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Abstract—We present deviation bounds for self-normalized
averages and applications to estimation with a random number
of observations. The results rely on a peeling argument in
exponential martingale techniques that represents an alternative
to the method of mixture. The motivating examples of bandit
problems and context tree estimation are detailed.

I. INTRODUCTION

Contrary to a very usual assumption in statistics, some

situations require parameter estimation based on samples of

random size. Let us first briefly present two probabilistic

models of that kind which motivated the derivation of the

results presented below.

A. Motivating examples

1) Bandit Problems: Estimation is sometimes used as a

intermediate step in a decision process, and the results can

influence the presence of further observations. Paradigmatic of

this situation are bandit problems, named in reference to the

archetypal situation of a gambler facing a row of slot-machines

and sequentially deciding which one to choose in order to

maximize her gains. The basic model is the following: an agent

sequentially chooses actions in a finite set of possible options.

Each action leads to an independent stochastic reward whose

distribution is unknown. What dynamic allocation rule should

she choose so as to maximize her cumulated reward? Origi-

nally motivated by medical trials, this simple model dates back

to the 1930s ; it has recently raised a renewed interest because

of computer-driven applications, from computer experiments

to recommender systems and Big Data, and numerous variants

have been considered (see [1] for a recent survey, and [2] for

a related model).

One possible solution consists in constructing, at time t,
a confidence interval based on all past observations for the

expected reward associated to each action, then choosing the

action with highest upper confidence bounds (UCB). This rule,

popularized by [3], was recently improved and shown to have

some optimality properties [4], [5]. Obviously, the number of

observations used to construct the confidence interval strongly

depends on the value of these observations, and standard

formulas for fixed-size samples do not apply directly. The

key element in the recent improvements of this algorithm was

the introduction of the informational self-normalized deviation

inequalities presented below.

2) Context Tree Estimation: Context tree models, intro-

duced by Jorma Rissanen in [6] as efficient tools in Infor-

mation Theory, have been successfully studied and used since

then in many fields of Probability and Statistics, including

Bioinformatics, Universal Coding, Mathematical Statistics or

Linguistics. Sometimes also called Variable Length Markov

Chain, a context tree process is informally defined as a Markov

chain whose memory length depends on past symbols. This

property makes it possible to represent the set of memory

sequences as a tree, called the context tree of the process.

A remarkable tradeoff between flexibility and parsimony

explains this success: no more difficult to handle than Markov

chains, they include memory only where necessary. Not only

do they provide more efficient models for fitting the data:

it appears also that, in many applications, the shape of the

context tree has a natural and informative interpretation. In

Bioinformatics, they have been used to test the relevance of

protein families databases [7] and in Linguistics, tree estima-

tion highlights structural discrepancies between Brazilian and

European Portuguese [8].

Of course, practical use of context tree models requires the

possibility of constructing efficient estimators of the model

generating the data. Despite the multiplicity of candidate trees,

several procedures have been proposed and proved to be

consistent, including pruning algorithms [6], and Penalized

Maximum Likelihood estimators (see [9], [10] and references

therein, see also [11]). These apparently different ideas are

in fact closely related [12], the key point being an efficient

estimation of the conditional transition probabilities. But for a

given sample size, the number of transitions observed from a

given context is random, and depends on the values of these

transitions. Hence, again, sharp deviation bounds for random-

sized averages are required in order to obtain efficient memory

estimators.

B. Self-Normalized Process

Several approaches have been proposed to address this

problem. The most obvious is to use a simple union bound

on all the possible values of the sample size (as for instance

in [3]), but this appears to be most often overly pessimistic and

significantly sub-optimal. A more refined treatment consists,

when possible, in first lower-bounding the size of the sample,

thus upper-bounding the variance of the estimator, and then



in using this upper-bound of the variance, for example with

Bernstein’s maximal inequality for martingales (see e.g. [13]

for an example on the consistency of a Stochastic Block Model

estimator, or [14] on prediction with expert advice).

The most satisfying approach, however, is to consider the

associated self-normalized process. From the estimator’s point

of view, as the size of the sample grows, something changes

only when a new observation appears. At those (random)

times, the internal clock of the estimator increases by 1. When

the nth observation has been reached, the internal clock has

a random value which is at most equal to n, and on which

the variance of the estimator depends. The confidence interval

must be constructed accordingly, by taking into account the

maximal deviations of the self-normalized deviation process.

This paper focuses on the case where a sequence of non-

asymptotic confidence intervals [at, bt] is required for the

common expectation µ of independent, real-valued random

variables (Xt)t>1, and where all the confidence intervals are

required to be jointly valid over an epoch t ∈ {1, . . . , n}.

In other words, for all positive α, the goal is to construct

σ(X1, . . . , Xt)-measurable random variables at and bt so as

to ensure that the event
⋂

t6n {µ ∈ [at, bt]} has probability at

least 1− α.

In order to obtain sub-gaussian deviation bounds, the

method of mixture (see [15], [16] and references therein)

provides a powerful and elegant tool, recently used in [17]

for bandit problems. The results presented below follow a

different path. Rather than a mixture, they rely on a peeling

device: the possible numbers of observations are divided into

exponentially growing slices, which are treated independently.

On each slice, a Cramer-type bound is obtained by a maximal

inequality for martingales.

These results can be considered, in some sense, as non-

asymptotic counterparts of the Law of the Iterated Logarithm

for martingales. They are presented so as to clearly emphasize

the cost of the randomness of the sample size: namely, a

logarithmic factor of n in front of the exponential Cramer

bound (instead of a factor n for the union bound). The proof

method is generic enough to apply to a large variety of

situations, and in particular not only to the sub-gaussian case.

C. Informational Confidence Bounds

If the bounds of these confidence intervals are classically

chosen to be symmetric around the empirical mean X̄t, so that

X̄t − at = bt − X̄t = c/
√
t for a given constant c, then the

above discussion shows that one needs to control the following

supremum of the self-normalized process:

sup
t6n

√
t
∣

∣X̄t − µ
∣

∣ .

This choice, however, is often sub-optimal and was not suffi-

cient in the applications mentioned above. The approach used

below is somewhat different: the deviations of X̄t are not

measured in absolute value, but using a information deviation

measure, leading to possibly asymmetric confidence bounds.

Let us recall it briefly: suppose that, for all possible values of

the expectation µ, the following Cramer-type inequality with

rate function I(·, µ) is satisfied:

∀xt > µ, P (X̄t > xt) 6 exp(−tI(xt;µ)) .

For a concrete example, one may think about i.i.d. Bernoulli

variables with I(x;µ) = kl(x, µ) = x log(x/µ) + (1 −
x) log((1 − x)/(1 − µ)). As the function I(·;µ) increases

on [µ,+∞[, this bound can be rewritten P (I(X̄t;µ) >

I(xt;µ), X̄t > µ) 6 exp(−t I(xt;µ)) or, defining δ =
tI(xt;µ), P (t I(X̄t;µ) > δ, X̄t > µ) 6 exp(−δ); proceeding

similarly on the other side of µ, one obtains

P
(

t I(X̄t;µ) > δ
)

6 2 exp(−δ) .

Consequently, one is tempted to choose, as a confidence

interval of risk α, a neighborhood of X̄t in the sense of the

pseudo-distance I:

[at, bt] =

{

µ : t I(X̄t;µ) 6 log
2

α

}

.

Observe that µ ∈ [at, bt] if and only if t I(X̄t;µ) 6 log 2
α

.

For a sequential confidence intervals of this kind, where

P
(

⋂

t6n {µ ∈ [at, bt]}
)

needs to be controlled, one is thus

led to study

sup
t6n

t I
(

X̄t;µ
)

. (1)

In Section II, deviation bounds for (1) are presented. The

generic result of Theorem 1 is refined, under some additional

hypotheses, in Theorem 2 and Equation (2). Theorem 3

contains a variant that does not require an upper-bound on

the sample size. A subgaussian inequality is given for the

discounted case in Equation (4). In Section III, these results are

applied to estimation in various models: one-parameter canon-

ical exponential famillies, bounded variables, and multinomial

distributions.

II. SELF-NORMALIZED DEVIATION INEQUALITIES

For an increasing filtration (Ft)t>0 on some probability

space, consider an adapted, real-valued discrete time process

(St)t>0 such that S0 = 0. Further assume that the incre-

ments Xt = St − St−1 are bounded as follows: there exist

λ1 ∈ [−∞, 0[, λ2 ∈]0,+∞], and a function φ :]λ1, λ2[→ R

such that for all λ ∈]λ1, λ2[ and for all t > 1:

E [exp(λXt) |Ft−1 ] 6 exp (φ(λ)) .

In other words, the function φ dominates the logarithmic

moment-generating function (lmgf) of the increments (Xt)t
that are assumed to share the same finite expectation µ. If

the increments Xt are identically distributed, φ can be chosen

as the common lmgf, but it proves useful to consider more

general cases. Nevertheless, φ will be supposed to satisfy all

usual properties of a lmgf (see [18], Chapter 2) : φ is convex

and smooth over ]λ1, λ2[, φ(µ) = 0; its Legendre transform

I(·;µ),defined on R as

I(x;µ) = sup
λ∈R

{λx− φ(λ)} ,



is a convex rate function whose domain is included in R
+ ∪

{+∞}; it is finite and smooth on an open interval DI ⊂ R

containing 0, such that I(µ, µ) = 0. For all x such that I(x) <
∞, there exists a unique real number λ(x) ∈]λ1, λ2[ such that

φ′(λ(x)) = x and I(x;µ) = λ(x)x − φ(λ(x)) .

I(x;µ) tends to infinity with x, and can be equal to +∞
outside of some interval (x−, x+) where it is finite: it holds

that P (Xt ∈ [x−, x+]) = 1, and the limit of I(·, µ) when tends

to x+ is denoted I+. Under those assumptions, the following

result holds:

Theorem 1: For every δ > 0,

P
(

∃t ∈ {1, . . . , n} : t I(X̄t;µ) > δ
)

6 2e ⌈δ log(n)⌉ exp(−δ) .

A. Short Proof of Theorem 1

The proof of this result, short enough to be sketched

here, is inspired by the proof of the Law of the Iterated

Logarithm for martingales that can be found in [19]. The

epoch {1, . . . , n} is divided into “slides” {tk−1 + 1, . . . , tk}
of exponentially increasing sizes: let t0 = 0, let η > 0 and,

for every positive integer k, let tk =
⌊

(1 + η)k
⌋

. Denoting

D = ⌈log(n)/ log(1 + η)⌉ the smallest integer such that

tD > n, the union bound yields :

P

(

n
⋃

t=1

{

tI
(

X̄t;µ
)

> δ
}

)

6

D
∑

k=1

P (Ak) ,

where Ak =
⋃tk

t=tk−1+1

{

tI
(

X̄t;µ
)

> δ
}

. Denote by s the

smallest integer such that δ/(s+1) 6 I+ : for t 6 s, obviously

P (t I(X̄t;µ) > δ, X̄t > µ) = 0 and thus P (Ak) = 0 if tk 6 s.

Let k be such that tk > s, and t̃k−1 = max{tk−1, s}. For

every t ∈ {t̃k−1 + 1, . . . , tk}, there exists xt ∈ [µ, x+] such

that t I(xt;µ) = δ. Let λk = λ(xtk ), so that I(xtk ;µ) =
λkxtk − φ(λk), and consider the super-martingale (W k

t )t
defined by W k

0 = 1 and, for every t > 1, W k
t =

exp (λkSt − tφ(λk)) . A maximal inequality ensures that, for

all positive real c,

P





tk
⋃

t=tk−1+1

{

W k
t > c

}



 6
1

c
.

Let us deduce an upper-bound for P (Ak). As t I(xt;µ) = δ,

it holds that

I(xtk ;µ) 6 I(xt;µ) < I(xtk ;µ) (1 + η) .

As I(·;µ) is increasing on the right side of µ, xt > xtk and

λkxt − φ(λk) > λkxtk − φ(λk) = I(xtk ;µ) >
I(xt;µ)

1 + η
.

Hence, if tI
(

X̄t;µ
)

> δ and X̄t > µ, then λkX̄t − φ(λk) >
λkxt − φ(λk) >

δ
t(1+η) and λkSt − tφ(λk) >

δ
1+η

, and thus

W k
t > exp

(

δ
1+η

)

. This entails that

P





tk
⋃

t=tk−1+1

{

tI
(

X̄t;µ
)

> δ
}

∩
{

X̄t > µ
}





6 P





tk
⋃

t=tk−1+1

{

W k
t > exp

(

δ

1 + η

)}





6 exp

(

− δ

1 + η

)

.

The case X̄t < µ can be treated similarly, and the first claim

of the theorem follows. The second claim is a consequence

of the inequality log(1 + 1/(δ − 1)) > 1/δ, applied with the

approximately optimal choice η = δ/(δ − 1).
Remark that the simple bound of Theorem 1 highlights the

cost of time uniformity: a factor 2e⌈δ log(n)⌉, instead as the

factor n given by the union bound. The fact that this cost is

sub-polynomial in n appears (especially in [4], [20], [12], [5])

to be crucial in the analysis of some algorithms and estimators.

B. Improvements and Variants

This result can be significantly improved under some addi-

tional assumptions on the function I(·;µ):
Theorem 2: Let δ > 0. If the function I(·;µ) is log-

concave, then for every η > 0

P
(

∃t ∈ {1, . . . , n} : t I(X̄t;µ) > δ
)

6 2

⌈

logn

log (1 + η)

⌉

exp

(

−
(

1− η2

8

)

δ

)

.

In particular, for η = 2/
√
δ, one obtains:

P
(

∃t ∈ {1, . . . , n} : t I(X̄t;µ) > δ
)

6 2
√
e

⌈√
δ

2
log(n)

⌉

exp(−δ) .

The law of the Iterated Logarithm suggests that such a result is

hardly improvable: in a sub-gaussian setting where I(x;µ) >
(x− µ)2/(2σ2), it implies indeed that for all c > 1:

P

(

sup
t6n

St − tµ
√

2σ2t log log(n)
> c

)

6 P

(

sup
t6n

tI
(

X̄t;µ
)

> c2 log log(n)

)

→ 0

when n tends to infinity. Observe that the log-concavity

of I(·, µ), although not always satisfied (even for bounded

variables), is reasonable at least locally around µ if one thinks

to the gaussian regime.

Let us mention that in the quadratic (gaussian) case

I(x;µ) = 2(x−µ)2/K2, the bound can be slightly improved:

P
(

∃t ∈ {1, . . . , n} : t I(X̄t;µ) > δ
)

6 2

⌈

logn

log (1 + η)

⌉

exp

(

−
(

1− η2

16

)

δ

)

. (2)



Finally, the method can be adapted in order to obtain non-

asymptotic that hold for all t > 1 in the spirit of the Law of

the Iterated Logarithm:

Theorem 3: For all δ > 1 and all c > 1,

P

(

∃t > 1 : t I(X̄t;µ) >
δc

δ − 1
log log t+ δ

)

6
2 e cδc

c− 1
exp(−δ) .

In particular, for c = 1 + 1/ log(δ), one obtains:

P

(

∃t > 1 : t I(X̄t;µ) >
δ(1 + log δ)

(δ − 1) log δ
log log t+ δ

)

6 2e2δ exp(−δ) .

C. Self-Normalized Form

In the applications mentioned above, the necessity to guar-

antee the joint validity of the confidence intervals over the

entire epoch comes from the fact that the variables Xt are

observed only episodically in a predictable way: there exists,

for each t ∈ {1, . . . , n}, a {0, 1}-valued, Ft−1-measurable

random variable εt ∈ {0, 1} such that the current estimate at

time n is

X̄(n) = S(n)/N(n) (3)

where S(n) =
∑n

t=1 εtXt and N(n) =
∑n

t=1 εt. Theorem 1

yields:

P

(

I
(

X̄(n);µ
)

>
δ

N(n)

)

6 2e ⌈δ log(n)⌉ exp(−δ) .

In the definition (3), S(n) is written as a martingale

transform or, equivalently, a discrete stochastic integral.

Continuous-time variants of Theorem 1 can be obtained fol-

lowing the same lines (using the same peeling trick) for

stochastic integrals.

Furthermore, this approach can be adapted to non-stationary

contexts: assume for simplicity that the variables (Xt)t are

independent, of expectation µt respectively, and that their

absolute value is almost-surely bounded by B. If µt does not

change too fast (or too often) with t, one may consider the

discounted estimator X̄γ(n) of µn defined by

X̄γ(n) =
Sγ(n)

Nγ(n)
,

where γ ∈]0, 1[, Sγ(n) =
∑n

t=1 γ
n−tεtXt and Nγ(n) =

∑n
t=1 γ

n−tεt. The difference between X̄γ(n) and µn can

be decomposed into a term of bias (which is not discussed

here) and a fluctuation term X̄γ(n) − Mγ(n)/Nγ(n), where

Mγ(n) =
∑n

t=1 γ
n−tεtµt. This fluctuation term can be

controlled by the adapting the martingale techniques above:

one obtains that

P

(

Sγ(n)−Mγ(n)
√

Nγ2(n)
> δ

)

6

⌈

log νγ(n)

log(1 + η)

⌉

exp

(

−2δ2

B2

(

1− η2

16

))

, (4)

with νγ(n) =
∑n

t=1 γ
n−t = (1 − γn)/(1 − γ) < min{(1 −

γ)−1, n}. This results permits to analyze the Discounted-UCB

algorithm [20] earlier proposed by Kocsis Szepesvári [21].

III. APPLICATION TO ESTIMATION

Let us now show briefly how these inequalities may be used

in the analysis of some stochastic algorithms. The key point is

that Theorem 1 allows the construction of a sequence of con-

fidence intervals ([at, bt])16t6n for µ that are simultaneously

valid with high probability. The interval

[at, bt] =
{

µ ∈ [x−, x+] : tI
(

X̄t;µ
)

6 δ
}

contains all the values in a neighborhood of X̄t in the sense

of the pseudo-distance defined by I . By Theorem 1,

P

(

n
⋂

t=1

{µ ∈ [at, bt]}
)

> 1− 2e ⌈δ log(n)⌉ exp(−δ) .

Similarly, one obtains obtains confidence intervals for the case

presented in Equation (3). This framework applies as well in

bandit problems, where only the reward of the chosen arm

is observed, that the estimation of Markovian models where,

at each time, only the estimates relative to the current past

observations are updated. Of course, in these examples, the

identity of the variable(s) observed at time t is absolutely

not independent of the past observations. By choosing δ such

that 2e ⌈δ log(n)⌉ exp(−δ) 6 α, one obtains the confidence

interval
{

µ : I
(

X̄(n);µ
)

6 δ/N(n)
}

of risk at most α.

A. One-Parameter Exponential Model and Bounded Variables

In this section, we assume that the variables (Xt)t are

independent and identically distributed, and that their distri-

bution Pθ0 belongs to a canonical exponential model of the

form {Pθ : θ ∈ Θ}, where Θ is an real interval and where

Pθ has, with respect to some reference measure, the density

pθ : R → R defined by:

pθ(x) = exp (xθ − b(θ) + c(x)) .

Here, c is a real function and the log-partition function b is

supposed to be twice differentiable. It is well-known that, by

denoting µ(θ) = ḃ(θ) the expectation of Pθ , one defines a one-

to-one, differentiable mapping µ. In this case, one easily shows

that the rate function I is directly related to the Kullback-

Leibler divergence (which is here a Bregman divergence for

b) as follows: for every β, θ ∈ Θ,

KL(Pβ ;Pθ) = I(µ(β);µ(θ)) = b(θ)− b(β)− ḃ(β)(θ − β) .

Hence, a sequence (Rt)t>1 of confidence intervals for

the parameter θ0 jointly valid with probability 1 −
2e ⌈δ log(n)⌉ exp(−δ) is obtained by choosing:

Rt =

{

θ : KL
(

Pµ−1(X̄t);Pθ

)

6
δ

t

}

=

{

θ : I
(

X̄t;µ(θ)
)

6
δ

t

}

.

This applies in particular to usual families of distributions like

Poisson, Exponential, Gamma (with fixed shape parameter)...



In [4], an example concerning exponential variable detailed:

in that case, I(x, y) = x/y − 1− log(x/y).

But the case of Bernoulli variables deserves to be high-

lighted, as it easily extends to general bounded variables. In-

deed, as observed by Hoeffding [22], the exponential moments

of a [0, 1]-valued variable X with expectation µ are upper-

bounded by those of a Bernoulli variable, and for all λ ∈ R

it holds that

E [exp(λX)] 6 1− µ+ µ exp(λ) ,

with equality if and only if X ∼ B(µ). Recall that kl denotes

the binary entropy function, i.e. the rate function associated

to Bernoulli variables. Theorem 1 yields that, for independent

variables Xt bounded in [0, 1],

P

(

sup
t6n

kl
(

X̄t, µ
)

>
δ

t

)

6 2e ⌈δ log(n)⌉ exp(−δ) . (5)

Of course, this result together with Pinsker’s inequality

kl(p, q) > 2(p − q)2, yields a self-normalized version of

Hoeffding’s inequality on the epoch t ∈ {1, . . . , n}:

P

(

sup
t6n

∣

∣X̄t − µ
∣

∣ >
δ√
t

)

6 4e
⌈

δ2 log(n)
⌉

exp(−2δ2) . (6)

This bound may seem simpler and easier to use than the

previous one. However, the case of bounded bandits (detailed

in [4], [5]), as well as the case of context tree estimation

(presented in [12]) show that Equation (5) is sometimes really

to be preferred, as it leads to significantly more efficient

algorithms at the price of an hardly increased computational

complexity.

B. Multinomial Distributions

As suggested by Sanov’s (asymptotic) Theorem, this kind

of inequalities is not limited to real-valued variables. It is also

possible to construct informational, self-normalized confidence

regions for random vectors; let us detail here the simple case

of multinomial laws, as they are required, for example, in

order to estimate transition distributions in Markov chains

(see [12], [23]). Let P and Q be two elements of the set S of

all probability distributions over a finite set A. By remarking

that

−KL(P ;Q) +
∑

x∈A

kl (P (x);Q(x))

= (|A| − 1)
∑

x∈A

1− P (x)

|A| − 1
log

(

(1− P (x))/(|A| − 1)

(1−Q(x))/(|A| − 1)

)

is non-negative, one easily shows that

KL(P ;Q) 6
∑

x∈A

kl (P (x);Q(x)) .

It follows that if X1, . . . , Xn are i.i.d. variables of law P0 ∈ S,

and if P̂t(k) =
∑t

s=1 1{Xs = k}/t, then

P
(

∃t ∈ {1, . . . , n} : KL
(

P̂t;P0

)

>
δ

t

)

6
∑

a∈A

P

(

∃t ∈ {1, . . . , n} : kl
(

P̂t(a);P0(a)
)

>
δ

|A|t

)

6 2e (δ log(n) + |A|) exp
(

− δ

|A|

)

. (7)

The fact that this bound involves directly the Kullback-

Leibler divergence between the empirical measure and the true

distribution allows, in context tree estimation (see [12]), to

suppress unnecessary assumptions that resulted, in previous

papers, from the use of Bernstein’s inequality. Moreover,

the Equation (7) permits to construct a sequence (Rt)t6n

of “Sanov-type” confidence regions for P0 that are simulta-

neously valid with probability at least 1 − α, by choosing

Kullback-Leibler neighborhoods of the maximum likelihood

estimator:

Rt =

{

Q ∈ S : KL(P̂t;Q) 6
δ

t

}

,

with δ such that 2e (δ log(n) + |A|) exp (−δ/|A|) = α. These

regions Rt of the simplex have nice geometric properties that

are exploited in [23] for reinforcement learning in Markov De-

cision Process, improving on former results using L1 regions.
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