchanged through the iterations when the multi-objective problem is solved. The optimal value b meso is chosen as the point on the Pareto front that minimizes the distance between the Pareto front and the origin. Table 1 shows the values of b = ( , δ , E T , ν T ) for each point of the Pareto front displayed in Fig. 4. The optimal values correspond to the points 5, 6, 7, 8 and 9 where points 6 et 7 are close. The optimal value b meso is such that meso = 9.66 × 10 -5 m, δ meso = 0.37, E meso T = 1.023 × 10 10 Pa, ν meso T = 0.376. This result yields a validation of the proposed methodology since this identified optimal value b meso is very close to the value b that has been used to construct the simulated experimental database and for which = 1.25 × 10 -4 m, δ = 0.4, E T = 9.9 × 10 9 Pa, ν T = 0.38. 

Numerical results and validation

I 3 (a, b) δ E T ν T 1 
5.006529×10 -9 2.311672e-01×10 -1 1.886667×10 -4 0.400000 1.023000×10 10 0.392667 2 5.006529×10 -9 9.477024×10 -2 2.500000×10 -4 0.400000 1.023000×10 10 0.392667 3 5.010827×10 -9 9.469903×10 -2 9.666667×10 -5 0.366667 1.023000×10 10 0.376200 4 5.132208×10 -9

9.201960×10 -2 1.273333×10 -4 0.383333 1.023000×10 10 0.392667 5 5.240100×10 -9 3.467300×10 -2 9.666667×10 -5 0.366667 1.023000×10 10 0.359733 6 5.259407×10 -9 2.455275×10 -2 5.066667×10 -5 0.350000 8.943000×10 9 0.293867 7 5.259407×10 -9 2.455275×10 -2 9.666667×10 -5 0.366667 1.023000×10 10 0.376200 8 5.386876×10 -9 2.064010×10 -2 5.066667×10 -5 0.350000 8.943000×10 9 0.310333 9 5.490529×10 -9

1.968774×10 -2 5.066667×10 -5 0.350000 1.237500×10 10 0.293867 10 6.57386×10 -9

1.962839×10 -2 2.193333×10 -4 0.400000 1.023000×10 10 0.392667 11 6.895467×10 -9

1.885624×10 -2 2.500000×10 -4 0.383333 1.023000×10 10 0.392667 12 7.254986×10 -9

1.759584×10 -2 2.500000×10 -4 0.333333 1.023000×10 10 0.392667 13 7.567184×10 -9

1.688894×10 -2 9.666667×10 -5 0.383333 1.023000×10 10 0.392667 14 7.996816×10 -9

1.623193×10 -2 2.000000×10 -5 0.350000 8.943000×10 9 0.310333 15 9.129340×10 -9

1.507042×10 -2 2.500000×10 -4 0.366667 1.023000×10 10 0.392667 16 9.368447×10 -9

1.333442×10 -2 1.273333×10 -4 0.266667 1.023000×10 10 0.392667 A multiscale inverse statistical method has been presented for the identification, in the framework of the 3D linear elasticity and in using experimental measurements at macroscale and at mesoscale, of the stochastic model of the apparent elasticity random field at mesoscale for a heterogeneous microstructure. A prior stochastic model depending of vector-valued parameter has been proposed for the apparent elasticity random field at mesoscale in the case of 2D plane stress. The identification has been formulated as the a multi-objective minimization problem with respect to the parameter of the prior stochastic model. The optimal value of the of the parameter corresponds to the point that minimizes the distance of a Pareto front to the origin. The proposed statistical inverse method has been validated with a simulated experimental database.
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 1 Fig.1Description of the methodology for the construction of the simulated experimental measurements in using the finite element method at macroscale and at mesoscale: FE model of the specimen at macroscale with a mesoscale resolution (left), component {11} of the strain field at macroscale with a mesoscale resolution (center), component {11} of the strain field at macroscale with a macroscale resolution (upper right) and component {11} of the strain field at mesoscale with a mesoscale resolution (lower right).
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 3233 Fig. 2 Component {ε macro exp } 22 of the simulated experimental strain field at macroscale with a resolution 10 × 10
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 4 Fig. 4 Pareto front for the numerical indicators I 2 (b) et I 3 (a, b)
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