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ASYMPTOTICS FOR REGRESSION MODELS UNDER

LOSS OF IDENTIFIABILITY

J. RYNKIEWICZ
SAMM, UNIVERSITE PARIS 1

Abstract. This paper discusses the asymptotic behavior of regression
models under general conditions. First, we give a general inequality for
the difference of the sum of square errors (SSE) of the estimated regres-
sion model and the SSE of the theoretical best regression function in our
model. A set of generalized derivative functions is a key tool in deriving
such inequality. Under suitable Donsker condition for this set, we give
the asymptotic distribution for the difference of SSE. We show how to
get this Donsker property for parametric models even if the parameters
characterizing the best regression function are not unique. This result
is applied to neural networks regression models with redundant hidden
units when loss of identifiability occurs.

1. introduction

This paper discusses the asymptotic behavior of regression models under
general conditions. Let F be the family of possible regression functions and
suppose that we observe a random sample

(X1Y1), · · · , (Xn, Yn),

from the distribution P of a vector (X,Y ), with Y a real random variable,
that follows the regression model

(1) Y = f0(X) + ε, E (ε |X ) = 0, E
(
ε2 |X

)
= σ2 <∞.

In our model, the function f0 will be the best regression function among the
set F :

f0 = argmin
f∈F

‖Y − f(X)‖2,
where

‖g(Z)‖2 :=

√
∫

g(z)2dP (z)

is the L2 norm for an square integrable function g.
For simplicity, we assume that the best function f0 is unique.
A natural estimator of f0 is the least square estimator (LSE) f̂ that

minimizes the sum of square errors (SSE):

(2) f̂ = argmin
f∈F

n∑

t=1

(Yt − f(Xt))
2.

1
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f̂ should be expected to converge to the function f0 under suitable condi-
tions. If F is a parametric family and Θ is a set of possible parameters,
F = {fθ, θ ∈ Θ}, the LSE is the parameter θ̂ that minimizes

(3) θ̂ = argmin
θ∈Θ

n∑

t=1

(Yt − fθ(Xt))
2.

Let us write Θ0 the set of parameters realizing the best regression function
f0: ∀θ ∈ Θ0, fθ = f0. If the set F is large enough, it may be possible that
the dimension of the interior of the set Θ0 is larger than zero and various
difficulties arise in analyzing the statistical properties of estimators of f0.
This is for example the case if F contains multilayer neural networks with
redundant hidden units (see [Fukumizu(2003)]).

Under loss of identifiability of the parameters, the asymptotics for likeli-
hood functions has been studied by [Liu and Shao(2003)] who improve the
method of [Dacunha-Castelle and Gassiat(1997)] and
[Dacunha-Castelle and Gassiat(1999)]. The authors establish a general qua-
dratic approximation of the log-likelihood ratio in a neighborhood of the true
density which is valid with or without loss of identifiability of the parameter
of the true distribution. In this paper, we will use a similar idea, but here
we are interested in regression functions, not in density functions, so we will
introduce generalized derivative functions:

(4) df (x) =
f(x)− f0(x)

‖f(X)− f0(X)‖2
, f 6= f0.

Under some general regularity conditions, this paper shows that

(5) lim
n→∞

n∑

t=1

(Yt − f0(Xt))
2 −

(

Yt − f̂(Xt)
)2

= σ2 sup
s∈D

W 2
s

where D is the L2 limits of the generalized derivative function df as ‖f(X)−
f0(X)‖2 → 0. Such result allows for example, to fully explicit the asymp-
totic behavior of the SSE when regression functions are multilayer neural
networks, even if F is too big and contains neural networks with redundant
hidden units.

This result is a consequence of the very general inequality: For all regres-
sion function f ∈ F , f 6= f0,

(6)

n∑

t=1

(Yt − f0(Xt))
2 − (Yt − f(Xt))

2 ≤

(∑n
t=1 εtdf (Xt)√

n

)2

∑n
t=1(df (Xt))

2

n

and the fact that the empirical process :

(7)
1√
n

n∑

t=1

εtdf (Xt)
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converges in distribution to some Gaussian process. For instance, when
S = {df , f ∈ F , f 6= f0} is a Donsker class, 1√

n

∑n
t=1 εtdf (Xt) converges

uniformly to some zero-mean Gaussian process.
Note that, even if the set F is a regular parametric family, the function

θ 7→ dfθ(x) may be not extendable by continuity in θ0 ∈ Θ0, hence the
Donsker property of the set of generalized derivative functions has to be
carefully studied. This problem occurs also for the generalized score func-
tions Sθ of [Liu and Shao(2003)], although the authors did not mention it.

The paper is organized as follows: Section 2 establishes the asymptotic
distribution of the SSE for regression models if the set of generalized deriv-
ative functions S is Donsker. In the next section, we show how to get the
Donsker property for S in the parametric case but under loss of identifia-
bility. As an example, section 4 characterizes the asymptotic distribution of
regression using neural networks with redundant hidden units.

2. Asymptotic distribution of the SSE

For sake of simplicity we consider identically distributed independent vari-
ables, but all the following results can be easily generalized to geometrically
mixing stationary sequence of random variables as in
[Oltanu M., Rynkiewicz, J. (2012)] or [Gassiat(2002)]. For example, our re-
sults may be applied to non-linear autoregressive models using multilayer
neural neural networks as in [Yao(2000)]. Under fairly general condition
the LSE is consistent and the regularity conditions of this paper imply con-
sistency, so the asymptotic distribution of SSE is determined by the local
properties of the regression function in a small L2-neighborhood of the best
regression function f0.

First we begin with some definitions.

Definition 2.1. The envelope function of a class of functions F is defined
as

F (x) ≡ sup
f∈F

|f(x)| .

We will use the abbreviation Pf =
∫
fdP for an integrable function f and

a probability measure P . A family of random sequences

{Yn(g), g ∈ G, n = 1, 2, · · · }
is said to be uniformly OP (1) if for every δ > 0, there exist constants M > 0
and N(δ,M) such that

P

(

sup
g∈G

|Yn(g)| ≤M

)

≥ 1− δ

for all n ≥ N(δ,M).
A family of random sequences

{Yn(g), g ∈ G, n = 1, 2, · · · }
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is said to be uniformly oP (1) if for every δ > 0 and ε > 0 there exists a
constant N(δ, ε) such that

P

(

sup
g∈G

|Yn(g)| < ε

)

≥ 1− δ

for all n ≥ N(δ, ε).

2.1. Upper bound for the SSE. We prove this lemma which gives a very
general upper bound for the sum of square errors.

Lemma 2.1. For all regression function f ∈ F with f 6= f0:

n∑

t=1

(Yt − f0(Xt))
2 − (Yt − f(Xt))

2 ≤

(∑n
t=1 εtdf (Xt)√

n

)2

∑n
t=1(df (Xt))

2

n

.

Proof. We have
∑n

t=1 (Yt − f0(Xt))
2 − (Yt − f(Xt))

2 =
∑n

t=1 (Yt − f0(Xt))
2 − (Yt − f0(Xt) + f0(Xt)− f(Xt))

2 =
∑n

t=1 2εt (f(Xt)− f0(Xt))− (f(Xt)− f0(Xt))
2

Now, let us write

A = ‖f0(Xt)− f(Xt)‖2 ×
√
∑n

t=1

(
f(Xt)−f0(Xt)

‖f(Xt)−f0(Xt)‖2

)2

and

Z =

∑n
t=1 εt

f(Xt)−f0(Xt)
‖f(Xt)−f0(Xt)‖2

√

∑n
t=1

(

f(Xt)−f0(Xt)
‖f(Xt)−f0(Xt)‖2

)2
,

then remark that 2AZ −A2 ≤ Z2 implies that

n∑

t=1

(Yt − f0(Xt))
2 − (Yt − f(Xt))

2 ≤

(
∑n
t=1 εt

f(Xt)−f0(Xt)
‖f(Xt)−f0(Xt)‖2√

n

)2

∑n
t=1

(

f(Xt)−f0(Xt)
‖f(Xt)−f0(Xt)‖2

)2

n

.

�

2.2. Approximation of the SSE. Define the limit-set of derivatives D as
the set of functions d ∈ L2(P ) such that one can find a sequence (fn) ∈ F
satisfying ‖fn(X) − f0(X)‖2 −−−→

n→∞
0 and ‖d − dfn‖2 −−−→

n→∞
0. With such

(fn), define, for all t ∈ [0, 1], ft = fn, where n ≤ 1
t < n + 1. We thus have

that, for any d ∈ D, there exists a parametric path (ft)0≤t≤α such that for
any t ∈ [0, α], ft ∈ F , t 7→ ‖ft(X) − f0(X)‖2 is continuous, tends to 0 as t
tends to 0 and ‖d− dft‖2 → 0 as t tends to 0. Using the reparameterization



ASYMPTOTICS FOR REGRESSION MODELS UNDER LOSS OF IDENTIFIABILITY 5

‖fu(X) − f0(X)‖2 = u, for any d ∈ D, there exists a parametric path
(fu)0≤u≤α such that:

(8)

∫

(fu − f − ud)2 dP = o(u2).

Now, let us state the following theorem:

Theorem 2.1. If the set of generalized derivative function S is a Donsker
class and for any d in the limit-set of derivatives D, a reparameterization
(fu)0≤u≤α exists so that ‖d− dfu‖2 → 0 as u tends to 0 and the map

u 7→ P (Y − fu(X))2

admits a second-order Taylor expansion with strictly positive second deriva-

tive ∂2P (Y−fu(X))2

∂u2
at u = 0, then

sup
f∈F

n∑

t=1

(Yt − f0(Xt))
2 − (Yt − f(Xt))

2 = sup
d∈D

(

1√
n

n∑

t=1

εtd(Xt)

)2

+ oP (1).

Proof. We have
∑n

t=1 (Yt − f0(Xt))
2 − (Yt − f(Xt))

2 = 2‖f(X) − f0(X)‖2
∑n

t=1 εtdf(Xt)
−‖f(X)− f0(X)‖22

∑n
t=1 df

2(Xt).

As soon as
∑n

t=1 (Yt − f0(Xt))
2 − (Yt − f(Xt))

2 ≥ 0,

2‖f(X)− f0(X)‖2
∑n

t=1 εtdf(Xt) ≥ ‖f(X)− f0(X)‖22
∑n

t=1 df
2(Xt)

and
(9)

sup
f∈F ,

∑n
t=1(Yt−f0(Xt))

2−(Yt−f(Xt))2≥0

‖f(X)− f0(X)‖2 ≤ 2 sup
f∈F

∑n
t=1 εtdf(Xt)

∑n
t=1 df

2(Xt)
.

Since, S is Donsker

(10) sup
f∈F

1

n

(
n∑

t=1

εtdf (Xt)

)2

= OP (1)

and S admits an envelope function F such that P (F 2) < ∞, so S2 is
Glivenko-Cantelli and

(11) sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

t=1

d2f (Xt)− 1

∣
∣
∣
∣
∣
= oP (1).

Then, one may apply inequality (9) to obtain

(12) sup
f∈F ,

∑n
t=1(Yt−f0(Xt))

2−(Yt−f(Xt))2≥0

‖f(X) − f0(X)‖2 = OP

(
1√
n

)

.
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By lemma 2.1,

sup
f∈F

n∑

t=1

(Yt − f0(Xt))
2 − (Yt − f(Xt))

2 ≤ sup
f∈F

(
∑n
t=1 εt

f0(Xt)−f(Xt)
‖f0(Xt)−f(Xt)‖2√

n

)2

∑n
t=1

(

f0(Xt)−f(Xt)
‖f0(Xt)−f(Xt)‖2

)2

n

.

Using (11), we obtain that

supf∈F
∑n

t=1 (Yt − f0(Xt))
2 − (Yt − f(Xt))

2

≤ supf∈F

(
∑n
t=1 εt

f0(Xt)−f(Xt)
‖f0(Xt)−f(Xt)‖2√

n

)2

+ oP (1).

Let Fn =
{
f ∈ F : ‖fn(X)− f0(X)‖2 ≤ n−1/4

}
. Using (12), we obtain

that
supf∈F

∑n
t=1 (Yt − f0(Xt))

2 − (Yt − f(Xt))
2

≤ supf∈Fn

(
∑n
t=1 εt

f0(Xt)−f(Xt)
‖f0(Xt)−f(Xt)‖2√

n

)2

+ oP (1).

Now, supf∈Fn ‖df −D‖2 −−−→
n→∞

0, thus for a sequence un decreasing to 0,

and with

∆n = {df − d : f ∈ Fn, d ∈ D, ‖df − d‖2 ≤ un} ,
we obtain that

supf∈F
∑n

t=1 (Yt − f0(Xt))
2 − (Yt − f(Xt))

2

≤
(

supd∈D
∑n
t=1 εtd(Xt)√

n
+ supδ∈∆n

∑n
t=1 εtδ(Xt)√

n

)2
+ oP (1).

But, using the Donsker property, the definition of ∆n and the property
of asymptotic stochastic equicontinuity of empirical processes indexed by a
Donsker class, we get:

sup
δ∈∆n

∑n
t=1 εtδ (Xt)√

n
= oP (1),

and

(13)
supf∈F

∑n
t=1 (Yt − f0(Xt))

2 − (Yt − f(Xt))
2

≤ supd∈D
(∑n

t=1 εtd(Xt)√
n

)2
+ oP (1).

Moreover, since S admits a square integrable envelope function, a function
m exists such that for u1 and u2 belonging to a parametric path converging
to a limit function d:

∣
∣(y − fu1(x))

2 − (y − fu2(x))
2
∣
∣ ≤ m(x, y)|u1 − u2|

and since, along a path, the map

u 7→ P (Y − fu(X))2

admits a second-order Taylor expansion with strictly positive second de-

rivative ∂2P (Y−fu(X))2

∂u2
at u = 0, we can use classical normal asymptotic
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theorem for M-estimators (see theorem 5.23 of [van der Vaart(1998)]) along
this parametric paths, to obtain a sequence of finite subsets Dk increasing
to D such that

supf∈F
∑n

t=1 (Yt − f0(Xt))
2 − (Yt − f(Xt))

2

≥ supd∈Dk

(∑n
t=1 εtd(Xt)√

n

)2
+ oP (1).

for any k, therefore, equality holds in (13). �

Define (W (d))d∈D the centered Gaussian process with covariance the

scalar product in L2(P ), an immediate application of theorem 2.1 gives:

Corollary 2.1. Assume that S is a Donsker class,

sup
f∈F

n∑

t=1

(Yt − f0(Xt))
2 − (Yt − f(Xt))

2

converges in distribution to

σ2 sup
d∈D

(W (d))2 .

As we see, the Donsker property of the set of generalized derivatives
functions S is fundamental for the results above. In the next section we will
show how to get it for parametric models under loss of identifiability.

3. Donsker property for S
This section will give a framework for the demonstration of Donsker prop-

erty for the set of generalized derivative functions S for parametric mod-
els and under loss of identifiability. Note that this framework could be
easily adapted to likelihood ratio test and generalized score functions of
[Liu and Shao(2003)].

First, we recall the notion of bracketing entropy. Consider the set S
endowed with the norm ‖·‖2. For every η > 0, we define an η-bracket
by [l, u] = {f ∈ S, l ≤ f ≤ u} such that ‖u− l‖2 < η. The η-bracketing
entropy is

H[·] (η,S, ‖·‖2) = ln
(
N[·] (η,S, ‖·‖2)

)
,

where N[·] (η,S, ‖·‖2) is the minimum number of η-brackets necessary to
cover S.

With the previous notations if
∫ 1

0

√

H[·] (η,S, ‖·‖2)dη <∞,

then, according to [van der Vaart(1998)], the set S is Donsker. Note that,
if the number of η-brackets necessary to cover S, N[·] (η,S, ‖·‖2), is a poly-

nomial function of 1
η , S will be Donsker. If a class of function

F =
{
fθ, θ ∈ Θ ⊂ RD

}
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is parametric and regular, in general, for any θ1, θ2 ∈ Θ there exists a
function G ∈ L2(P ) such that

(14) |fθ1(x)− fθ2(x)| ≤ ‖θ1 − θ2‖G(x)
and according to [van der Vaart(1998)] a constant K exists such that,

N[·] (η,S, ‖·‖2) ≤ K

(
diamΘ

η

)D

.

Hence, the set F is Donsker. However, even if the set F is parametric and

regular, the set S =
{

dfθ =
fθ−f0

‖fθ−f0‖2 , θ ∈ Θ, fθ 6= f0

}

is not regular, since

θ 7→ dfθ (x) is, in general, not extendable by continuity in θ0 a parameter
realizing the best regression function f0. Note that, it is also the case for
the generalized score function Sθ of [Liu and Shao(2003)], in particular in
the case of finite mixture models under loss of identifiability. Hopefully, we
can show the Donsker property of the set S by an other method which can
be applied also to generalized score function in the framework of likelihood
ratio test as in [Oltanu M., Rynkiewicz, J. (2012)].

For proving that N[·] (η,S, ‖·‖2), is a polynomial function of 1
η , we have

to split S into two sets of functions: A set in a neighborhood of the best
regression function f0 and a second one at a distance at least η of f0. For
a sufficiently small η > 0, we consider Fη ⊂ F , a L2-neighborhood of f0:
Fη = {fθ ∈ F , ‖fθ − f0‖2 ≤ η, fθ 6= f0}. S is split into Sη = {dfθ , fθ ∈ Fη}
and S \ Sη.

On S \ Sη, it can be easily seen that

∥
∥
∥dfθ1 − dfθ2

∥
∥
∥
2
≤ ‖fθ1 − fθ2‖2

‖fθ1 − f0‖2
+

∥
∥
∥
∥

fθ2 − f0

‖fθ1 − f0‖2
− fθ2 − f0

‖fθ2 − f0‖2

∥
∥
∥
∥
2

for every fθ1 , fθ2 ∈ F \Fη . By (14), if ‖θ1− θ2‖ ≤ η3, a constant C exists
such that

‖fθ1 − fθ2‖2 ≤ Cη3.

Then, by the definition of Sη,
∥
∥
∥
∥

fθ2−f0
‖fθ1−f0‖2

− fθ2−f0
‖fθ2−f0‖2

∥
∥
∥
∥
2

≤ ‖fθ2−f0‖2
η

(
1

1+η2
− 1
)

= ‖fθ2 − f0‖2 (η + o(η))

and, a constant M exists so that

∥
∥
∥dfθ1 − dfθ2

∥
∥
∥
2
≤ Cη2 + ‖fθ2 − f0‖2 (η + o(η)) ≤Mη.

Finally, we get:

N[·] (η,S \ Sη, ‖·‖2) = O
(

1

η3

)D

= O
(
1

η

)3D

where D is the dimension of parameter vector of the model.



ASYMPTOTICS FOR REGRESSION MODELS UNDER LOSS OF IDENTIFIABILITY 9

It remains to prove that the bracketing number is a polynomial function of
( 1η ) for Sη. The idea is to reparameterize the model in a convenient manner

which will allow a Taylor expansion around the identifiable part of the true
value of the parameters, then, using this Taylor expansion, we can show
that the bracketing number of Sη is a polynomial function of 1

η . Indeed, in

many applications, there exists a reparameterization θ 7→ (φ,ψ) such that
fθ = f0 is equivalent to the condition that φ = φ0 for all ψ. Then, positive
integers (q0, q1) and linearly independent functions gβ0

i
, g′

β0
i

, g′′
β0
i

, i = 1, ..., q0,

gβj , j = 1, · · · , q1 exist so that the difference of regression functions can be
written:
(15)

fθ − f0 = f(φ,ψ) − f0 = (φ− φ0)
T ∂f(φ0,ψ)

∂φ

+1
2 (φ− φ0)

T ∂2f(φ0,ψ)

∂φ2
(φ− φ0) + o(‖f(φ,ψ) − f0‖22) =

∑q0
i=1 αigβ0

i
+
∑q1

i=1 νigβi +
∑q0

i=1 δ
T
i g

′
β0
i

+
∑q0

i=1 γ
T
i g

′′
β0
i

γi + o
(
‖f(φ,ψ) − f0‖22

)

where
(
β0i
)

1≤i≤q0 are fixed parameter, αi and νi are real parameters and

δi and γi are parameter vectors with sizes compatible with functions g′
β0
i

and

g′′
β0
i

, (βi)1≤i≤q1 are in a compact set and inequality (14) is true for the regular

parametric functions (gβi)1≤i≤q1 . Moreover ‖f(φ,ψ) − f0‖22 ≤ η2 on Sη.
We will see an example of such expansion in the next section. Note that

similar expansion is also possible for the likelihood ratio framework (see
[Liu and Shao(2003)], section 4). We get then the next result:

Proposition 3.1. If an expansion like (15) exists, a positive integer d exists

so that the number of η-brackets N[·] (η,Sη , ‖·‖2) covering Sη is O
(
1
η

)d
.

Proof. The idea is to bound N[·] (η,Sη , ‖·‖2) by the number of η-brackets
covering a wider class of functions. For every fθ ∈ Fη, we will consider the
reparameterization θ 7→ (φt, ψt) which allows to get a second-order develop-
ment of the density ratio like (15).

Now, using the linear independence of functions gβi , gβ0
i
, g′

β0
i

, g′′
β0
i

, for

every vector v = (αi, δi, γi, i = 1, · · · , q0, νj , j = 1, · · · , q1) of norm 1,

(v, (βi)1≤i≤q1) 7→
∥
∥
∥
∥
∥

q0∑

i=1

αigβ0
i
+

q1∑

i=1

νigβi +

q0∑

i=1

δTi g
′
βi +

q0∑

i=1

γTi g
′′
βiγi

∥
∥
∥
∥
∥
2

> 0.

Using the compacity of sets

V = {v = (αi, δi, γi, i = 1, · · · , q0, νj , j = 1, · · · , q1) , ‖v‖ = 1}
and
{(βi)1≤i≤q1}
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m > 0 exists so that for all (βi)1≤i≤q1 and v ∈ V,
∥
∥
∥
∥
∥

q0∑

i=1

αigβ0
i
+

q1∑

i=1

νigβi +

q0∑

i=1

δTi g
′
βi +

q0∑

i=1

γTi g
′′
βiγi

∥
∥
∥
∥
∥
2

≥ m.

At the same time, since

∥
∥
∥
∥
∥

f(φt,ψt) − f0
∥
∥f(φt,ψt) − f0

∥
∥
2

∥
∥
∥
∥
∥
2

= 1,

the Euclidean norm of coefficients (αi, δi, γi, i = 1, · · · , q0, νi, i = 1, · · · , q1)
in the development of

f(φt,ψt)−f0
‖f(φt,ψt)−f0‖2

is upper bounded by 1
m + 1. This fact

implies that Sη can be included in

H =

{
∑q0

i=1

(

αigβ0
i
+ δTi g

′
β0
i

+ γTi g
′′
β0
i

γi

)

+
∑q1

i=1 νigβi + C,

‖(αi, δi, γi, i = 1, · · · , q0, νi, i = 1, · · · , q1)‖ ≤ 1
m + 1, |C| ≤ 1

m + 1
}

and a positive integer d exists so that N[·] (η,H, ‖·‖2) = O
(
1
η

)d
. �

Note that, since the N[·] (η,S, ‖·‖2), is a polynomial function of 1
η , the

Donsker property of S may be easily extended to β-mixing observations
with respect to the norm ‖.‖2,β (see [Doukhan P., Massart P., Rio E.]).

4. Application to regression with neural networks

Feedforward neural networks or multilayer perceptrons (MLP) are well
known and popular tools to deal with non-linear regression models.
[White(1992)] reviews the statistical properties of MLP estimation in detail,
however he leaves an important question pending: The asymptotic behavior
of the estimator when the MLP in use has redundant hidden units. When
the noise of the regression model is assumed Gaussian,
[Amari, Park and Ozeki(2006)] give several examples of the behavior of the
likelihood ratio test statistic (LRTS) in such cases. [Fukumizu(2003)] shows
that, for unbounded parameters, the LRTS can have an order lower bounded
by O(log(n)) with n the number of observations instead of the classical con-
vergence property to a χ2 law. [Hagiwara and Fukumizu(2008)] investigate
relation between LRTS divergence and weight size in a simple neural net-
works regression problem.

However, if the set of possible parameters of the MLP regression model are
bounded the behavior of LRTS and more generally the SSE is still unknown.
In this section, we derive the distribution of the SSE if the parameters are
in a compact (bounded and closed) set.
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4.1. The model. Let x = (x1, · · · , xd)T ∈ Rd be the vector of inputs and

wi := (wi1, · · · , wid)T ∈ Rd be the parameter vector of the hidden unit i.
The MLP real function with k hidden units can be written :

fθ(x) = β +

k∑

i=1

aiφ
(
wTi x+ bi

)
,

with θ = (β, a1, · · · , ak, b1, · · · , bk, w11, · · · , w1d, · · · , wk1, · · · , wkd) the pa-
rameter vector of the model. The transfer function φ will be assumed
bounded and two times derivable. We assume also that the first and second
derivatives of the transfer function φ: φ

′
and φ

′′
are bounded like for sigmoid

functions, the most used tranfer functions. Moreover, in order to avoid a
symmetry on the signs of the parameters, we assume that, for 1 ≤ i ≤ k,

ai ≥ 0. Let Θ ⊂ R × R+k × Rk×(d+1) be the compact set of possible
parameters, the regression model (1) is then:

Y = fθ0(X) + ε

with X is a random input variable with probability law Q and

θ0 =
(
β0, a01, · · · , a0k, b01, · · · , b0k, w0

11, · · · , w0
1d, · · · , w0

k1, · · · , w0
kd

)

a parameter such that fθ0 = f0. Note that the set of parameters Θ0 re-
alizing the best regression function f0 may belong to a non-null dimension
sub-manifold if the number of hidden units is overestimated. Suppose, for
example, we have a multilayer perceptron with two hidden units and the
true function f0 is given by a perceptron with only one hidden unit, say
f0 = a0 tanh(w0x), with x ∈ R. Then, any parameter θ in the set:

{
θ
∣
∣w2 = w1 = w0, b2 = b1 = 0, a1 + a2 = a0

}

realizes the function f0. Hence, classical statistical theory for studying the
LSE can not be applied because it requires the identification of the param-
eters (up to some permutations and sign symmetries) so that the Hessian
matrix of mean square error with respect to the parameters will be definite
positive in a neighborhood of the parameter vector realizing the true regres-
sion function. Let us denote k0 the minimal number of hidden units to realize
the best regression function f0, we will compare the SSE of over-determined
models against the true model :

n∑

t=1

(Yt − f0(Xt))
2 −

n∑

t=1

(Yt − fθ(Xt))
2 ,

when unidentifiability occurs (i.e. when k > k0).

4.2. Asymptotic distribution of the difference of SSE. Let us give
simple sufficient conditions for which the Donsker property of the general-
ized derivatives functions condition holds. Note that assumption H-1 allows
that, for any accumulation sequence of parameter θn leading to f0, the re-
gression functions (fθn) are in a L2-neighborhood of f0, in the same spirit
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of locally conic models of [Dacunha-Castelle and Gassiat(1997)]. Moreover,
if the distribution Q of the variable X is not degenerated, it may be shown
that the assumption H-3 is true for the sigmoid transfer function:

φ(t) = tanh(t)

with straightforward extension of the results of [Fukumizu(1996)].

: H-1: Θ is a closed ball of R×R+k×Rk×(d+1) and its interior contains
parameters realizing the best regression function f0.

: H-2: E(‖X‖4) <∞.
: H-3: For distinct (wi, bi)1≤i≤k , with wi not null, the functions of the

set
(

1,
(

xjxlφ
′′
(w0

i
T
x+ b0i )

)

1≤l≤j≤d, 1≤i≤k0
,
(

xjφ
′′
(w0

i
T
x+ b0i )

)

1≤j≤d, 1≤i≤k0

φ
′′
(w0

i
T
x+ b0i )1≤i≤k0 ,

(

xjφ
′
(w0

i
T
x+ b0i )

)

1≤j≤d, 1≤i≤k0
(

φ
′
(w0

i
T
x+ b0i )

)

1≤i≤k0
,
(
φ(wi

Tx+ bi)
)

1≤i≤k

)

are linearly independent in the Hilbert space L2(Q).

We then get the following result:

Theorem 4.1. Let the map Ω : L2(Q) → L2(Q) be defined as Ω(f) =
f

‖f‖2 . Under the assumptions H-1, H-2 and H-3, a centered Gaussian pro-

cess {W (d), d ∈ D} with continuous sample paths and a covariance kernel
P (W (d1)W (d2)) = P (d1d2) exists so that

lim
n→∞

n∑

t=1

(Yt − f0(Xt))
2 −

n∑

t=1

(Yt − fθ(Xt))
2 = σ2 sup

d∈D
(W (d))2 .

The index set D is defined as D = ∪tDt, the union runs over any possible

t = (t1, · · · , tk0+1) ∈ N k0+1 with 0 ≤ t1 ≤ k−k0 < t2 < · · · < tk0+1 ≤ k and

Dt =
{

Ω
(

γ +
∑k0

i=0 ǫiφ(w
0
i
T
X + b0i )

+
∑k0

i=0 φ
′
(w0

i
T
X + b0i )(ζ

T
i X + αi)

+δ(i)
∑k0

i=1 φ
′′
(w0

i
T
X + b0i )×((

∑ti+1

j=ti+1 νj
TXXT νj + ηjνj

TX + ηj
2
))

+
∑k

i=t
k0+1+1 µiφ(wi

TX + bi)
)

,

γ, ǫ1, · · · , ǫk0 , α1, · · · , αk0 , ηt1 , · · · , ηtk0+1
∈ R,

µt
k0+1+1, · · · , µk ∈ R+; ζ1, · · · , ζk0 , νt1 , · · · , νtk0+1

∈ Rd,

(wk0+1+1, bk0+1+1), · · · , (wk, bk) ∈ Θ\
{
(w0

1, b
0
1), · · · , (w0

k0 , b
0
k0)
}}

.

δ(i) = 1 if a vector q exists so that:

qj ≥ 0,
∑ti+1

j=ti+1 qj = 1,
∑ti+1

j=ti+1
√
qjνj = 0 and

∑ti+1

j=ti+1
√
qjηj = 0, other-

wise δ(i) = 0.
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Proof. If the set of generalized derivative functions S = {dfθ , θ ∈ Θ\Θ0} is
a Donsker class, we can apply the theorem 2.1 to conclude. So, in order to
show this Donsker property, we will get an asymptotic development of the
generalized derivative function and apply proposition (3.1).
Reparameterization. The idea is similar of the reparameterization of finite
mixture models in [Liu and Shao(2003)]. Under assumption H-3, the writing
of f0 with a neural network with k0 hidden units is unique, up to some
permutations:

(16) f0 = β0 +

k0∑

i=1

a0iφ
(

w0
i
T
x+ b0i

)

.

Then, for a θ ∈ Θ, if fθ = f0, a vector t = (ti)1≤i≤k0+1 exists so that

0 ≤ t1 ≤ k − k0 < t2 < · · · < tk0+1 ≤ k and, up to permutations,
we have w1 = · · · = wt1 = 0 if t1 > 0,

(
wti+1 = · · · = wti+1 = w0

i

)

1≤i≤k0 ,(
bti+1 = · · · = bti+1 = b0i

)

1≤i≤k0 ,(
∑ti+1

j=ti+1 aj = a0i

)

1≤i≤k0
and β +

∑t1
i=1 aiφ(bi) = β0 if t1 > 0 else β = β0.

For 1 ≤ i ≤ k0, let us define si =
∑ti+1

j=ti+1 aj − a0i and, if
∑ti+1

ti+1 aj 6= 0,

let us write qj =
aj

∑ti+1
ti+1 aj

. If
∑ti+1

ti+1 aj = 0, qj will be set at 0. Moreover, let

us write γ = β +
∑t1

i=1 aiφ(bi)− β0, if t1 > 0 else γ = β − β0.
We get then the reparameterization θ 7→ (Φt, ψt) with

Φt =
(

γ, (wj)
t
k0+1

j=t1
, (bj)

t
k0+1

j=t1
, (si)

k0
i=1, (aj)

k
t
k0+1+1

)

,

ψt =
(

(qj)
t
k0+1

j=t1
, (wi, bi)

k
i=1+t

k0+1

)

.

With this parameterization, for a fixed t, Φt is an identifiable parameter
and all the non-identifiability of the model will be in ψt. Namely, fθ will be
equal to:

fθ = (γ + β0) +
∑k0

i=1(si + a0i )
∑ti

j=ti−1+1 qjφ(w
T
j x+ bj)

+
∑k

i=t
k0+1+1 ajφ(w

T
i x+ bi).

So, for a fixed t, f(Φ0
t ,ψt)

= f0 if and only if

Φ0
t =
(0, w0

1, · · · , w0
1

︸ ︷︷ ︸
, · · · , w0

k0 , · · · , w0
k0

︸ ︷︷ ︸
, b01, · · · , b01
︸ ︷︷ ︸

, · · · , b0k0 , · · · , b0k0
︸ ︷︷ ︸

,

t2 − t1 tk0+1 − tk0 t2 − t1 tk0+1 − tk0

0, · · · , 0
︸ ︷︷ ︸

0, · · · , 0
︸ ︷︷ ︸

).

k0 k − tk0+1

Now, the second derivative of the transfer function is bounded and a constant
C exists so that we have the following inequalities:

∀(θi, θj) ∈ {b1, · · · , bk, w11, · · · , wkd}2 , sup
θ∈Θ

‖∂
2fθ(X)

∂θi∂θj
‖ ≤ C(1 + ‖X‖2).
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So, thanks to assumption H-2, the second order derivative of the function
f(Φt,ψt) with respect to the components of Φt will be dominated by a square
integrable function. Then, by the Taylor formula around the identifiable pa-
rameter Φ0

t , we get the following expansion for the numerator of generalized
derivative function:

Lemma 4.1. For a fixed t, in the neighborhood of the identifiable parameter
Φ0
t , we get the following approximation:

f(Φt,ψt)(x)− f0(x) = (Φt − Φ0
t )
T f

′

(Φ0
t ,ψt)

(x)

+0.5(Φt −Φ0
t )
T f

′′

(Φ0
t ,ψt)

(x)(Φt − Φ0
t ) + o(‖f(Φt,ψt) − f0‖22),

with
(Φt − Φ0

t )
T f

′

(Φ0
t ,ψt)

(x) = γ +
∑k0

i=1 siφ(w
0
i
T
x+ b0i )

+
∑k0

i=1

∑ti+1

j=ti+1 qj
(
wj − w0

i

)T
xa0iφ

′
(w0

i
T
x+ b0i )

+
∑k0

i=1

∑ti+1

j=ti+1 qj
(
bj − b0i

)
a0iφ

′
(w0

i
T
x+ b0i )

+
∑k

i=t
k0+1+1 aiφ(wi

Tx+ bi)

and

(Φt − Φ0
t )
T f

′′

(Φ0
t ,ψt)

(x)(Φt − Φ0
t ) =

∑k0

i=1

∑ti+1

j=ti+1 qj(wj − w0
i )
TxxT (wj − w0

i )a
0
iφ

′′
(w0

i
T
x+ b0i )

+
∑k0

i=1

∑ti+1

j=ti+1 qj(wj − w0
i )
Tx(bj − b0i )φ

′′
(w0

i
T
x+ b0i )

+
∑k0

i=1

∑ti+1

j=ti+1 qj(bj − b0i )
2φ

′′
(w0

i
T
x+ b0i )

+
∑k0

i=1

∑ti+1

j=ti+1 qj(wj − w0
i )
Txsiφ

′
(w0

i
T
x+ b0i )

+
∑k0

i=1

∑ti+1

j=ti+1 qj(bj − b0i )siφ
′
(w0

i
T
x+ b0i ).

This development is obtained by a straightforward calculation of the
derivatives of f(Φt,ψt) − f0 with respect to the components of Φt up to the
second order.

So, the numerator of generalized derivative function can be written like
(15), the proposition 3.1 can be applied to this model and the polynomial
bound for the growth of bracketing number shows the Donsker property of
generalized derivative functions. Finally, the lemma 4.1 and the next section
show that for any d in the limit-set of derivatives D a sequence of vector
(Φn, ψn)n=1,··· exists so that ‖d − df(Φn,ψn)

‖2 → 0 as Φn tends to a Φ0
t and

since the map
Φt 7→ P (Y − f(Φt,ψt)(X))2

admits a second-order Taylor expansion with strictly positive second deriva-

tive
∂2P (Y−f(Φt,ψt)(X))2

∂Φ2
t

at Φt = Φ0
t , one can apply theorem 2.1 and corollary

2.1.
Asymptotic index set. The set of limit score functions D is defined as the
set of functions d so that one can find a sequence (Φn, ψn)n=1,··· satisfying
‖f(Φn,ψn) − f0‖2 → 0 and ‖d− df(Φn,ψn)

‖2 → 0. This limit function depends

on the development obtained in lemma 4.1.
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Let us define the two principal behaviors for the sequences f(Φn,ψn) which
influence the form of functions d :

• If the second order term is negligible with respect to the first one:

f(Φn,ψn) − f0 = (Φn − Φ0)T f ′(Φ0
t ,ψn)

+ o(‖f(Φn,ψn) − f0‖2).
• If the second order term is not negligible with respect to the first
one:

f(Φn,ψn) − f0 = (Φn − Φ0)T f ′
(Φ0
t ,ψn)

+

0.5(Φn − Φ0)T f ′′(Φ0,ψn)
(Φn −Φ0) + o(‖f(Φn,ψn) − f0‖22).

In the first case, a set t = (t1, · · · , tk0+1) exists so that the limit function of
df(Φn,ψn)

will be in the set:

D1 =
{

Ω
(

γ +
∑k0

i=1 ǫiφ(w
0
i
T
X + b0i ) +

∑k0

i=1 φ
′
(w0

i
T
X + b0i )(ζ

T
i X + αi)

+
∑k

i=t
k0+1+1 µiφ(wi

TX + bi)
)

,

γ, ǫ1, · · · , ǫk0 , α1, · · · , αk0 ∈ R, µt
k0+1+1, · · · , µk ∈ R+;

ζ1, · · · , ζk0 ∈ Rd,

(wk0+1+1, bk0+1+1), · · · , (wk, bk) ∈ Θ\
{
(w0

1, b
0
1), · · · , (w0

k0 , b
0
k0)
}}

In the second case, an index i exists so that :

ti+1∑

j=ti+1

qj(νj −w0
i ) = 0 and

ti+1∑

j=ti+1

qj(ηj − b0i ) = 0,

otherwise, the second order term will be negligible compared to the first one.
So

ti+1∑

j=ti+1

√
qj ×

√
qj(νj −w0

i ) = 0 and

ti+1∑

j=ti+1

√
qj ×

√
qj(ηj − b0i ) = 0.

Hence, a set t = (t1, · · · , tk0+1) exists so that the set of functions d will
be:

D2 =
{

Ω
(

γ +
∑k0

i=1 ǫiφ(w
0
i
T
X + b0i )

+
∑k0

i=1 φ
′
(w0

i
T
X + b0i )(ζ

T
i X + αi)

+δ(i)
∑k0

i=1 φ
′′
(w0

i
T
X + b0i )×((

∑ti+1

j=ti+1 νj
TXXT νj + ηjνj

TX + ηj
2
))

+
∑k

i=t
k0+1+1 µiφ(wi

TX + bi)
)

,

γ, ǫ1, · · · , ǫk0 , α1, · · · , αk0 , ηt1 , · · · , ηtk0+1
∈ R,

µt
k0+1+1, · · · , µk ∈ R+; ζ1, · · · , ζk0 , νt1 , · · · , νtk0+1

∈ Rd,

(wk0+1+1, bk0+1+1), · · · , (wk, bk) ∈ Θ\
{
(w0

1, b
0
1), · · · , (w0

k0 , b
0
k0)
}}

where δ(i) = 1 if a vector q exists so that:

qj ≥ 0,
∑ti+1

j=ti+1 qj = 1,
∑ti+1

j=ti+1
√
qjν

t
j = 0 and

∑ti+1

j=ti+1
√
qjηj = 0, other-

wise δ(i) = 0.
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Hence, the limit index set functions will belong to D.
Conversely, let d be an element of D, since function d is not null, one

of its component is not equal to 0. Let us assume that this component is
γ, but the proof would be similar with any other component. The norm
of d is the constant 1, so any component of d is determined by the ratio:
ǫ1
γ , · · · , 1γ νk0+1.

Then, since Θ contains a neighborhood of the parameters realizing the
true regression function f0, we can chose

θn = (βn, an1 , · · · , ank , wn1 , · · · , wnk , bn1 , · · · , bnk ) 7→ (Φnt , ψ
n
t )

so that:

∀i ∈ {1, · · · , k0} :
sni

βn−β0

n→∞−→ ǫi
γ ,

∀i ∈ {1, · · · , k0} :
∑ti

j=ti−1+1

qnj
βn−β0

(

wnj − w0
i

)
n→∞−→ 1

γ ζi,

∀i ∈ {1, · · · , k0} :
∑ti

j=ti−1+1

qnj
βn−β0

(

bnj − b0i

)
n→∞−→ 1

γαi,

∀j ∈ {t1, · · · , tk0+1} :

√
qnj

βn−β0

(

wnj − w0
i

)
n→∞−→ 1

γ νj,

∀j ∈ {t1, · · · , tk0+1} :

√
qnj

βn−β0

(

bnj − b0i

)
n→∞−→ 1

γ ηj,

∀j ∈ {tk0+1 + 1, · · · , k} :

√
qnj

βn−β0a
n
j
n→∞−→ 1

γµj.

�
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