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Abstract. In this paper we propose to investigate the use of a vectorial total variation
model with spatially varying regularization and data terms for color image denoising and
restoration. We pay attention to two main minimization problems: the minimization of a
weighted vectorial total variation term TVg, which acts as a regularization term, using the
L2 norm as data term or the minimization of the vectorial total variation with a spatially
varying L1

g norm. The optimization process takes benefit of convex optimization tools by
introducing an augmented Lagrangian formulation. This formulation leads us to simple and
efficient algorithms based on Uzawa block relaxation schemes that are also robust towards
the choice of the penalty parameter. In this paper, We propose to study more particularly
the impact of spatially varying terms (total variation term or data terms) for color image
restoration. A new weighted total variation term is proposed for old parchments restoration
and we also compare the use of a weighted total variation term with a spatially varying
data term for impulse noise removal in color images.

1 Introduction

In this paper, we are interested in addressing the vectorial (color) image restoration problem
through the minimization of a unique criterion that takes benefit of a vectorial total variation
term acting as a regularization term. Such a criterion proves to be interesting notably to cope
with the regularization of correlated vectorial image features and may avoid to find an appro-
priate color space change when dealing with color image restoration. Let first remind that the
importance of total variation for image restoration has been largely proved since the seminal
ROF model introduced by Rudin, Osher and Fatemi [1]. In this work, the authors propose to
recover the restored image u from a noisy image f by minimizing the following criterion :

E(u) =

∫

Ω

|∇u(x)| dx + λ

∫

Ω

|f(x)− u(x)|2 dx (1.1)

where Ω is the image domain, u : Ω → R is the unknown restored image, f is the observed
image and λ a positive scale parameter. The model (1.1) is also called TV + L2 model. Such
a framework has been intensively investigated for denoising [1, 2]. It has also been extended
by changing the L2 norm by a L1 norm (TV + L1 model) for salt and pepper noise removal
(see for example [3]), texture extraction or decomposition (e.g. [4]) or shape denoising (e.g. [5]).
The minimization issues of such problems are not trivial due to the non differentiability of the
total variation regularization term and also of the L1 norm and have been addressed by many
authors. For example, standard calculus of variations and Euler-Lagrange equations can be used
to compute the PDE that will drive the functional u towards a minimum of E. This method
requires a smooth approximation of the L1 norm and a small time step must be chosen so as
to ensure the convergence. This often leads to a large number of iterations as mentioned in [5].
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In [6], a MRF (Markov Random Field) model is proposed which uses the anisotropic separable
approximation (i.e. |∇u| = |Dxu| + |Dyu| where Dx and Dy are the horizontal and vertical
discrete derivative operators). This approximation is also used in [7] where the authors proposed
an efficient graph-cut method. In all these approaches, an approximation or a smoothing of the
L1 norm is required. In [5, 8], based on the works of [2, 9, 10, 4], a fast minimization algorithm
based on a dual formulation is proposed for the minimization of TV + L1. Thanks to such
approaches, they do not need any approximation or smoothing of the L1 norm, they rather take
benefit of a convex regularization of the criterion which was first proposed by [4]. More recently,
a lot of very efficient numerical methods using convex analysis tools have been proposed. Among
them, we can cite the primal-dual method proposed in [2], the split Bregman method [11] or the
unified framework proposed by Pock and Chambolle [12]. Such algorithms have become popular
due to their low computational cost. In this paper we also take benefit of convex optimization
tools by using a simple and efficient algorithm based on Uzawa block relaxation schemes and an
augmented Lagrangian formulation [13, 14]. This scheme is efficient and have the nice property
to be robust towards the choice of the penalty parameter. Moreover, it is here computed and
applied in the special case of vectorial (color) image restoration.

When dealing with multi-components images (such as color images), the image f becomes a
vector with n components (e.g. f = (f1, f2, f3)

T and n = 3 for color images) which leads to revise
the above criterion and to propose a well-adapted definition of the vectorial total variation term.
In a first work, Blomgren and Chan [15] propose to restore vector-valued images using a vectorial
adaptation of the total variation term. Later, some other color total variation models have been
proposed by different authors (see for example [16, 17]) for color image restoration. In [16, 17] the
vectorial total variation term to minimize becomes an integral over a function of the larger and
smaller eigenvalues of the structure tensor proposed by di Zenso [18] (see also [19] for a recent
review on anisotropic color diffusion PDEs). When the function is chosen to be the identity,
their scheme leads to the minimization of the following regularization term

∫

Ω
(||∇u||) dx where

||∇u(x)|| =
(
∑n

i=1 |∇ui(x)|
2
)1/2

is the Frobenius norm of the derivative ∇u. This vectorial total
variation regularization term has then proven to be convenient when dealing with minimization
using dual approaches [20–23] and leads to good results for color restoration due to its link to the
eigenvalues of the structure tensor. However, this regularization term fails in preserving sharp
details like edges and texture regions.

In order to circumvent such problems, recent works (see for example [24] for color restoration)
propose some spatially varying terms in the functional to minimize. The idea is to weight the data
term differently according to the localisation in the image by minimizing a spatially adaptive
functional of the form:

E(u) =

∫

Ω

||∇u(x)|| dx +
1

τ

∫

Ω

λ(x)|f(x) − u(x)|τ (1.2)

with τ ∈ [1, 2]. Here, the function λ(x) is similar to the constant λ but is calculated on each
point of the image. For example, a recent work [24] establishes a general framework for color
image restoration dealing with both the L2 and L1 cases. It is solved by Fenchel-duality and
semi-smooth Newton techniques. Some other works rather propose to deal with a weighted total
variation term as for example in [25] for color image restoration or [5, 26, 8] for grey level image
restoration.

In this work, we then propose to study spatially varying regularization and data terms for
color image restoration. We first solve the minimization of the following vectorial TVg+Lτ model:

E(u) =

∫

Ω

g(x)||∇u(x)|| dx + λ

∫

Ω

|f(x)− u(x)|τ dx (1.3)
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where Ω is the image domain, u : Ω → R
3 is the restored image, f is the observed image and

g : Ω →]0, A] (A > 0) is a function chosen according to the application or the noise model.
In this paper, for space reasons, we propose the minimization scheme only for τ = 2 but the
minimization for the L1 norm can be performed using the same mathematical framework as
proposed in [8]. The constant λ > 0 is a positive scale parameter. Such a spatially varying
regularization term appears to be interesting both for Gaussian [5] using the L2 norm and salt
and pepper denoising [27, 8] by using a well adapted function g and the L1 norm. Here, we
propose an adapted function g for the restoration of old parchments. One may ask whether it is
more interesting to use a spatially varying data term or a spatially varying regularization term.
Indeed, it depends on the application. The spatially varying regularization term seems better
adapted for a structural filtering (edges preservation or removing components according to their
structure) while the spatially data term seems better adapted for a syntactic filtering and can
better preserve the intensity of some pixels. In this paper, we then provide an example which
attests the real interest of the TVg term for old parchments restoration but we also propose an
example of impulse noise removal where a well designed spatially varying data term may be more
interesting. To this end, we then propose to solve the minimization of the following criterion:

E2(u) = λ

∫

Ω

[

|∇u1|
2 + |∇u2|

2 + |∇u3|
2
]1/2

dx+

3
∑

i=1

∫

Ω

gi(x)|ui(x) − fi(x)| dx, (1.4)

where g = [g1, g2, g3]
T is now a vectorial function with different components according to the

color channels. Experimental results on simulated noisy images (salt and pepper on each color
channel) provide a first example where this spatially varying data term may be advantageously
used.

The minimization problem and notations are given in section 2 while the Augmented La-
grangian formulation is detailed in section 3 for TVg+L2 and section 4 for TV +L1

g. Experimental
results are given in section 5.

2 Problem statement

2.1 Notations and minimization problems

Let Ω be a three-dimensional bounded open domain of Rd, d = 2, 3. We consider a vector-valued
function u(x) = (u1(x), u2(x), u3(x)) ∈ R

3 defined on Ω. For a color image defined on Ω, the
components ui stand for the three values of each color channel (for example the RGB color space).
To simplify, vector valued functions are denoted by bold-face letters (e.g. u = (u1, u2, u3)). The

Euclidean scalar product is u · v =
∑d

i=1 uivi, for u and v in R
d. Moreover, for u ∈ Rd, we use

the notations: |u|2 = (u · u)1/2, |u|1 =
∑d

i=1 |ui|, |u|∞ = maxi=1,...,d |ui| for the Euclidean
norm, the 1-norm and the infinity norm, respectively.

Let f = (f1, f2, f3) be an observed (blurry or noisy) color image. We propose to address the
two following minimization problems where u = (u1, u2, u3) is the unknown image to restore and
V is a suitable functions space (or a finite dimensional space):

• The TVg + L2 which is defined as follows :

min
u∈V

E1(u) =

∫

Ω

g(x)
[

|∇u1|
2 + |∇u2|

2 + |∇u3|
2
]1/2

dx+ λ

∫

Ω

|u(x)− f (x)|22 dx, (2.1)

where g is a scalar function.
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• The TV + L1
g model which is defined as follows :

min
u∈V

E2(u) = λ

∫

Ω

[

|∇u1|
2 + |∇u2|

2 + |∇u3|
2
]1/2

dx+
3

∑

i=1

∫

Ω

gi(x)|ui(x)− fi(x)| dx, (2.2)

where g = [g1, g2, g3]
T is a vectorial function.

In the case TVg + L2, we precise the first term. Let g be a continuous, positive valued and
bounded function defined on Ω. Let us introduce the weighted total variation regularization term,
denoted by TVg, derived from [5]

J(u) =

∫

Ω

g(x)
[

|∇u1|
2 + |∇u2|

2 + |∇u3|
2
]1/2

dx = sup
φ∈Φg

(u,∇ · φ)L2(Ω;R3)

where Φg =
{

φ ∈ C1(Ω,R3) : |φ(x)| ≤ g, for all x ∈ Ω
}

.

3 Augmented Lagrangian methods for the TVg + L2 model

In this section we present Uzawa (dual) methods for solving (2.1). To this end, we need to trans-
form the convex minimization problem (2.1) into a suitable saddle-point problem by introducing
an auxiliary unknown as for the scalar case [8]. For space reasons, only few elements are given.

3.1 Augmented Lagrangian formulation

Let us introduce the auxiliary unknown p = f − u and rewrite the functional E1 as

E1(u,p) = J(u) + λ

∫

Ω

|p(x)|22 dx. (3.1)

The minimization problem (3.1) becomes

min
(u,p)∈K

E1(u,p), (3.2)

where the constraint set K is defined by K = {(u,p) ∈ X ×X | u+ p− f = 0 in Ω} .
It is obvious that problems (3.1) and (3.2) are equivalent. To the constrained minimization

problem (3.2) we associate the Lagrangian functional L defined on X ×X ×X by

L (u,p; s) = E1(u,p) + (s,u+ p− f)X . (3.3)

In (3.3), s is the Lagrange multiplier associated with the constraint in K. Since E1 is convex and
continuous, a saddle point (u∗,p∗; s∗) of L exists and verifies L (u∗,p∗; s) ≤ L (u∗,p∗; s∗) ≤
L (u,p; s∗), ∀(u,p, s) ∈ X ×X ×X.

We now introduce the augmented Lagrangian defined, for r > 0, by

Lr(u,p; s) = L (u,p; s) +
r

2
‖ u+ p− f ‖2L2 (3.4)

where r is the penalty parameter. It can be proved (easily) that a saddle point of Lr is a saddle
point of L and conversely. This is due to the fact that the quadratic term in Lr vanishes when
the constraint u + p− f = 0 is satisfied. Some efficient numerical schemes can be used to solve
this problem like notably the Uzawa Block Relaxation method detailed thereafter. One important
feature is that this algorithm is well conditioned against the choice of the penalty parameter r.
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3.2 Uzawa block relaxation methods

We apply Uzawa block relaxation methods to the augmented Lagrangian functional (3.4). We
can give a symmetric role to the unknowns u and p by updating the multiplier s between Step
1 and Step 3. We obtain the following Uzawa block relaxation algorithm.

Algorithm UBR

Initialization. p−1, s0 and r > 0 given.
Iteration k ≥ 0. Compute successively uk, pk and sk as follows.

Step 1. Subproblem 1 : Find uk ∈ X s.t. Lr(u
k,pk−1; sk) ≤ Lr(v,p

k−1; sk), ∀v ∈ X.
Step 2. Update the Lagrange multiplier sk+1/2 = sk + r

2 (u
k + pk−1 − f)

Step 3. Subproblem 2 : Find pk ∈ X s.t. Lr(u
k,pk; sk) ≤ Lr(u

k, q; sk), ∀q ∈ X.
Step 4. Update the Lagrange multiplier sk+1 = sk+1/2 + r

2 (u
k + pk − f)

3.3 Solution of subproblem 1

The functional u 7→ Lr(u,p
k−1; sk) can be rewritten as

Φ1(u) :=
r

2
‖ u ‖2L2 +J(u) + (p̃,u)X + C,

where C is a constant. We first compute vk using the following semi-implicit scheme derived
from [9].

vℓ+1
i =

vℓ + τ∇(∇ · vℓi − p̃i)

1 + (τ/g)
[

∑3
i=1 |∇(∇ · vℓi − p̃i)|22

]1/2
, i = 1, 2, 3, (3.5)

where τ > 0. With vk computed using (3.5) and the extremality condition we recover the
minimizer of Subproblem 1

ūk
i =

1

r
(∇ · vki − p̃i), i.e. uk

i = fi − pk−1
i +

1

r
(∇ · vki − ski ), i = 1, 2, 3.

3.4 Solution of subproblem 2

The functional p 7→ Lr(u
k,p; sk) can be rewritten as

Φ2(p) = (λ+ r/2) ‖ p ‖2L2 +(sk + r(uk − f),p)X + C,

where C is a constant. We deduce the solution of the minimization subproblem in p

pk = −(sk + r(uk − f))/(r + 2λ).

With the results above, we can now present the Uzawa block relaxation algorithms for the
TVg + L2 model.

3.5 Uzawa block relaxation algorithms

Algorithm TVL2/UBR2
Initialization. p−1, s0 and r > 0 given.
Iteration k ≥ 0. Compute successively uk, pk and sk as follows.
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Step 1. Set p̃ = sk + r(pk−1 − f) and compute vk with (3.5).

Compute uk

uk
i = fi − pk−1

i +
1

r
(∇ · vki − ski ), i = 1, 2, 3.

Step 2. Update the Lagrange multiplier

s
k+1/2 = s

k +
r

2
(uk + p

k−1 − f).

Step 3. Compute pk

p
k = −(sk + r(uk − f))/(r + 2λ)

Step 4. Update the Lagrange multiplier

s
k+1 = s

k+1/2 +
r

2
(uk + p

k − f ).

4 Augmented Lagrangian methods for the TV + L1

g
model

In this part, we give some elements for the resolution of the TV + L1
g model where L1

g is a
vectorial spatially adaptive data term. The function g(x) is then here chosen as a vectorial
function g(x) = (g1(x), g2(x), g3(x)). The new model TV + L1

g corresponds to the minimization
of the functional (2.2). For this minimization problem, we apply the same kind of minimization
procedure as in the previous section and as in [8] but, in the development of the solution of
subproblem 1, we have the next change:

vℓ+1
i =

vℓ + τ∇(∇ · vℓi − p̃i)

1 + (τ/λ)
[

∑3
i=1 |∇(∇ · vℓi − p̃i)|22

]1/2
, i = 1, 2, 3, (4.1)

where τ > 0.
The algorithm then becomes:

Algorithm TVL1g/UBR2
Initialization. p−1, s0 and r > 0 given.

Iteration k ≥ 0. Compute successively uk, pk and sk as follows.

Step 1. Set p̃ = sk + r(pk−1 − f) and compute vk with (4.1).

Compute uk

uk
i = fi − pk−1

i +
1

r
(∇ · vki − s

k
i ), i = 1, 2, 3.

Step 2. Update the Lagrange multiplier

s
k+1/2 = s

k +
r

2
(uk + p

k−1 − f).

Step 3. Compute pk

pki =







0 if |ski + r(uk
i − fi)| ≤ gi,

fi − uk
i − 1

r

[

sk − gi
ski +r(uk

i −fi)

|sk
i
+r(uk

i
−fi)|

]

if |ski + r(uk
i − fi)| ≥ gi.

Step 4. Update the Lagrange multiplier

s
k+1 = s

k+1/2 +
r

2
(uk + p

k − f ).
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5 Numerical experiments

In the numerical experiments, for the fixed-point algorithm (3.5), the step size is τ = .125 and the
tolerance for the relative error is 1. Numerical experiments not reported here for space reasons
prove that the UBR scheme is robust towards the choice of the penalty parameter r. In this
paper, we provide two main examples to show the potential of spatially varying regularization
and data terms.

5.1 Spatially varying regularization term, the TVg +L2 model, for old parchments

restoration

In this subsection, we propose to test the impact of the function g within the framework of
parchments restoration. In order to restore the background of these images while preserving the
text, we propose to define a well-adapted g function in the weighted total variation term. On
the basis of several tests, we finally choose to introduce an information on the vectorial gradient
through the use of a mask function. In order to do so, we first compute the image corresponding
to the norm of the gradient of each channel. We then perform a basic classification of each
gradient image by partitioning its histogram into nbclasses by minimizing the sum of the class
variances. The number of classes was chosen equal to 3 and we pay attention to the minimum
class of each gradient image, namely Cmin(|∇fi|) in order to detect non significant gradients.
The proposed mask function is then the following:

m(x) =

{

αn if x ∈ (Cmin(|∇f1|) ∩ Cmin(|∇f2|) ∩ Cmin(|∇f3|))
α elsewhere

(5.1)

We choose αn = 1 and α = 0.001 in order to uppermost smooth the pixels of smaller gradients.We
then take g(x) = mσ(x) where mσ(x) = Gσ ∗m(x) is a slight regularized version of m (σ = 0.05).
As far as the removing of non significant edges is concerned in old parchments, this adjunction
of a weighted TV leads to interesting results that can not be obtained using a classical TV
regularization term. In Figure 5.1, we show an example of restoration of an old parchment using
g = 1 (Figure 5.1.(b)) and the function g = mσ(x) (Figure 5.1.(c)). The parameter λ was chosen
in order to visually obtain the best results (λ = 3 when g = 1 and λ = 0.2 when g = mσ(x)).
When choosing g = 1, the parameter λ is difficult to tune. Indeed choosing a small value for
this parameter leads to a global smoothing of the image and does not allow a preservation of
the characters while choosing a high value does not smooth enough the background. On the
contrary, when using the weighted TV term, the impact of the parameter λ is less important. We
can then choose a small value in order to smooth the background while preserving the important
information.

This first experimental result is here to illustrate the behaviour of the function g in the
weighted total variation term. Further experiments are needed in order to validate this term for
the specific application of old parchments restoration and analysis. It could also be interesting
to test some different space colors than RGB in order to improve these first results.

5.2 Spatially varying data term, the TV + L1

g model, for impulse noise removal

In order to test the potential of such a vectorial varying data term, we first propose to test it on
simulated noisy images where an impulse noise is added on each color channel. To achieve this,
we introduce the vector-valued function g(x) = (g1(x), g2(x), g3(x)) defined by

gi(x) =

{

0 if x ∈ Ci(f)
1 if not
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(a) Original image (b) Using g = 1 (c) Using an appropriate g

Fig. 1. Restoration of a parchment (a) using the weighted total variation term with g = 1 (b) and the
function g(x) = mσ(x) (c).

where Ci(f) designates the set of corrupted pixels in the channel i. In the experiments, we consider
that the corrupted pixels correspond to the minimum or maximum values of the intensity but, in
the real case, an adapted noise detector should be used (see [28] for an interesting bibliography
on such detectors). Figure 2 shows interestingly that the new model outperforms the TVg + L1

model where g is the function proposed in [8] for salt and pepper noise removal. The spatially
varying data term gives very interesting results even for high levels of noise that are only handled
by very few methods [28].

6 Conclusion

This paper deals with color image restoration using a vectorial adaptation of the seminal ROF
model. An augmented Lagrangian functional is introduced leading to Uzawa block relaxation
algorithms for the minimization of both the TVg + L2 and the TV + L1

g functionals. Such al-
gorithms are fast and easy to implement allowing a simple resolution for the minimization of
such functionals. They are also robust towards the choice of the penalty parameter r. Once
the mathematical framework was settled, we propose to test the behaviour of spatially varying
regularization and data terms in the framework of color image restoration. We first propose to
test the impact of the weighted total variation term through the definition of a new function g
that proves to be valuable for the restoration of old parchments. We use it in order to restore
the background of medieval parchments while preserving the text. We obtain very good results
that need to be completed by further investigations and tests. One problem that needs to be
further studied is the impact of the additional term that appears when computing the PDE of
such a problem. This problem was mentioned in [28]. This additional term may introduce some
oscillating boundaries if the function g is not smooth enough and must then be further studied
and quantified. A post-processing (smoothing in the direction of the tangent of the gradient)
can also be used to solve this artifact. Secondly, we also investigate the use of a spatially data
varying term where the parameter λ becomes a vectorial local function. This term can also be
solved using our mathematical framework with only a slight change and leads to very good results
for salt an pepper denoising. We also compare it to an adapted weighted total variation term.
In this case, the spatially varying data term gives better results both visually and in terms of
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PSNR. These first tests need to be further developed for example regarding with the sensitivity
to the parameters and color space. They also demonstrate that the selection of the point-wise
weight function is very important and may lead to a real improvement compare to the results
obtained using a simple TV+Lτ model. Our on going research is then directed towards a deeper
investigation of such terms notably within the framework of old parchments restoration.

(a) (b) (c)

1.
33.5dB, 96it., λ = 0.9 40.4dB, 46it., λ = 0.2

2.
27.6dB, 114it., λ = 0.7 33.9dB, 65it., λ = 0.2

3.
19.5dB, 759it., λ = 0.5 23.0dB, 245it., λ = 0.2

Fig. 2. (a) : noisy image (20%, 70%, 95%); (b) : restored image using TVg + L1; (c) : restored image
using TV + L1

g (with the associated PSNR, number of iterations and λ)
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