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Spatial Variability of the 12-Lead Surface ECG as a

Tool for Noninvasive Prediction of Catheter

Ablation Outcome in Persistent Atrial Fibrillation
Marianna Meo1, Student Member, IEEE, Vicente Zarzoso1, Senior Member, IEEE, Olivier Meste1, Member, IEEE,

Decebal Gabriel Latcu2, and Nadir Saoudi2

Abstract—Atrial fibrillation (AF) is the most common sus-
tained cardiac arrhythmia encountered in clinical practice. Ra-
diofrequency catheter ablation (CA) is increasingly employed to
treat this disease, yet selection of persistent AF patients who
will benefit from this treatment remains a challenging task.
Several parameters of the surface electrocardiogram (ECG) have
been analyzed in previous works to predict AF termination by
CA, such as fibrillatory wave (f-wave) amplitude. However, they
are usually manually computed and only a subset of electrodes
is inspected. In the present study, a novel perspective of the
role of f-wave amplitude as a potential non-invasive predictor
of CA outcome is adopted by exploring ECG inter-lead spatial
variability. An automatic procedure for atrial amplitude compu-
tation based on cubic Hermite interpolation is first proposed. To
describe the global f-wave peak-to-peak amplitude distribution,
signal contributions from multiple leads are then combined
by condensing the most representative features of the atrial
signal in a reduced-rank approximation based on principal
component analysis (PCA). We show that exploiting ECG spatial
diversity by means of this PCA-based multilead approach does
not only increase the robustness to electrode selection, but also
substantially improves the predictive power of the amplitude
parameter.

Index Terms—Atrial fibrillation (AF), catheter ablation (CA),
principal component analysis (PCA), fibrillatory wave (f-wave).

I. INTRODUCTION

D
espite major advances in its treatment, atrial fibrilla-

tion (AF) remains a significant cause of cardiovascular

morbidity and mortality, especially those arising from stroke

and heart failure. AF is characterized by uncoordinated atrial

activation with consequent loss of atrial mechanical function.

Various therapies have been used, such as electrical cardiover-

sion, antiarrhythmic drugs and catheter ablation (CA) tech-

niques. However, current AF management guidelines provide

no systematic treatment recommendations, since the various

mechanisms and patterns of this disease are not completely

understood yet [1]. The CA therapy has been increasingly

Manuscript received April 18, 2012; revised July 12, 2012, and accepted
August 20, 2012. This work is partly supported by the French National
Research Agency under contract ANR-2010-JCJC-0303-01 ”PERSIST”. Mar-
ianna Meo is funded by a doctoral grant from the French Ministry of Higher
Education and Research.

1Marianna Meo, Vicente Zarzoso and Olivier Meste are with the Lab-
oratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S),
Université Nice Sophia Antipolis, CNRS, France (e-mail:{meo, zarzoso,
meste}@i3s.unice.fr).

2Decebal G. Latcu and Nadir Saoudi are with the Service de Car-
diologie, Centre Hospitalier Princesse Grace, Monaco (e-mail: {dg.latcu,
nsaoudi}@chpg.mc).

used as a first-line option in recent years [2]. Nowadays,

the stepwise technique is the most widespread. It consists

in a sequence of actions aiming at suppressing the sources

of abnormal rhythm by radiofrequency cauterization, typically

including pulmonary vein (PV) isolation with an endpoint of

lasso-proven disconnection [3], [4] and ablation of complex

fractionated atrial electrograms (CFAE) [5]. However, CA

of persistent AF is a lengthy and expensive procedure, and

inconsistent success rates have been reported by different

centers practicing the therapy. Consequently, this has called

for adequate tools exploiting information about AF electro-

physiology to perform an a priori selection of patients who

are more likely to positively respond to CA therapy.

AF analysis by means of non-invasive ECG recordings

has received considerable attention in recent years, spurring

the development of signal processing techniques for a more

advanced characterization of the atrial waveforms. So far, the

cycle length or inverse dominant frequency (repetition rate)

of the atrial waves is one of the most studied parameters.

Its clinical significance is founded on its ability to iden-

tify pathophysiological mechanisms and predict therapy effi-

cacy [6]. Other studies [7] underline that higher pre-procedural

values of the amplitude of the fibrillatory waves (f-waves)

can be associated with a higher probability of successful

procedures. Nevertheless, several limitations affect the dis-

criminative power of such classifiers. First and foremost, their

manual acquisition considerably increases error probability, as

it is influenced by operator’s subjectivity. Furthermore, the

single-lead perspective neglects potentially useful information

from other leads. Yet considering multiple leads may help shed

some light on the disease by analyzing the heart electrical

activity from different spatial locations.

In this framework, our research aims at the noninvasive pre-

diction of CA outcome by characterizing the f-wave amplitude

variability across the multiple leads of the ECG. An automatic

algorithm for computing atrial amplitude on a single lead is

first proposed. F-wave amplitude is quantified by interpolating

local extrema points of the actual signal. This procedure repre-

sents the starting point of a multilead algorithm, which yields

a parameter describing f-wave amplitude spatial distribution

over the eight independent ECG leads by applying principal

component analysis (PCA). Our investigation demonstrates the

benefits of exploiting ECG spatial diversity, which enhances

the f-wave amplitude discriminative power and improves its

robustness to electrode selection in CA outcome prediction.
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II. METHODS

A. ECG Data and Acquisition System

The 28 patients involved in this study were all affected

by persistent AF and underwent CA. They all gave their

informed consent. The procedure was performed with the aid

of Prucka Cardiolab and Biosense CARTO electrophysiology

measurement systems at the Cardiology Department, Princess

Grace Hospital, Monaco. For each patient, one-minute 12-

lead surface ECG was recorded at a sampling rate of 1 kHz

at the beginning of the ablation procedure. An example on

lead V1 is illustrated in Fig. 1. Ablation was performed in a

stepwise manner [2], starting with circumferential PV ablation

with LASSO-guided disconnection, followed by fragmented

potentials, non-PV triggers, roof line and mitral isthmus line

right atrial ablation.

The present study adopts a short-term definition of procedu-

ral outcome, providing a preliminary perspective of immediate

CA effectiveness and examining the risk of AF recurrence

in the very first postoperative period. Short-term success is

defined as AF conversion either directly to sinus rhythm or

intermediate tachyarrhythmia, exclusively by ablation or by

CA followed by electrical cardioversion. Three patients who

did not experience AF termination after a first procedure

underwent a second ablation, making a total of nP = 31
procedures. Accordingly, nS = 26 procedures were successful,

whereas nF = 5 procedures failed.

B. ECG Preprocessing and Atrial Activity Extraction

The preprocessing steps described in the sequel are moti-

vated by our interest in examining f-wave amplitude prop-

erties, regardless of their temporal location or shape fac-

tors. Indeed, focusing on amplitude parameters allows us

to avoid frequency-based methods requiring atrial activity

(AA) extraction, widely regarded as a not trivial task, thus

considerably simplifying our approach. Our strategy also

avoids straightforward analysis of ECG morphology, which is

reasonable to apply when dealing with f-waves whose shape

is very repetitive and easy to segment; this is typically not

the case in more advanced forms of the disease such as the

persistent AF examined in the present study. Moreover, f-

wave amplitude predictive power is widely recognized in the

framework of persistent AF ablation, as it represents the sum

of local depolarization phenomena involving cardiac cells [7].

Its examination proves to be easier to perform and equally

efficient compared to morphology-based analysis, requiring

more complex heart models [8], [9]. Finally, to our knowledge,

no correlation between f-wave morphology and CA outcome

has been shown to date.

Accordingly, ECG recordings are first processed by a fourth-

order zero-phase type II Chebyshev bandpass filter with −3
dB attenuation at 0.5 Hz and 30 Hz cut-off frequencies. The

filter selected can accurately reduce the influence of noisy

components typically encountered in ECG analysis without

deforming signal shape [10], [11]. The choice of pass-band

is meant to exclusively enhance AF content, whose dominant

frequency ranges between 3 and 12 Hz, by suppressing base-

line wandering and high frequency noise such as myoelectric
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Fig. 1: Example of ECG recording during AF and its characteristic
waves. Boxes highlight TQ intervals which are concatenated to form
the AA signal YAA in eqn. (1).

artifacts and 50 Hz power line interference. Automatic detec-

tion of ECG fiducial points is subsequently performed so as

to properly segment the TQ intervals. R wave time instants

are retrieved on lead V1 by applying the Pan-Tompkins’

algorithm [12], whereas Q wave onset and T wave offset are

detected with an improved version of Woody’s method [13].

Mean-centering and concatenation of such segments are finally

accomplished, thereby yielding an (L × N) data matrix YAA

representing atrial activity (AA) only:

YAA = [yAA(1) · · · yAA(N)] ∈ RL×N (1)

where vector yAA(n) = [y1(n), . . . , yL(n)]T stands for the

multilead AA signal at sample index n, L is the number of

leads used, and N the number of samples of the AA signal

yℓ(n) for each lead ℓ = 1, 2, . . . , L. All residual artifacts and

spurious peaks due to concatenation have been automatically

removed by means of signal first-derivative thresholding.

Unlike previous works, a subset of all leads of the standard

ECG has been used in our algorithms. Indeed, Einthoven’s

standard leads (or limb leads, I, II, III) and Golbderger’s

augmented leads (aVR, aVL, aVF) are derived from the same

three measurement points, and are thus redundant (linearly

related) [2]. Accordingly, lead III has been discarded by

our analysis, as I and II are sufficient to characterize heart

electrical activity on the frontal plane. Finally, all precordial

leads have been introduced too, in order to record the cardiac

electric potential in a cross sectional plane, for a total of L=8
leads, that is, I, II, V1-V6.

C. Automatic F-wave Amplitude Computation

According to previous studies, successful CA procedures

can be predicted by higher values of f-wave peak-to-peak

amplitude on the surface ECG [7]. Nevertheless, prediction

accuracy is so far affected by amplitude manual computation,

leading to higher error probability, especially in the pres-

ence of irregular and complex waveform patterns. Similar

shortcomings can occur when dealing with different operators

performing the acquisition of such a parameter, so its measure

is not uniquely defined. Given these conditions, we develop

an automatic procedure which computes the amplitude value

of the AA signal yℓ(n) on a specific lead ℓ = 1, 2, . . . , L. It
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Fig. 2: Single-lead atrial waveform interpolation algorithm. Upper
and lower envelopes eMAX and eMIN pass through the local extrema
of the input signal yℓ; their subtraction yields eDIFF.

starts from the detection of the local maxima of yℓ(n) and

the estimation of an upper envelope eMAX(n) by the shape-

preserving piecewise cubic Hermite interpolating polynomial

(PCHIP) [14]. Similarly, a lower envelope eMIN(n) passing

through the minima is obtained as well. This strategy of auto-

matic detection of local extrema of the f-waves proves more

efficient than the manual approach, as it mainly focuses on

the global trend of the curve. In addition, PCHIP interpolation

reduces the negative effect of local spurious peaks and signal

artifacts. Peaks located near the edge between two consecutive

TQ intervals are not taken into account in the interpolation.

The difference eDIFF(n) = |eMAX(n) − eMIN(n)| between

the two curves outlines the general trend of the main oscilla-

tions of f-waves, and its temporal mean over the AA signal

length N :

D(y) =
1

N

N∑

n=1

eDIFF(n) (2)

represents the final output of our algorithm. The operator D(·)
is characterized by an offset-invariance property:

D(ky + α) = |k|D(y), ∀k, α ∈ R. (3)

Index D is capable of summarizing the information about f-

wave over the whole recording and its peak-to-peak amplitude

pattern in a single objective parameter computed in a fully

automated manner.

D. Extension to Multilead Recordings

A further limitation of previous methods is that f-wave

amplitude is examined on individual leads only (e.g., V1 or

II) [7], without fully exploiting the spatial diversity typical

of multilead ECG recordings. It is widely known that the

largest atrial-to-ventricular amplitude ratio can be found on

lead V1 [15]. Yet its proximity to the right atrial free wall may

neglect significant information about other sites, for instance,

the left atrium and the PVs, which play a crucial role in

AF initiation and maintenance [3]. Indeed, not only these

approaches do not rely on contributions provided by other

ECG leads and their mutual relations, but selection of single

electrodes is not driven by further systematic criteria.

These conditions represent the basis for the development

of an extension of the algorithm described in Sec. II-C so as

to broaden single-lead characterization of f-wave amplitude

by considering more than one lead. The rationale of our

hypothesis is the intrinsic variability of the surface ECG across

leads, as they are all measured from different points of the

patient’s body. Our multivariate AA signal can be regarded as a

surface mixture of a certain number of unknown sources. This

assumption motivates the application of principal component

analysis (PCA). PCA can express our multilead recordings as

a function of these uncorrelated, most representative sources,

or principal components (PCs) [16], by retaining the maximum

amount of information as measured by variance. PCs are

computed and ordered so that the first few retain most of the

variation present in all of the original signals. Since variance

and amplitude are closely related, the most dominant PCs

are expected to provide an accurate description of the spatial

distribution of AA amplitude.

According to PCA, our multivariate observation ma-

trix YAA can be decomposed as the linear model:

yAA(n) = Mx(n) =

L∑

k=1

mkxk(n) (4)

where M is the mixing matrix with mutually orthogonal

columns that relates the sources xk(n), k = 1, . . . , L with

the multilead observations yAA(n). The derivation of PCs

is based on the assumption that yAA(n) is a zero-mean

random process. The entries of column vector mk weigh

the contribution of the corresponding PC xk to the leads in

yAA(n), and thus render the principal propagation direction

or spatial topography of each source [17]. This decomposition

effectively exploits spatial relationships among ECG leads

and discards redundant information by keeping only the most

significant PCs and their corresponding directions.

E. Reduced-Rank PCA for Atrial Signal Characterization

Knowing that the dominant PC retains the highest percent-

age of the AA signal variance, it seems reasonable to attempt

the exploitation of this property to extract the most significant

information from the AA signal. It is worth introducing the

general concept of spatial filtering, as an optimal tool for

recovering a certain signal of interest from the ensemble of

observations [18]. In the PCA framework, the idea is to look

for a linear function of the elements of yAA having maximum

variance. In line with this rationale, the spatial filter m1 is the

linear weight vector yielding the dominant PC x1 as

x1(n) = mT
1 yAA(n), (5)

thus isolating the contribution of x1 to yAA from that coming

from other sources. The first principal direction m1 maximizes

the variance of x1, given by E[x2
1] = mT

1 Rym1, under the

constraint ‖m1‖ = 1, where Ry denotes the covariance matrix

of the observations. The maximal variance is achieved when

m1 is the normalized dominant eigenvector (related to the

highest eigenvalue) of Ry. The output function in eqn. (5) can

clearly be seen as a weighted average of the observed random
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variables. The remaining principal directions are also esti-

mated by variance maximization, but including orthogonality

constraints with respect to the previously obtained directions.

The truncation of eqn. (4) yields the rank-R approximation:

ŷAA(n) =

R∑

k=1

mkxk(n) (6)

with R < L. Note that ŷAA has the same size as yAA. In

this work, we propose to approximate the AA observations

by exclusively emphasizing the influence of the first PC on

the selected leads; this is achieved with R = 1 in eqn. (6).

This rank-1 reconstruction allows not only the enhancement

of the most descriptive component in terms of variance but,

as shown in Sec. III, also the suppression of irrelevant and/or

noisy elements which can pollute signal content.

F. Multilead F-wave Amplitude Descriptor

Once AA signal approximation is carried out, the algorithm

presented in Sec. II-C is run on each lead. Unlike eqn. (2),

which returns a scalar value as output, we obtain now an L-

component vector DL, whose entries represent the temporal

average of peak-to-peak amplitude envelope values on every

electrode:

DL = [d1, d2, . . . , dL]T. (7)

where dℓ = D(mℓ1x1) =|mℓ1|D(x1), according to the

property in eqn. (3), and mℓ1 = [m1]ℓ is the ℓth component

of the principal direction m1. The entries of DL are then

sorted in increasing order and their median value D̃L is finally

obtained. The choice of the median is justified by its ability

to describe overall data distribution without loss of generality,

with a higher degree of robustness to outliers, compared to

other statistical descriptors such as the mean value. Parameter

D̃L can be considered as a descriptor of the global spatial

distribution of f-wave amplitudes over the observed leads.

G. Statistical Analysis

According to the protocol explained in Sec. II-A, ablation

outcome categories to be discriminated are referred to as “AF

termination” and “non AF termination” by CA. All parameters

are expressed as mean ± standard deviation in Table I. Once

data Gaussianity has been verified through the Lilliefors’ test,

differences between the two classes are statistically assessed

by an unpaired Student’s t-test if data follow a normal distri-

bution, a two-sample Wilcoxon rank sum test otherwise, under

a confidence level α=0.05; p values associated with each

unpaired test are reported in Table I as well. The quality of

the binary classification model is measured by the area under

curve (AUC) of its receiver operating characteristic (ROC)

curve, based on the maximization of sensitivity and specificity,

i.e., the rate of true positives and true negatives, respectively.

A leave-one-out (LOO) cross-validation technique is employed

to assess the generalization ability of our analysis to an inde-

pendent dataset. More specifically, AUC values are computed

several times by keeping a sample of 30 procedures out of

31 and thus discarding one subject at each iteration, so as to

compute their average value at the final step. AUC values of

TABLE I: Interclass statistical analysis

AF Non AF
p-value

termination termination

D̃8 0.038 ± 0.019 0.015 ± 0.007 9.56 · 10−4

D̃12 0.030 ± 0.012 0.015 ± 0.006 8 · 10−3

D8 0.042 ± 0.023 0.022 ± 0.01 6.4 · 10−2

D12 0.049 ± 0.070 0.022 ± 0.01 5.0 · 10−2

D(V1) 0.068 ± 0.022 0.054 ± 0.017 1.85 · 10−1

RMS(V1) 0.075 ± 0.110 0.027 ± 0.017 1.55 · 10−1

SampEn(Ls, r
(1)
s ) 0.299 ± 0.063 0.218 ± 0.107 2.67 · 10−1

SampEn(Ls, r
(2)
s ) 0.143 ± 0.029 0.106 ± 0.052 3.25 · 10−1

R̃MS8 0.016 ± 0.009 0.009 ± 0.006 1.40 · 10−1

R̃MS12 0.024 ± 0.015 0.016 ± 0.008 1.40 · 10−1

RMS8 0.021 ± 0.016 0.021 ± 0.021 3.76 · 10−1

RMS12 0.037 ± 0.048 0.026 ± 0.024 2.48 · 10−1

each descriptor are displayed in Table II; in addition, we report

the corresponding optimal cut-off points, associated with the

maximization of the sum of true positive and true negative

cases determined over the 31-procedure database.

III. RESULTS

To test the single-lead algorithm presented in Sec. II-C,

parameter D in eqn. (2) has been computed on lead V1, yield-

ing D(V1). Another classical single-lead method focusing on

AA signal magnitude has been considered for the sake of

comparison, namely, the root mean square value on the lead

V1, denoted RMS(V1). Finally, a parallel with a non-linear

complexity index, the sample entropy SampEn [19], has been

drawn as well on the same electrode. This feature depends on

two parameters: Ls and rs. Parameter Ls stands for the length

of the sequences the ECG recording is split in. Such sequences

are then compared, and the tolerance for accepting matches is

represented by the parameter rs. This parameter is chosen as

a fraction of the AA input signal standard deviation on V1,

denoted σV1
, so as to assure the translation and scale invariance

of SampEn. Both parameters have been tuned according to the

guidelines given in [20], yielding Ls = 2 besides two values

of rs, namely, r
(1)
s = 0.1σV1

and r
(2)
s = 0.2σV1

.

In the multilead framework, the discriminative power of

our descriptor D̃L has been assessed both on the ensemble

of eight linearly independent ECG leads (L = 8), as defined

in Sec. II-A, and on the full standard ECG (L = 12), giving

rise to indices D̃8 and D̃12, respectively. The same analysis

has been led by using the mean instead of the median when

averaging the entries of vector DL in eqn. (7), yielding D8

and D12. This is the index proposed in [21], but using PCHIP

instead of cubic spline interpolation. Finally, the ability of

PCHIP interpolation to effectively approximate the AA signal

general trend and give a measure of f-wave peak-to-peak

amplitude is also examined. For sake of comparison with

our algorithm, after PCA application and rank-1 truncation

explained in Sec. II-E, the RMS value is computed on every

row of the data matrix ŶAA resulting from eqn. (6). Both sets

of ECG leads have been considered for the computation of

this feature as well, from which the median (R̃MS8, R̃MS12)

and mean values (RMS8, RMS12) have been determined.

Robustness of our multilead predictor D̃L to the choice of

ECG leads has also been tested. For each value of lead-subset
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TABLE II: CA outcome prediction performance

AUC Best cut-off

D̃8 0.98 0.023

D̃12 0.91 0.022

D8 0.77 0.027

D12 0.78 0.027
D(V1) 0.68 0.060

RMS(V1) 0.71 0.013

SampEn(Ls, r
(1)
s ) 0.75 0.289

SampEn(Ls, r
(2)
s ) 0.72 0.139

R̃MS8 0.72 0.005

R̃MS12 0.72 0.011

RMS8 0.63 0.012

RMS12 0.67 0.014
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Fig. 3: D̃L prediction performance as a function of the size L of the
subset of the 8 independent ECG leads. Vertical lines stretch between
the minimum and maximum AUC values obtained for each L; mean

values are shown with markers. AA: measuring D̃L directly from the

observed AA signal. PCA: measuring D̃L from approximation (6)
with R = 1.

size L ranging from 1 up to 8, the proposed multilead predictor

has been run on all 8!/((8−L)!L!) possible lead combinations.

CA outcome prediction performance has then been assessed

for each lead combination from the corresponding values of

D̃L, using the LOO technique. In this manner, the minimum,

maximum and mean AUC values over all L-lead subset

combinations have been obtained as a function of the subset

dimension L; their corresponding intervals are displayed in

Fig. 3. The lead combinations providing the best prediction

performance for each subset dimension are shown in Table III.

Likewise, the straightforward application of the algorithm

described in Sec. II-C on the AA signal (namely, without

PCA approximation) has been tested, in order to demonstrate

PCA effectiveness in filtering and enhancing content-bearing

information from the AA signal. Along the same lines, PCA’s

ability to compress data into few, most representative PCs is

shown in Fig. 4, in which approximation quality is assessed

by the AUC criterion; classification performance over all ECG

leads is evaluated as a function of R, the number of terms

retained in the truncation in eqn. (6), ranging from 1 (the

value adopted in our algorithm) to 8 (full-rank reconstruction

of the input data). This comparison is validated by the LOO

procedure.

TABLE III: ECG lead subsets with optimal prediction performance

based on parameter D̃L

Number of leads (L) Leads

1 V3

2 II, V4

3 I, V3, V4

4 II, V3, V4, V5

5 II, V1, V3, V5, V6

6
[I, II, V1, V3, V5, V6]
[I, II, V2, V4, V5, V6]

[II, V1, V2, V4, V5, V6]

7
[I, II, V1, V2, V4, V5, V6]

[II, V1, V2, V3, V4, V5, V6]
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0.7

0.75

0.8

0.85

0.9

0.95

1

Number of PCs, R

A
U

C

Fig. 4: Classification performance for the 8 linearly independent

ECG leads. AUC of D̃8 as a function of R, the number of PCs
retained in approximation (6).

IV. DISCUSSION

A. Manual vs. Automatic Computation of Atrial Amplitude

The predictive value of f-wave amplitude for CA of persis-

tent AF has been scrutinized in previous studies [7]. However,

not only it has been manually obtained, but only one ECG

lead has been considered in its computation. By contrast, a

method aiming at automatically computing f-wave peak-to-

peak amplitude on a single lead is proposed in our study

(Sec. II-C). Direct correlation with procedural AF termination,

as demonstrated in [7] for the manual amplitude index, is

confirmed for its automatic counterpart proposed herein. This

is shown by the results of the single-lead parameters in Table I,

namely D(V1) and RMS(V1). However, the low p values

obtained with these indices prove their weak discriminating

ability in the dataset under examination.

From the analysis of f-wave peak-to-peak amplitude it can

be inferred that our single-lead automatic approach, yielding

D(V1), returns values close to those manually computed in [7]

(0.08±0.03 mV for successful CA procedures, 0.05±0.03 mV

for the failing ones, p < 0.01, AUC = 0.77). This com-

parison only aims at underlining the ability of our procedure

to automatically reproduce such results and associate higher

amplitude values with successful CA procedures, event though

the respective databases are not directly comparable and

interclass statistically significant differences are not verified

on the signals we examined.
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B. Comparison with Other Atrial Signal Parameters

Another parameter considered in our investigation is the

RMS value, whose prediction performance proves rather inac-

curate. Furthermore, the unpaired test returns non-significant

differences between the classes considered. Concerning the

sample entropy SampEn, despite the fairly good AUC values

and the presence of statistically significant differences between

the categories of interest, AF termination by CA is not

predicted by low SampEn values as in [22] for electrical

cardioversion. This is in contrast with the assumption of

a positive correlation between the sample entropy and AA

signal spatio-temporal complexity. One would actually expect

that more organized AA waveforms as measured by lower

SampEn values render a less critical disease profile, easier

to be treated by CA. Yet this hypothesis is not verified in

our study, regardless of the threshold rs chosen. Finally, not

only the computational load demanded by SampEn is notably

higher than that of other predictors, but it is also sensitive to

the tuning parameters defined above, so their incorrect setting

can lead to results that are quite disparate and not easy to

interpret. Generally speaking, all the single-lead descriptors

(D(V1), RMS(V1), SampEn(Ls, r
(1)
s ), SampEn(Ls, r

(2)
s ))

exhibit weak discriminating capabilities, as confirmed in Ta-

ble II by their low AUC values.

C. Multilead Atrial Signal Amplitude Measurement

The present work has also developed an automatic system

of acquisition of the value of the atrial amplitude exploiting

information derived from the intrinsic spatial diversity of the

multilead ECG (Secs. II-D–II-F). Regarding this multilead

perspective, traditional features based on RMS values com-

puted on several leads seem no to be able to characterize f-

wave amplitude content. Indeed, descriptors derived from the

combination of such values cannot depict significant interclass

differences, and AUC values in Table II are quite weak

too, especially those related to the prediction performance of

RMS8 and RMS12. By contrast, descriptors defined in our

PCA-based multilead framework are more robust and reliable

than their single-lead counterparts and than classical multilead

approaches. The novel predictor D̃8 succeeds in pointing out

significant differences between the two classes of interest,

as shown in Table I, which are in keeping with evidence

about the predictive power of f-wave amplitude [7]. What is

more, CA outcome prediction performance is enhanced by the

appropriate use of more than one ECG lead, as we can see in

Table II. In Fig. 3 the predictive power of D̃L is quantified by

the AUC criterion, expressed as a function of the number of

ECG leads. The benefits of examining more than one lead are

clearly evidenced by the increasing trend of the mean AUC as

more leads are progressively introduced into the analysis.

D. Benefits of PCA-based ECG Signal Approximation

The second advantage of our multilead approach also per-

tains to the application of PCA, when compared with the

direct examination of AA signal amplitude. From Fig. 3,

PCA superiority over the straight computation of f-wave

amplitude on the AA signal can be inferred. Indeed, AUC

mean values are generally higher than those obtained without

PCA preprocessing. In addition, the higher the number of

leads, the larger the difference between the two methods, as

AUC ranges partially or completely overlap only when L
is sufficiently low. Similar conclusions can be drawn from

Fig. 4 when examining AUC evolution as a function of the

quality of approximation (6). The fewer PCs used in the

approximation, the better the prediction performance. PCA

typically assigns noisy and/or spurious signal components to

the least significant PCs, which seems to enable the extraction

of the most meaningful information about atrial amplitude

when retaining the dominant PC of the atrial ECG data.

E. ECG-lead Preselection

This consideration is in line with the increased accuracy in

CA outcome prediction when exploiting 8 leads rather than the

whole standard ECG. It is commonly acknowledged that over

90% of the heart’s electric activity in physiological conditions

can be explained with a dipole source model, whose evaluation

can be assessed by measuring its 3 independent compo-

nents [23]. In principle, two of the limb leads could reflect the

frontal plane components, whereas one precordial lead could

be chosen for the anterior-posterior contribution. Accordingly,

their combination should provide a complete knowledge about

the electric heart vector. However, the assumption of a fixed-

location single dipole could be overly simplistic under AF. In

fact, the distributed properties of cardiac sources and the effect

of the thoracic surface and internal inhomogeneities should

also be included in our model. In addition, the precordial leads

detect further nondipolar components which are located on the

heart frontal plane and have high diagnostic significance [23].

The use of all 12 leads in standard clinical practice is justified

by the fact that clinicians can compare the projections of the

resultant vectors in 2 orthogonal planes and at different angles,

improving pattern recognition. Nevertheless, in our research

framework, preselecting the subset of 8 linearly independent

leads seems to boost PCA filtering action, as redundant and/or

polluting elements are already partially removed before the

decomposition, and the most essential and meaningful com-

ponents are put into evidence more easily. This may explain

why D̃8 outperforms its 12-lead equivalent.

F. Multilead Atrial Amplitude Computation Modalities

Further attention should be given to the computation modal-

ities of the multilead descriptor of f-wave amplitude, e.g.,

how contributions coming from the ECG leads employed are

combined with each other. In [21], the mean value of the

entries of DL in eqn. (7) was employed as a predictor (using a

different interpolation technique). In this paper, we present an

improved version of this algorithm, where the mean is replaced

with the median. Both approaches have the common objective

of looking for the measure of central tendency of the dataset;

roughly speaking, the most recurrent element which can sum-

marize the average information intrinsic to the dataset itself.

Experimental evidence reveals that the median value statistic

(̃·) performs better than the mean (·) on our signal database,
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since it is less sensitive to outliers, as mentioned above.

Furthermore, the median is more suitable for skewed data

distributions, this being often the case of f-wave amplitude,

whose visibility and magnitude can depend on lead location. In

the light of these considerations, we can interpret CA outcome

prediction performance of the features D12 and D8: interclass

differences are poorly significant or not significant, so that

results presented in [21] do not seem to generalize to the

larger dataset used in this work. Finally, the mean value DL

indistinctly takes contributions from all leads into account. On

the contrary, the median D̃L exclusively highlights the role

played by certain leads in the description of the global trend of

f-wave amplitude, while neglecting the extrema of DL, which

are generally not representative enough to summarize the main

characteristics of this spatial distribution.

G. Lead Subset Selection for Optimal Prediction Performance

Another interesting result concerns the subsets of leads

yielding optimal classification performance based on atrial

signal amplitude measures. Table III shows that some lead

combinations recur in each subset. In particular, the optimal L-

lead subset typically includes leads of smaller optimal subsets,

together with a new electrode. The presence of leads represent-

ing heart electrical activity on multiple planes confirms again

the hypothesis that clinical information coming from multiple

electrode locations can improve ablation outcome prediction.

We can also observe that lead V1 only starts being significant

from L = 5, in contrast with standard medical practice for

AF analysis where V1 is usually the lead of choice [15]. This

result can probably be due to the fact that this lead is not

close enough to the PVs and the left atrium, thus neglecting

significant information from these atrial areas deeply involved

in AF triggering and maintenance.

H. Limitations of the Study

Our research is hampered by the lack of comparison with

endocardial recordings. Multilead surface ECG provides a

global overview of heart activity, whereas endocardial sig-

nals account for local information. Nevertheless, since we

aim at a noninvasive analysis, endocardial recordings were

not contemplated in the present study. The superiority of

our atrial amplitude measure over conventional CA outcome

predictors has been demonstrated. However, its performance

in the presence of noise and interference not suppressed by

the preprocessing filter remains to be investigated in more

detail. Finally, database evaluation is also affected by several

confounding factors, e.g., cardioversion and/or drugs, although

procedural AF termination by CA is not predictive of long-

term outcome [24].

V. CONCLUSIONS

This work has proposed a novel procedure for computing

f-wave peak-to-peak amplitude to predict short-term CA out-

come in persistent AF patients. Our single-lead automatic pro-

cedure is based on PCHIP interpolation, and yields numerical

results comparable to those reported in previous works [7]

while avoiding the shortcomings of manual measures We have

also developed an automatic system of acquisition of the atrial

amplitude in the multilead ECG based on PCA, which tries to

capture and exploit the intrinsic variability of the atrial signal

across different leads. The proposed PCA approximation to

the multilead atrial signal extracts the most relevant compo-

nents describing f-wave magnitude spatial distribution over the

selected ECG leads. Followed by interpolation and averaging,

the algorithm condenses the multilead atrial amplitude into

a single descriptor. Results on a database of persistent AF

ECGs recorded before ablation have confirmed the ability

of this f-wave amplitude descriptor to carry out short-term

CA outcome prediction. The proposed multilead approach

outperforms single-lead techniques and shows an increased

robustness to electrode selection, making it particularly useful

in scenarios where some leads do not provide an effective

contribution to the recording, e.g., if they get accidentally loose

or disconnected from the patient’s skin. Further benefits are

derived from PCA’s data compression capabilities, as signal

approximations with decreasing rank progressively improve

classification performance by retaining the most descriptive

components of the observations while filtering out pollut-

ing contributions. We can conclude that the spatio-temporal

properties of the surface ECG can quantitatively assess the

impact of CA over fibrillatory activity typical of persistent

AF and improve patient selection. Multilead processing of the

ECG offers deeper insights into the AA waveform pattern and

AF pathophysiology than single-lead methods, as our analysis

shows in the context of CA outcome prediction.
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