Informational Confidence Bounds for Self-Normalized Averages and Applications - Archive ouverte HAL
Communication Dans Un Congrès IEEE Information Theory Workshop Année : 2013

Informational Confidence Bounds for Self-Normalized Averages and Applications

Résumé

We present deviation bounds for self-normalized averages and applications to estimation with a random number of observations. The results rely on a peeling argument in exponential martingale techniques that represents an alternative to the method of mixture. The motivating examples of bandit problems and context tree estimation are detailed.
Fichier principal
Vignette du fichier
garivier.pdf (119.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00862062 , version 1 (15-09-2013)

Identifiants

  • HAL Id : hal-00862062 , version 1

Citer

Aurélien Garivier. Informational Confidence Bounds for Self-Normalized Averages and Applications. IEEE Information Theory Workshop, Sep 2013, Seville, Spain. pp.489-493. ⟨hal-00862062⟩
110 Consultations
171 Téléchargements

Partager

More