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Introduction

The mathematical literature is rich of results that describe the regularity of the value function of optimal control problems without state constraints, much less so if constraints are present.

For instance, given (t, x) ∈ [0, ∞) × R n , consider the optimal control problem which consists of minimizing, with respect to u(•), the Bolza type functional J(t, x; u(•)) = t 0 L(y u (s; t, x), u(s))ds + ℓ(y u (0; t, x))

where y u (•; t, x) is the solution of the state equation ẏ(s) = f (y(s), u(s)) a.e. in (0, t), y(t) = x .

If f is sufficiently smooth, then the value function

v(t, x) := inf J(t, x; u(•)) | u(•) ∈ L 1 (t, x) ∈ [0, ∞) × R n
can be shown to be, roughly speaking, as regular as the problem data L and ℓ, where the term regular stands for continuous, Lipschitz continous, or semiconcave, see, e.g., [START_REF] Cannarsa | Some characterizations of optimal trajectories in control theory[END_REF] and [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF].

We recall that a function g : Ω → R defined on an open set Ω ⊂ R N is said to be locally semiconcave if for each compact convex set K ⊂ Ω, there is a positive constant C K such that

µg(x) + (1 -µ)g(y) -g(µx + (1 -µ)y) ≤ µ(1 -µ)C K |x -y| 2
for any µ ∈ [0, 1], any x, y ∈ K. The importance of semiconcavity in control theory is widely acknowledged. Initially used as a tool for uniqueness in dynamic programmimg, it is nowadays mainly regarded as a property ensuring better regularity than a.e. differentiability: indeed, the Hausdorff dimension of the singular set of a semiconcave function can be sharply estimated, and the way how singularities propagate is fairly well understood, see [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]. Moreover, semiconcavity has been successfully applied to Lyapunov stability and feedback stabilization for nonlinear control systems, see for example [START_REF] Rifford | Existence of Lipschitz and semiconcave control-Lyapunov functions[END_REF], [START_REF] Rifford | Semiconcave control-Lyapunov functions and stabilizing feedbacks[END_REF], [START_REF] Rifford | On the stabilization problem for nonholonomic distributions[END_REF], and [START_REF] Rifford | The Stabilization Problem: AGAS and SRS Feedbacks[END_REF] for further references.

In the presence of state constraints, however, it turns out that the only semiconcavity results that are available are restricted to optimal exit time problems, see [START_REF] Cannarsa | Semiconcavity for optimal control problems with exit time[END_REF], [START_REF] Cannarsa | On a class of nonlinear time optimal control problems[END_REF], [START_REF] Cannarsa | Convexity properties of the minimum time function[END_REF], and [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]. In particular, for the above problems, no constraints can be active on the interior of trajectories and terminal time must be free.

In the present paper, we are interested in obtaining the semiconcavity of the value function of a fixed terminal time Bolza problem, with initial cost ℓ replaced by an end-point constraint. More precisely, given x 0 ∈ R n , for any control u(•) ∈ U := L 1 ([0, ∞); R m ), let us denote by x u (•) the solution of the Cauchy problem ẋ(s) = f (x(s), u(s)), s > 0 a.e.,

x(0) = x 0 ,

on the interval [0, ∞) 1 . The value function V : (0, ∞) × R n → R ∪ {∞} is then defined as

V (t, x) := inf t 0 L(x u (s), u(s))ds | u(•) ∈ U s.t. x u (t) = x , (2) 
with the convention that V (t, x) = ∞ if there is no control u(•) ∈ U such that x u (t) = x. This problem is much more complicated that the one with an initial cost: to begin with, V may well be equal to ∞ on a large part of (0, ∞) × R n . Also, in this case there may be abnormal extremals, which can be associated, roughly speaking, to non-Lipschitz regularity points of the corresponding value function. To cope with such difficulties we will use the approach of geometric control, assuming that our problem admits no singular optimal controls (see section 2 for definitions). Moreover, since our method is based on the Pontryagin Maximum Principle, we will restrict the class of control system to affine systems of the form

ẋ = f (x, u) := f 0 (x) + m i=1 u i f i (x), (3) 
where f 0 , f 1 , • • • , f m are m vector fields on R n , and where u = (u 1 , • • • , u m ) belongs to R m . We will suppose that: (A1) the family {f 0 , f 1 , • • • , f m } consists of vector fields of class C 1,1 loc on R n with sublinear growth, i.e., such that

|f i (x)| ≤ M (|x| + 1), ∀x ∈ R n , ∀i = 0, 1, • • • , m
for some constant M > 0; (A2) the Lagrangian L satisfies the following conditions:

(i) for any x ∈ R n , the function u → L(x, u) is of class C 2 , and (x, u) → D 2 u L(x, u) is continuous on R n × R m with positive definite values; 1 Here, we assume for sake of simplicity that any solution xu(•) is defined on [0, ∞).

(ii) there exist c 0 ≥ 0 and θ : R + → R + such that θ(q)/q → +∞ as q → +∞, and

L(x, u) ≥ θ(|u| m ) -c 0 , ∀x ∈ R n , ∀u ∈ R m ;
(iii) for all r > 0 there exists K(r) > 0 such that |ζ| ≤ K(r)θ(|u| m ), for all x ∈ B r , u ∈ R m and ζ ∈ ∂ x L(x, u); (iv) L is locally semiconcave in the x-variable uniformly for u in all compact sets of R m , that is, for each compact convex set K ⊂ R n and each compact set U ⊂ R m , there is a constant C K,U > 0 such that µL(x, u) + (1 -µ)L(y, u) -L(µx + (1 -µ)y, u)

≤ µ(1 -µ)C K,U |x -y| 2 ,
for an y µ ∈ [0, 1], any x, y ∈ K, and any u ∈ U .

In order to prove the semiconcavity of the value function of optimal control problems without of state constraints one commonly applies PDE techniques based on comparison arguments, or else direct methods which use ad hoc perturbations of optimal trajectories, see, e.g., [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]. In the present case, our technique is completely different: invoking a nonsmooth version of Pontryagin's Maximum Principle, we manage to represent optimal trajectories as a family of arcs parametrized by the elements of a suitable compact set. Then, the smooth dependence of such a family on parameters yields the required regularity.

As a corollary of our main result, we derive the semiconcavity of the distance function associated with a sub-Riemannian structure. We note that the regularity of such a function has so far been investigated only in a subanalytic set-up, see [START_REF] Agrachev | Compactness for Sub-Riemannian length-minimizers and subanalyticity. Control theory and its applications (Grado[END_REF], [START_REF] Ge | Horizontal path spaces and Carnot-Carathéodory metrics[END_REF], and [START_REF] Trélat | Some properties of the value function and its level sets for affine control systems with quadratic cost[END_REF].

The outline of the paper is the following. In section 2, we introduce the end-point mapping and the notion of singular control. In section 3, we derive regularity properties of the value function, and in section 4 we prove optimality conditions based on the regularity of V . Section 5 is devoted to a special class of problems associated with the so-called fat distributions, while section 6 studies the distance function in the general sub-Riemannian case.

Notation

Throughout this paper, we denote by •, • and |•|, respectively, the Euclidean scalar product and norm in the state space R n . For any x ∈ R n and any r > 0, we set B(x, r) := {y ∈ R n : |y -x| < r}, and we use the abbreviations B r := B(0, r), B := B 1 .

We denote by •, • m and | • | m , respectively, the Euclidean scalar product and norm in the control space R m .

For any matrix M , we denote by M * the transpose of M , and by M its norm (with respect to Euclidean norm).

For any control

u(•) ∈ U := L 1 ([0, ∞); R m ), we denote by u(•) 1 the L 1 norm of u(•).

The End-Point mapping

Let a point x 0 ∈ R n and some time t > 0 be fixed. The end-point mapping associated with system (3) (with initial state x 0 at time t) is the function defined by

E x 0 ,t : U -→ R n , u(•) -→ x u (t).
Recall that U is a Banach space with the L 1 -norm. The differential of the end-point mapping is described by the following well-known result.

Proposition 2.1. Under assumption (A1), E x 0 ,t is of class C 1 on U, and its differential at some control u(•) is given by the linear operator

dE x 0 ,t (u(•)) : U -→ R n , v(•) -→ ζ(t), where ζ(•) is the unique solution of the Cauchy problem ζ(s) = A(s)ζ(s) + B(s)v(s), s ∈ [0, t] a.e., ζ(0) = 0.
Here, matrices A(s) and B(s) are defined by

A(s) := ∂f ∂x (x u (s), u(s)) B(s) := ∂f ∂u (x u (s), u(s)), for a.e. s ∈ [0, t].
The proof of Proposition 2.1 is straightforward, see [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF] or [START_REF] Trélat | Some properties of the value function and its level sets for affine control systems with quadratic cost[END_REF].

Remark 2.2. Under assumption (A1), the function

E x 0 : (0, ∞) × U -→ R n , (t, u(•)) -→ x u (t),
is indeed of class C 1,1 loc on (0, ∞) × U. This fact will be useful in the sequel. Notice that, by definition,

A(s) = df 0 (x u (s)) + m i=1 u i (s)df i (x u (s)), and 
B(s) = (f 1 (x u (s)), • • • , f m (x u (s)
)) for a.e. s ∈ [0, t]. So, by Proposition 2.1, the differential of E x 0 ,t at u(•) corresponds to the end-point mapping associated with the system obtained linearizing (3) along (x u (•), u(•)), with initial condition 0 at time t = 0. Therefore we can represent dE x 0 ,t (u(•)) by

dE x 0 ,t (u(•)) : U -→ R n , v(•) -→ S(t) t 0 S(s) -1 B(s)v(s)ds, (4) 
where S(•) is the solution of the Cauchy problem Ṡ(s) = A(s)S(s), S(0) = I n .

We now introduce a notion which is crucial for our approach.

Definition 2.3. A control u(•) ∈ U is said to be singular for E x 0 ,t if dE x 0 ,t (u(•)) is not surjective. Otherwise, u(•) is said to be nonsingular or regular.

Let us define the pre-Hamiltonian

H 0 : R n × R n × R m → R by H 0 (x, p, u) := p, f (x, u) = p, f 0 (x) + m i=1 u i p, f i (x) , (5) 
for any triple (x, p, u

) ∈ R n × R n × R m . Notice that H 0 is of class C 1,1
loc in the x variable, and of class C ∞ in p, u. Adopting Hamiltonian formalism, we have the following well-known characterization of singular controls.

Proposition 2.4. A control u(•) ∈ U is singular for E x 0 ,t if and only if there exists an absolutely continuous arc p(•)

: [0, t] → R n \ {0} such that ẋu (s) = ∇ p H 0 (x u (s), p(s), u(s)) -ṗ(s) = ∇ x H 0 (x u (s), p(s), u(s)) (6) 
and

∇ u H 0 (x u (s), p(s), u(s)) = 0, (7) 
for a.e. s ∈ [0, t].

In particular, given a control u(•) ∈ U, along the associated trajectory

x u (•) : [0, t] → R n we have    ∇ x H 0 (x u (s), p, u(s)) = A(s) * p ∇ p H 0 (x u (s), p, u(s)) = f 0 (x u (s)) + B(s)u(s) ∇ u H 0 (x u (s), p, u(s)) = B(s) * p,
for any s ∈ [0, t] and any p ∈ R n . Consequently, a control u(•) ∈ U is singular for E x 0 ,t if and only if there exists an absolutely continuous arc

p(•) : [0, t] → R n \ {0} such that • (6) is satisfied a.e. on [0, t] • p(•) is orthogonal to each vector f 1 (x u (•)), • • • , f m (x u (•)) on [0, t].
Example 2.5. By Proposition 2.4, it can be easily seen that the control system, known as the "nonholonomic integrator",

ẋ = u 1 f 1 (x) + u 2 f 2 (x) = u 1   1 0 x 2   + u 2   0 1 -x 1  
does not admit nontrivial singular controls. In other terms, for each t > 0 and each u(

•) ∈ L 1 ([0, t]; R m ) \ {0}, the mapping dE x 0 ,t (u(•)) is surjective.
Actually, this property is satisfied by a general class of control systems which will be studied later on in this paper (see Section 5).

Properties of the value function V

3.1. Existence of optimal controls. Recall that the value function V : (0, ∞) × R n → R ∪ {∞} is defined for each pair (t, x) ∈ (0, ∞) × R n as the infimum of the cost functional

C t (u(•)) := t 0 L(x u (s), u(s))ds,
over all control u(•) ∈ U steering x 0 to x in time t. If no such control exist, then we set V (t, x) = ∞.

Proposition 3.1. Assume (A1)-(A2) and let (t, x) ∈ (0, ∞) × R n . If there exists a control steering x 0 to x in time t, then there also exists a control u(•) ∈ U, steering x 0 to x in time t, which minimizes C t (•).

The proof of the above result is based on the following lemma which will be very useful in the sequel. Lemma 1. Let (A1)-(A2) be satisfied and let (u k (•)) k be a sequence of controls in U such that {C t (u k (•)} k is bounded. Then, there exists a control u ∞ (•) ∈ U such that x u k (•) converges uniformly to x u∞ (•) on [0, t], and u k (•) converges to u ∞ (•) in the weak-L 1 topology.

The proofs of Proposition 3.1 and Lemma 1 being very classical, they are left to the reader.

Continuity of the value function.

Let Ω be an open subset of (0, ∞) × R n . We state the following new assumption on our optimal control problem:

(A3) for every (t, x) ∈ Ω, we have V (t, x) < ∞, and for any control u(•) ∈ U steering x 0 to x in time t which minimizes C t (•), the linear operator dE x 0 ,t (u(•)) is surjective.

Proposition 3.2. Under assumptions (A1)-(A3), V is continuous on Ω.
Proof. As a first step, let us show that V is lower semicontinuous on Ω. Consider a sequence of points {(t k , x k )} k in Ω which converges to (t, x) ∈ Ω and such that V (t k , x k ) → λ as k → ∞. We have to prove that V (t, x) ≤ λ. By Proposition 3.1, for each k there exists a control u k (•) ∈ U such that

V (t k , x k ) = C t k (u k (•)). Hence, {C t k (u k (•))} k is bounded (since it con- verges to λ) and such that x k (t k ; x 0 , u k (•)) = x k → x as k → ∞.
We note that, without loss of generality, we can assume that {C t+1 (u k (•))} k is also bounded. This can be easily seen by possibly modifying u k (•) on (t k , t + 1) for large enough k, that is, taking u k (s) := 0 on (t k , t + 1). Then, by (A1),

|x u k (s)| ≤ (|x k | + M (t + 1 -t k
))e M (t+1-t k ) for any s ∈ (t k , t + 1). This implies that t+1 t k L(x u k (s), u k (s))ds is uniformly bounded in k. Next, by Lemma 1, we deduce that up to a subsequence, there exists a control u ∞ (•) ∈ U such that x u k (•) converges uniformly to the absolutely continuous function x ∞ ( cdot) := x u∞ on [0, t + 1], and

u k (•) converges to u ∞ (•) in the weak-L 1 topology. By uniform convergence, x ∞ (0) = x 0 . Furthermore, |x ∞ (t) -x| ≤ |x ∞ (t) -x k (t)| + |x k (t) -x k (t k )| + |x k -x|.
The first and last terms above clearly tend to zero as k → ∞.. The second one is bounded by t t k | ẋk (s)|ds which tends to zero since ( ẋk (•)) k is equiabsolutely integrable. Hence, x ∞ (t) = x. By the same argument as in the end of the proof of Proposition 3.1, one can show that lim k→∞ C t k (u k (•)) = C t (u(•)). So, V (t, x) ≤ λ. This proves that V is lower semicontinuous in Ω.

Let us now prove that V is continuous in Ω. Let ( t, x) ∈ Ω. Since V ( t, x) < ∞, there exists u(•) ∈ U such that

E x 0 , t(u(•)) = x and V ( t, x) = t 0 L(x u (s), u(s))ds.
Moreover, by assumption (A3), dE x 0 , t(u(•)) is surjective. Hence, there exists

n controls v 1 (•), • • • , v n (•) ∈ U such that the linear mapping dE x 0 , t(u(•)) : span{v 1 (•), • • • , v n (•)} -→ R n
is an isomorphism. In particular, the n vectors

dE x 0 , t(u(•)) (v 1 (•)) , • • • , dE x 0 , t(u(•)) (v n (•)) are linearly independent. Define F : (0, ∞) × R n × R n → R n by F (t, x, λ) := E x 0 ,t u(•) + m i=1 λ i v i (•) -x, for any triple (t, x, λ) ∈ (0, ∞)×R n ×R n . Then F is of class C 1 (see Remark 2.
2); moreover, F ( t, x, 0) = 0 and the differential

D λ F ( t, x, 0) = dE x 0 , t(u(•)) (v 1 (•)) | • • • |dE x 0 , t(u(•)) (v n (•))
is an isomorphism. Hence, by the Implicit Function Theorem, for some neighborhoods V of ( t, x) in (0, ∞) × R n and V ′ of 0 n in R n , there exists a unique function g : V → R n of class C 1 , with g(0, 0) = 0, such that for any (t, x) ∈ V and λ ∈ V ′ ,

F (t, x, λ) = 0 ⇐⇒ λ = g(t, x).
Therefore, for every (t, x) ∈ V, u(•) + m i=1 g(t, x) i v i (•) steers x 0 to x in time t. Thus, for any pair (t, x) ∈ V,

V (t, x) ≤ C t u(•) + m i=1 g(t, x) i v i (•) .
Letting (t, x) → ( t, x), the last inequality yields that V is upper semicontinuous on Ω. This completes the proof.

Semiconcavity of the value function.

In this section we prove two semiconcavity results for the value function V of problem defined in [START_REF] Alberti | On the singularities of convex functions[END_REF]. First we will study system (3) with no drift term, since no additional assumptions will be needed in this case.

Theorem 1. If assumptions (A1)-(A3) hold and f 0 ≡ 0, then V is locally semiconcave on Ω.

For the proof of Theorem 1 we consider the pseudo-Hamiltonian H : R n × R n × R m → R which is defined as follows:

H(x, p, u) := p, f (x, u) -L(x, u), ∀(x, p, u) ∈ R n × R n × R m . ( 8 
)
We notice that H is locally Lipschitz in the x variable, of class C ∞ in the p variable, and of class C 2 in the u variable. For each triple (x, p, u) ∈ R n × R n × R m , we denote by ∇ p H(x, p, u) and ∇ u H(x, p, u) its classical gradients in the p and u variables, and by ∂ x H(x, p, u) its partial generalized gradient in the x variable. We refer the reader to the books [START_REF] Clarke | Optimization and no nsmooth analysis Canadian Mathematical Society Series of Monographs and Advanced Texts[END_REF][START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF] for calculus rules with generalized gradients. We have, for any (x, p, u),

   ∂ x H(x, p, u) = m i=1 u i df i (x) * p -∂ x L(x, u) ∇ p H 0 (x, p, u) = m i=1 u i f i (x) ∇ u i H 0 (x, p, u) = p, f i (x) -∇ u i L(x, u). which implies that for each pair (x, p) ∈ R n × R n , ∇ u H(x, p, u) = 0 ⇐⇒ ∇ u L(x, u) = ( p, f 1 (x) , • • • , p, f m (x) ) * .
On the other hand, on account of assumption (A2), there exists a locally Lipschitz map Φ :

R n × R m -→ R m such that, for every x ∈ R n , Φ(x, •) is a diffeomorphism of class C 1 from R m into itself, and, for any v ∈ R m , ∇ u L(x, u) = v ⇐⇒ u = Φ(x, v). Let us set, for any pair (x, p) ∈ R n × R m , (X(x, p)) i = p, f i (x) , ∀i = 1, • • • , m. Then, for any (x, p, u) ∈ R n × R n × R m , ∇ u H(x, p, u) = 0 ⇐⇒ u = Φ(x, X(x, p)). (9) 
Hence, the Hamiltonian H(x, p) = max u∈R m H(x, p, u) takes the form

H(x, p) = H(x, p, Φ(x, X(x, p)) (10) = p, f (x, Φ(x, X(x, p)) -L(x, Φ(x, X(x, p))) = Φ(x, X(x, p)), X(x, p) m -L(x, Φ(x, X(x, p))),
for any pair (x, p) ∈ R n × R n . By construction, H is locally Lipschitz in the x variable and of class C 1 in the p variable. In addition, by ( 9)- [START_REF] Clarke | Optimization and no nsmooth analysis Canadian Mathematical Society Series of Monographs and Advanced Texts[END_REF],

∂ x H(x, p) = ∂ x H(x, p, Φ(x, X(x, p))) ∇ p H(x, p) = ∇ p H(x, p, Φ(x, X(x, p))).
The version of Pontryagin's Maximum Principle we give below is adapted from a recent fundamental result by Clarke [START_REF] Clarke | Necessary conditions in dynamic optimization[END_REF] to the problem of interest to this paper.

Proposition 3.3. Under assumption (A3), if ū(•) ∈ U is a minimizing control steering x 0 to x in time t, then there exists an absolutely continuous arc p(•) : [0, t] → R n such that the pair (x(•) := x ū(•), p(•)) is a solution of the Hamiltonian differential inclusion ẋ(s) = ∇ p H(x(s), p(s)) -ṗ(s) ∈ ∂ x H(x(s), p(s)) (11) 
for almost every s ∈ [0, t], and such that the function

s -→ H(x(s), p(s)) is constant on [0, t]. (12) 
In particular, x(•) is of class C 1,1 , while p(•) and ū(•) are Lipschitz on [0, t].

Proof. We will recast our problem in Mayer's form introducing, as usual, an extra state variable. Given a control u(•) ∈ U, let y u (•) be the solution of the Cauchy problem

ẏ(s) = L(x u (s), u(s)), s ∈ [0, ∞) a.e., y(0) = 0.
If we set, for every (x, y, u

) ∈ R n × R × R m , X(x, y, u) := f (x, u) L(x, u) , then ū(•) minimizes the terminal cost g(x u (t), y u (t)) := y u (t)
over all controls u(•) ∈ U and all absolutely continuous arcs (x u (•),

y u (•)) : [0, t] → R n × R satisfying ẋu (s) ẏu (s) = X(x u (s), y u (s), u(s)), s ∈ [0, t] a.e. and x u (0) = x 0 , y u (0) = 0, x u (t) = x.
Let us write the above Mayer problem as an optimization problem for a differential inclusion with closed graph. Set, for every (x, y, z

) ∈ R n ×R×R m , F (x, y, z) :=      m i=1 u i f i (x) L(x, u) + δ u   u ∈ R m , δ ≥ 0    .
By construction, the multifunction

F has closed graph in (R n × R × R m ) 2 ,
denote it by G. Besides, the trajectory

Z(•) := x(•), ȳ(•) := y ū(•), z(•) := • 0 u(s)ds : [0, t] -→ R n × R × R m minimizes the terminal cost ℓ(x(t), y(t), z(t)) := y(t)
over all trajectories of the differential inclusion

( ẋ(s), ẏ(s), ż(s)) ∈ F (x(s), y(s), z(s)) , s ∈ [0, t] a.e. ( 13 
)
satisfying the constraints

x(0) = x 0 , y(0) = 0, z(0) = 0, x(t) = x. ( 14 
)
Our aim is now to apply Theorem 3.4.1 of [START_REF] Clarke | Necessary conditions in dynamic optimization[END_REF]. Denoting by

| • | * the Euclidean norm in R n × R × R m ,
we claim that, for every R > 0, there exists a summable function k R : [0, t] → R, bounded below by a positive constant, such that for almost all s ∈ [0, t], and every (Z, V ) ∈ G satisfying

Z -Z(s) * < R and V -Ż(s) * < R, (15) 
one has

(α, β) ∈ N P G (Z, V ) =⇒ |α| * ≤ k R (s)
|β| * (we refer the reader to [START_REF] Clarke | Necessary conditions in dynamic optimization[END_REF], [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF] for the definition of the proximal normal cone 15), and fix a vector

N P G (Z, V ).) For let r R > R be such that x(s) ∈ B r R -R for every s ∈ [0, t], and denote by K R a constant ≥ K(r R ) such that |df i (x)| ≤ K R for all x ∈ B r R . By (A2)(ii), there exists C 1 such that q ≤ θ(q) for all r ≥ C 1 . Let s ∈ [0, t] be such that Ż(s) exists, (Z, V ) := ((x, y, z), (v, w, u)) ∈ G satisfies (
(α, β) = (α 1 , α 2 , α 3 , β 1 , β 2 , β 3 ) ∈ N P G (Z, V ).
Note that, necessarily,

|x -x(s)| < R and L(x, u) -L (x(s), ū(s)) < R. ( 16 
)
We need the following result whose proof is given in the Appendix.

Lemma 2. For every (Z, V ) ∈ (R n × R × R m ) × (R n × R × R m ) and every (α = (α 1 , α 2 , α 3 ), β = (β 1 , β 2 , β 3 )) ∈ N L G (Z, V ), we have α 2 = α 3 = 0, β 2 ≥ 0. Moreover β 2 < 0 =⇒ 1 (-β 2 ) α 1 + m i=1 u i df i (x) * β 1 ∈ ∂ x L(x, u), (17) 
β 2 < 0 =⇒ 1 (-β 2 ) (β 3 + ( β 1 , f 1 (x) , • • • , β 1 , f m (x) ) * ) = ∇ u L(x, u), (18) 
and

β 2 = 0 =⇒ α 1 + m i=1 u i df i (x) * β 1 = 0, (19) 
β 2 = 0 =⇒ β 3 + ( β 1 , f 1 (x) , • • • , β 1 , f m (x) ) * = 0. ( 20 
)
Now, suppose β 2 < 0. Then ( 16), ( 17) and (A2)(iii) yield

|α| * = |α 1 | ≤ α 1 + m i=1 u i df i (x) * β 1 + m i=1 u i df i (x) * β 1 ≤ K(r R )|β 2 |θ (|u| m ) + √ m K R |u| m |β 1 | ≤ K R θ (|u| m ) |β 2 | + √ m K R max {C 1 , θ((|u| m )} |β 1 | ≤ √ m K R max {C 1 , θ((|u| m )} (|β 1 | + |β 2 |) ≤ √ m K R max {C 1 , L(x, u) + c 0 } (|β 1 | + |β 2 | + |β 3 | m ) ≤ √ m K R max {C 1 , L(x(s), ū(s)) + R + c 0 } (|β 1 | + |β 2 | + |β 3 | m ) ≤ k R (s)|β| * , where k R (s) := √ 3 √ m K R max {C 1 , L(x(s), ū(s)) + R + c 0 } .
On the other hand, if β 2 = 0, then ( 16), ( 19) and (A2)(ii) imply that

|α| * = |α 1 | ≤ m i=1 u i df i (x) * β 1 ≤ √ m K R |u| m |β 1 | ≤ √ m K R max {C 1 , θ((|u| m )} | beta 1 | ≤ k R (s)|β| * .
Consequently, since t 0 L(x(s), ū(s))ds < ∞, we have proved that, for every R > 0, there exists a summable function k R : [0, t] → R, bounded below by a positive constant, such that for almost all s ∈ [0, t] and for every (Z, V ) ∈ G satisfying [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF],

(α, β) ∈ N P G (Z, V ) =⇒ |α| * ≤ k R (s)|β| * .
This proves our claim. From the proof of Corollary 3.5.3 in [START_REF] Clarke | Necessary conditions in dynamic optimization[END_REF], we deduce that the necessary conditions of Theorem 3.4.1 in [START_REF] Clarke | Necessary conditions in dynamic optimization[END_REF] hold. Therefore, there exist a number λ 0 ∈ {0, 1} and an absolutely continuous arc

P (•) = (p 1 (•), p 2 (•), p 3 (•)) : [0, t] → R n × R × R m such that: (i) for every s ∈ [0, t], (λ 0 , P (s)) = (0, 0); (ii) -p 2 (t) = λ 0 , p 3 (t) = 0; (iii) for almost every s ∈ [0, t], we have Ṗ (s) ∈ co w | (w, P (s)) ∈ N L G Z(s), Ż (s) ; 
(iv) for almost every s ∈ [0, t], we have

P (s), V * ≤ P (s), Ż(s) * , ∀V ∈ F Z(s)
where •, • * denotes the Euclidean scalar product in R n × R × R m ; (v) there exists a constant h such that

P (s), Ż(s) * = h, s ∈ [0, t] a.e..
Owing to Lemma 2, assertion (iii) can be written as

-ṗ1 (s) ∈ m i=1 ūi (s)df i (x(s)) * p 1 (s) + p 2 (s)∂ x L(x(s), ū(s)), (21) and ṗ2 
(s) = ṗ3 (s) = 0, (22) 
for almost every s ∈ [0, t]. Hence, (iv) implies that

p 1 (s), m i=1 u i f i (x) -λ 0 L(x(s), u) ≤ p 1 (s), m i=1 ūi (s)f i (x(s)) -λ 0 L(x(s), ū(s)), ( 23 
)
for almost every s ∈ [0, t]. Notice that, if λ 0 = 0, then by (ii) and ( 23), we obtain that p 2 (s) = p 3 (s) = 0 for any s ∈ [0, t] and

p 1 (s), m i=1 u i f i (x) ≤ p 1 (s), m i=1 ūi (s)f i (x(s)) ,
for almost every s ∈ [0, t] and all u ∈ R m . Thus, H 0 (x(s), p 1 (s)) = 0 for every s ∈ [0, t], and, by [START_REF] Rifford | A Morse-Sard theorem for the distance function on Riemannian manifolds[END_REF],

-ṗ1 (s) = ∇ x H 0 (x(s), p 1 (s), ū(s)), s ∈ [0, t] a.e.
. Since P (s) = 0 for every s ∈ [0, t], this contradicts assumption (A3) in view of Proposition 2.4. Therefore, λ = 1. This implies that p 2 (s) = -1 for every s ∈ [0, t], which yields, in turn, [START_REF] Clarke | Necessary conditions in dynamic optimization[END_REF] and [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF].

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let ( t, x) ∈ Ω and let δ > 0 be such that

G := [ t -δ, t + δ] × B(x, δ) ⊂ Ω.
Let K ⊂ [ t -δ, t + δ] × U be the set of all pairs (t, u(•)) for which there exists a pair of absolutely continuous arcs (x u (•), p u (•)) : [0, t] -→ R n × R n satisfying the following properties:

(i) x u (0) = x 0 and x u (t) ∈ B(x, δ); (ii) (x u (•), p u (•)) is a solution of the Hamiltonian inclusion (11) on [0, t]; (iii) s → H(x u (s), p u (s)) is constant on [0, t]; (iv) u(s) := Φ(x u (s), X(x u (s), p u (s))) for any s ∈ [0, t]; (v) u(s) = 0 fo r all s ∈ (t, ∞); (vi) V (t, x u (t)) = C t (u(•)).
Proposition 3.3 ensures that, for any (t, x) ∈ G, there exists u(•) ∈ U such that (t, u(•)) ∈ K and x u (t) = x. Moreover, K has useful compactness properties, as our next result shows.

Lemma 3. There is a constant K > 0 such that, for every

(t, u(•)) ∈ K, |u(s)| m < K, ∀s ∈ [0, t], (24) 
and

|u(s) -u(s ′ )| m < K|s -s ′ |, ∀s, s ′ ∈ [0, t]. (25) 
Proof. First of all, since V is continuous on Ω, V is bounded on all compact subsets of Ω. Hence, by (vi), there is C > 0 such that C t (u(•)) ≤ C for every (t, u(•)) ∈ K. Also by assumption (A2), there exists C 1 > 0 such that r ≤ θ(r) for all r ≥ C 1 . There fore, for every (t, u(•)) ∈ K, we have

u(•) 1 = [0,t]∩{|u|m≥C 1 } |u(s)| m ds + [0,t]∩{|u|m<C 1 } |u(s)| m ds ≤ [0,t]∩{|u|m≥C 1 } θ(|u(s)| m )ds + tC 1 ≤ t 0 [L(x u (s), u(s)) + c 0 ]ds + tC 1 ≤ C + (c 0 + C 1 )t ≤ C + (c 0 + C 1 )( t + δ) =: C. ( 26 
)
Consequently, recalling assumption (A1) and applying Gronwall's Lemma, we conclude that all trajectories x u (•) associated with elements (t, u(•)) ∈ K are uniformly bounded, that is, there is a compact set C ⊂ R n such that, for every (t, u(•)) ∈ K,

x u (s) ∈ C ∀s ∈ [0, t]. (27) 
On the other hand, inequality (26) also says that for every (t, u(•)) ∈ K, there exists

s u ∈ [0, t] such that |u(s u )| m ≤ 2 C t -δ . (28) 
Let M be a positive constant such that

| u, ∇ u L(x, u) m ) -L(x, u)| ≤ M , (29) 
for any x ∈ C and any u ∈ R m satisfying |u| m ≤ 2 C/( t -δ). By (28)-( 29), (iv), and the fact that f 0 ≡ 0, we deduce that, for every (t,

u(•)) ∈ K, |H(x u (s u )), p u (s u ))| = u(s u ), ∇ u L(x u (s u ), u(s u )) -L(x u (s u ), u(s u )) ≤ M . (30) 
Let now M be another positive constant such that

|L(x, u)| ≤ M ,
for any x ∈ C and any u ∈ R m satisfying |u| m ≤ 1. We need the following lemma.

Lemma 4. If we define

h : R n × R m → R by ∀(x, u) ∈ R n × R m , h(x, u) := u, ∇ u L(x, u) m -L(x, u), (31) 
then we have that Then, for every α ≥ 1,

h(x, u) ≥ θ(|u| m ) |u| m - c 0 + M |u| m -M , ∀(x, u) ∈ C × R m \ {0}. ( 32 
) Proof. Fix x ∈ C, u ∈ R m \ {0},
h(α) = h(1) + α 1 h ′ (r)dr = h(1) + α 1 r L"(r)dr ≥ h(1) + α 1 L"(r)dr = h(1) + L ′ (α) -L ′ (1) ≥ h(1) + L(α) -L(0) α -L ′ (1) (by convexity of L) = -L(1) + L(α) -L(0) α ≥ θ(α|v| m ) α - c 0 α - M α -M ,
in view of assumption (A2) and the definition of L and h. Taking α = |u| m , we conclude easily.

We now return to the proof of Lemma 3. Since

lim q→∞ θ(q) q - c 0 + M q -M = +∞, there exists C 2 > 0 such that h(x, u) > 2 M ,
for any x ∈ C and any u ∈ R m satisfying |u| m > C 2 . Thus, by (iii) and (30) we deduce that, for every (t, u(

•)) ∈ K, |u(s)| m ≤ C 2 ∀s ∈ [0, t], (33) 
which in turn gives [START_REF] Trélat | Some properties of the value function and its level sets for affine control systems with quadratic cost[END_REF]. Furthermore, we know that for every (t, u(

•)) ∈ K, -ṗu (s) ∈ m i=1 (u(s)) i df i (x u (s)) * p k (s) -∂ x L(x u (s), u ( s)), s ∈ [0, t] a.e. ( 34 
)
Hence by ( 27), (33) and Gronwall's Lemma, there exists a constant M ′ > 0 such that for every (t,

u(•)) ∈ K, |p u (s)| ≤ M ′ |p u (0)|, ∀s ∈ [0, t]. (35) 
Next, we claim that, for some constant P > 0,

∀(t, u(•)) ∈ K, |p u (0)| ≤ P. ( 36 
)
For suppose there exists a sequence

{(t k , u k (•))} k ∈ K such that {p k 0 := p u k (0)} k satisfies |p k 0 | → ∞ as k → ∞. Define, for any k, p k (s) := p u k (s) |p k 0 | ∀s ∈ [0, t k ].
By (34), we have that

-˙ p k (s) ∈ m i=1 (u k (s)) i df i (x u k (s)) * p k (s) - 1 |p k 0 | ∂ x L(x u k (s), u k (s))
for almost every s ∈ [0, t k ]. Since, by (33), {u k (•)} k is uniformly bounded in L ∞ and, by (27), x k (•) are all included in the compact set C, the sequence { p k } k is uniformly bounded and equicontinuous. By the Ascoli-Arzèla Theorem, we deduce that, up to a subsequence, the pair (x u k (•), p k (•)) converges uniformly to some pair (x ∞ (•), p ∞ (•)), and

u k (•) converges to some u ∞ (•) in the weak-L 1 topology. Moreover, t k → t ∈ [ t -δ, t + δ] and C t (u ∞ (•)) = V (t,
x) (by the same argument as in the end of the proof of Proposition 3.1). Furthermore, recalling the linear dependence of H 0 with respect to u,

ẋ∞ (s) = ∇ p H 0 (x ∞ (s), p ∞ (s), u ∞ (s)) -ṗ∞ (s) = ∇ x H 0 (x ∞ (s), p ∞ (s), u ∞ (s)),
for almost every s ∈ [0, t]. Also, by (iii) and (30), we know that, for every k and every

u ∈ R m , ∀s ∈ [0, t k ], H(x u k (s), p u k (s), u) ≤ H(x u k (s), p u k (s)) = H(x u k (s u k ), p u k (s u k )) ≤ M .
Hence, for any k, any u ∈ R m such that |u| m ≤ 1, and any s ∈ [0, t k ],

m i=1 u i p k (s) |p k 0 | , f i (x k (s)) ≤ M + M |p k 0 |
.

Passing to the limit in the above inequality, we obtain

m i=1 u i p ∞ (s), f i (x ∞ (s)) ≤ 0 for any u ∈ R m such that |u| m ≤ 1. This implies that, for any s ∈ [0, t], p ∞ (s) is orthogonal to each vector f 1 (x ∞ (s)), • • • , f m (x ∞ (s))
. So, invoking Proposition 2.4, we conclude that u ∞ (•) is a singular control for E x 0 ,t , in contrast with assumption (A3). This proves our claim.

Summing up, we have proved that, for every (t, u(•)) ∈ K, 

x u (s) ∈ C , |u(s)| m ≤ C 2 ,
u(s) = Φ(x u (s), X(x u (s), p u (s))), ∀s ∈ [0, t],
the uniform Lipschitz estimate (25) easily follows.

We can now complete the proof of Theorem 1. We denote by U ∞ the set of u(•) ∈ U which satisfy ( 24) and ( 25) on [0, t + δ]. We shall regard any control u(•), such that (t, u(•)) ∈ K, as defined on [0, t + δ] which is always the case possibly extending its domain of definition to [0, t + δ] by taking

u(s) = u(t) for every s ∈ [t, t + δ]. We shall equip U ∞ with the uniform norm • ∞ on [0, t + δ].
Lemma 5. There exist r, R > 0 such that, for every (t, u(•)) ∈ K, there exists a mapping of class C 1,1 ,

F t,u : (t -r, t + r) × B(x := x u (t), r) → U ∞ ,
with dF t,u R-Lipschitz, which satisfies F t,u (t, x) = (t, u(•)) and ∀s ∈ (t -r, t + r), ∀y ∈ B(x, r), E x 0 ,s (F t,u (s, y)) = y.

Proof. Fix ( t, û(•)) ∈ K. By assumption (A3), there are n controls

v û 1 (•), • • • , v û n (•)
∈ U such that the linear operator given by

dE x 0 , t(û(•)) : span{v û 1 (•), • • • , v û n (•)} -→ R n v(•) -→ dE x 0 , t(û(•))(v(•)), i s a linear isomorphism. Since the mapping (t, u(•)) → E x 0 ,t (u(•)) is of class C 1 on [0, t + δ] × U ∞ , there exists a constant ρ t,û > 0 such that dE x 0 ,t (u(•)) : span{v û 1 (•), • • • , v û n (•)} -→ R n v(•) -→ dE x 0 ,t (u(•))(v(•)), is an isomorphism for every (t, u(•)) ∈ [0, t + δ] × U ∞ satisfying |t -t| < ρ t,û and u(•) -û(•) ∞ < ρ t,û . (37) 
Define

E u t,û : (0, ∞) × R n -→ (0, ∞) × R n (t, λ := (λ 1 , • • • , λ n )) -→ t, E x 0 ,t u(•) + n i=1 λ i v û i (•) , Then, for some constant µ t,û > 0, det d E u t,û (t, 0 n ) ≥ µ t,û
for every (t, u(•)) satisfying (37). By the compactness of K, there exist a finite set J and J pairs (t j , u j ) ∈ K

(j = 1, • • • , J) such that K ⊂ j∈J (t j -ρ t j ,u j , t j + ρ t j ,u j , t j ) × B X u j (•), ρ t j ,u j . Set µ := min j∈J {µ t j ,u j }.
Therefore, by construction, we have for every (t, u(•)) ∈ K,

det d E u t j ,u j (t, 0 n ) ≥ µ,
for some j ∈ J. In other terms, for for every (t, u(•)) ∈ K, there is j ∈ J such that the linear mapping

d E u t j ,u j (t, 0 n ) : R × R n -→ R × R n (s, λ) -→ s, n i=1 λ i dE x 0 ,t (u(•)) v u j i (•) , is an isomorphism satisfying det d E u t j ,u j (t, 0 n ) ≥ µ.
Then, we apply the Inverse Mapping Theorem to the mapping E := E u t j ,u j obtaining an inverse of the form E -1 (s, y) = (s, λ t,u (s, y)). Observe that the radius r > 0 of the cylinder (t -r, t + r) × B(x = x u (t), r) which is contained in the image of a neighborhood of (t, u(•)) and the Lipschitz constant of dE -1 depend uniquely on the norms of E, dE in a neighborhood of (t, u(•)) and of (dE) -1 in a neighborhood of E(t, u(•)). Since K is compact and the absolute values of the determinants of dE(t, u(•)) are uniformly bounded below by a positive constant, we conclude taking

F t,u (s, y) = u(•) + n i=1 λ t,u i (s, y)v u j i (•) for every (s, y) ∈ (t -r, t + r) × B(x = x u (t), r).
Let us return to the proof of Theorem 1 and consider (t, x) ∈ G and u(•) ∈ U such that (t, u(•)) ∈ K and x u (t) = x. By Lemma 5, there exists a diffeomorphism of class

C 1,1 , F t,u : (t -r, t + r) × B r (x) → (0, ∞) × U ∞ , which satisfies F t,u (t, x) = (t, u(•)) and such that DF t,u is R-Lipschitz. We have, by the definition of V , V (t, x) = C t (F t,u (t, x)) , (38) 
and

V (t ′ , y) ≤ C t ′ F t,u (t ′ , y) , ∀(t ′ , y) ∈ (t -r, t + r) × B r (x). ( 39 
)
Moreover, we have the following lemma that we shall prove in the Appendix.

Lemma 6. The function (t, u(•)) ∈ [0, t + δ] × U ∞ → C t (u(•)) is locally semiconcave, that is, for each pair (t, u(•)) ∈ [0, t+δ]×U ∞ there are constants ρ, C > 0 such that C t 1 (u 1 (•)) -C t 2 (u 2 (•)) ≤ C |t 1 -t 2 | + u 1 (•) -u 2 (•) ∞ (40) 
and

µC t 1 (u 1 (•)) + (1 -µ)C t 2 (u 2 (•)) -C µt 1 +(1-µ)t 2 (µu 1 (•) + (1 -µ)u 2 (•)) ≤ µ(1 -µ)C(|t 1 -t 2 | 2 + u 1 (•) -u 2 (•) 2 ∞ ) (41) ∀µın[0, 1], ∀t 1 , t 2 ∈ [0, t + δ] with |t 1 -t 2 | ≤ ρ, and ∀u 1 (•), u 2 (•) ∈ U ∞ satisfying u 1 (•) -u 2 (•) ∞ ≤ ρ.
To complete the proof of Theorem 1, let (t 1 , x 1 ), (t 0 , x 0 ) ∈ G be such that |t 1 -t 0 | < r, |x 1 -x 0 | < r. For µ ∈ [0, 1], set t µ := µt 1 + (1 -µ)t 0 and x µ := µx 1 +(1-µ)x 0 . Since (t µ , x µ ) ∈ G, there exists u µ ∈ U such that (t µ , u µ ) ∈ K and x µ = x uµ (t µ ). Also, since (t 1 , x 1 ), (t 0 , x 0 ) ∈ (t µ -r, t µ + r) × B r (x µ ), in view of (38)-(39) and Lemma 6, we obtain

µV (t 1 , x 1 ) + (1 -µ)V (t 0 , x 0 ) -V (t µ , x µ ) ≤ µC t 1 F tµ,uµ (t 1 , x 1 ) + (1 -µ)C t 0 F tµ,uµ (t 0 , x 0 ) -C tµ F tµ,uµ (t µ , x µ ) = µC t 1 F tµ,uµ (t 1 , x 1 ) + (1 -µ)C t 0 F tµ,uµ (t 0 , x 0 ) -C tµ µF tµ,uµ (t 1 , x 1 ) + (1 -µ)F tµ,uµ (t 0 , x 0 ) + C tµ µF tµ,uµ (t 1 , x 1 ) + (1 -µ)F tµ,uµ (t 0 , x 0 ) -C tµ F tµ,uµ (t µ , x µ ) ≤ Cµ(1 -µ) F tµ,uµ (t 1 , x 1 ) -F tµ,uµ (t 0 , x 0 ) 2 (0,∞)×U∞ + C µF tµ,uµ (t 1 , x 1 ) + (1 -µ)F tµ,uµ (t 0 , x 0 ) -F tµ,uµ (t µ , x µ ) (0,∞)×U∞ . Since (t, x) → F tµ,uµ (t, x) is C 1,1 , the conclusion follows.
In order to allow for a drift in (3), we impose the additional assumptions below.

(A3)' (i) For all r > 0 there exists K 1 (r) such that

L(x, u) ≥ K 1 (r) |u| 2 m -1 for all x ∈ B r , u ∈ R m . (ii) For all r > 0 there exists K 2 (r) > 0 such that L(x, u) ≤ K 2 (r) |u| 2 m + 1 for all x ∈ B r , u ∈ R m .
(iii) For all r > 0 there exists K 3 (r) > 0 such that

|∇ u L(x, u)| m ≤ K 3 (r) (|u| m + 1)
for all x ∈ B r , u ∈ R m . (iv) For all r > 0 there exists K 4 (r) > 0 such that

x ∈ B r , u ∈ R m , ζ ∈ ∂ x L(x, u) =⇒ |ζ| ≤ K 4 (r) |u| 2
m + 1 . Then, we have the following result.

Theorem 2. If assumptions (A1)-(A3) and (A3)' hold, then V is locally semiconcave in Ω.

Proof of Theorem 2. As in the proof of Theorem 1, for a fixed ( t, x) ∈ Ω let δ > 0 be such that

G := [ t -δ, t + δ] × B(x, δ) ⊂ Ω. Let K ⊂ [ t -δ, t + δ] × U
be the the (nonempty) set of all pairs (t, u(•)) for which there exists a pair of absolutely continuous arcs (x(•), p(•)) : [0, t] -→ R n × R n which satisfies properties (i)-(vi). As in the proof of Theorem 1, we note that, for some C > 0 and every (t, u(•)) ∈ K,

u(•) 1 = t 0 |u(s)| m ds ≤ C.
Thus, by assumption (A1) and Gronwall's Lemma, there is r > 0 such that for every (t, u(•)) ∈ K, |x u (s)| ≤ r for all s ∈ [0, t]. Hence, recalling (A3)' (i) and repeating the reasoning used to obtain (26), we conclude that, for some constant Ĉ > 0 and every (t, u(•)) ∈ K,

u(•) 2 = t 0 |u(s)| 2 m ds ≤ Ĉ. ( 42 
)
Let us also observe that, by (A1) and (A3)' (ii)-(iv), for every t ∈ (0, ∞), the map

C t : u(•) ∈ L 2 ([0, t]; R m ) -→ C t (u(•)) ∈ R, is locally Lipschitz in L 2 -norm.
Therefore, for every (t, u(•)) ∈ K, the nonsmooth Lagrange multiplier theorem (see [START_REF] Clarke | Optimization and no nsmooth analysis Canadian Mathematical Society Series of Monographs and Advanced Texts[END_REF][START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]) ensures that there exists pu ∈ R n satisfying p *

u dE x 0 ,t (u(•)) ∈ ∂C t (u(•)). So, pu , dE x 0 ,t (u(•))(v(•)) ∈ ∂C t (u(•)), v(•) L 2 , ∀v(•) ∈ L 2 ([0, t]; R m ). ( 43 
)
Actually, pu can be related to the adjoint arc p(•) of Proposition 3.3 as follows.

Lemma 7. There exists an absolutely continuous arc p(•) : [0, t] → R n for which [START_REF] Clarke | Necessary conditions in dynamic optimization[END_REF] is satisfied for almost every s ∈ [0, t] and such that p(t) = pu .

Proof. We note that, for every ξ Furthermore, for every v( Then, B(s

∈ ∂C t (u(•)), there exists η ∈ L ∞ ([0, t]; R n ) satisfying η(s) ∈ ∂ x L(x u (s), u(s)) for every s ∈ [0, t], such that ξ, v(•) L 2 = t 0 η(s), dE x 0 ,s (u(•))(v(•)) + ∇ u L(x u (s), u(s)), v ( 
•) ∈ L 2 ([0, t]; R m ), pu , dE x 0 ,t (u(•))(v(•)) L 2 = pu , t 0 S(t)S(s) -1 B(s)v(s)ds = t 0 pu , t 0 S(t)S(s) -1 B(s)v(s) ds = t 0 B(s) * S(s) -1 * S(t) * pu , v(s) m ds.
) * p(s) = ∇ u L(x u (s), u(s)), ∀s ∈ [0, t] .
This proves that u(s) = Φ(x u (s), X(x u (s), p(s))) for every s ∈ [0, t]. Also,

-ṗ(s) = A(s) * p(s) -η(s) ∈ ∂ x H(x u (s), p(s)), a.e. s ∈ [0, t].
This concludes the proof of the lemma.

We now proceed to show the following result.

Lemma 8. There exists a constant K > 0 such that, for every

(t, u(•)) ∈ K, |u(s)| m < K, ∀s ∈ [0, t],
and

|u(s) -u(s ′ )| m < K|s -s ′ |, ∀s, s ′ ∈ [0, t].
Proof. To begin, recall that, for every (t, u(•)) ∈ K and some constant R > 0,

u(•) 1 , u(•) 2 , x(•) ∞ ≤ R. (44) 
Let us now prove that there is a constant P > 0 such that, for every (t, u(•)) ∈ K and every pu ∈ R n satisfying (43), we have,

|p u | ≤ P. ( 45 
)
We argue by contradiction: suppose there exist sequences (t k , u k (•)) k ∈ K and (p k ) k ∈ R n such that (43) holds for every k, and |p k | → ∞ as k → ∞. Thus, for every k and every v(

•) ∈ L 2 ([0, t k ]; R m ), pk |p k | , dE x 0 ,t k (u k (•))(v(•)) ∈ 1 |p k | ∂C t k (u k (•)), v(•) L 2 , .
Recalling that the map (t, u(•)) → dE x 0 ,t (u(•)) is continuous in the weak L 1 -topology (see [START_REF] Trélat | Some properties of the value function and its level sets for affine control systems with quadratic cost[END_REF]), in the limit as k → ∞ we obtain that there exist p ∈ R n with |p| = 1 and a pair (t,

u(•)) ∈ K, with u ∈ L 2 ([0, t]; R m ), such that p, dE x 0 ,t (u(•))(v(•)) = 0 for every v(•) ∈ L 2 ([0, t]; R m ). Since u(•) minimizes C t (•)
, we have obtained a contradiction. Consequently, there is P > 0 such that (45) holds for every (t, u(•)) ∈ K and every pu ∈ R n satisfying (43). Let M be a positive constant such that df i (x) * ≤ M for every x ∈ B r and every i = 0, • • • , m. Recalling Lemma 7 we have that, for every (t, u(•)) ∈ K and pu ∈ R n satisfying (43), there is an absolutely continuous arc p u (•) : [0, t] → R n satisfying p u (t) = pu and

-ṗu (s) ∈ m i=1 (u(s)) i df i (x u (s)) * p u (s) -∂ x L(x u (s), u(s)), a.e. s ∈ [0, t].
By (44) and assumption (A3)' (iv), we deduce that, for every (t,

u(•)) ∈ K, | ṗu (s)| ≤ R √ m|u(s)| m |p u (s)| + K 4 (R) (|u(s)| m + 1) , quad∀s ∈ [0, t].
Owing to (45) and Lemma 7 the above estimate implies that, for all (t, u(•)) ∈ K and s ∈ [0, t],

|p u (s)| ≤ |p u (t)| + t s K 4 (R) (|u(r)| m + 1) dr + t s R √ m|u(r)| m |p u (r)|dr ≤ P + K 4 (R) (C + ( t + δ)) + t s R √ m|u(r)| m |p u (r)|dr := Q + t s R √ m|u(r)| m |p u (r)|dr.
By Gronwall's Lemma, we deduce that, for every s ∈ [0, t],

|p u (s)| ≤ Q exp t s R √ m|u(r)| m dr ≤ Qe R √ mC .
Then, we conclude the reasoning arguing as in the proof of Lemma 3.

The proof of Theorem 2 is now complete.

Properties of optimal trajectories

In this section, we will derive a few results relating the differentiability of V at a given point with the uniqueness of the optimal control at the same point. A similar analysis is known in the literature for finite horizon problems with an initial cost and for exit time problems, see [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]. Here, we are interested in problems with finite horizon and fixed initial condition. Although our results will be analogous to those obtained in the aforementioned situations, the technique of proof is-in the present context-totally different, yet still based on the semiconcavity of V . Throught this section, we assume that f 0 ≡ 0.

To begin, let us recall that the Hamiltonian H : R n × R n → R is defined by

H(x, p) := max u∈R m H(x, p, u) = max u∈R m p, f (x, u) -L(x, u)
for any (x, p) ∈ R × R n . Let us also recall that, as well-known, V is a viscosity solution of the Hamilton-Jacobi equation

∂V ∂t + H(x, D x V ) = 0 in Ω. ( 46 
)
We will need the following assumptions.

(A4) The Lagrangian L is of class C 1,1 loc in the x variable. (A5) For every (t, x) ∈ Ω and for any control u(•) steering x 0 to x in time t which minimizes C t (•), the trajectory x u (•) remains in Ω for s ∈ (0, t]. Moreover, for every (t 1 , x 1 ) and (t 2 , x 2 ) in Ω, and for any control u(•) steering x 0 to x 2 in time t 2 which minimizes the cost functional with x u (t 1 ) = x 1 , we have that dE

x 1 ,t 2 -t 1 (u(t 1 + •)) is surjective.
with ∇ x V (t, x) = ∇φ(x) and such that y → V (t, y) -φ(y) attains a local minimum at x. Thus, there exists a neighbourhood

V of u(•), contained in U, such that V (t, x) ≤ V (t, x v (t)) -φ(x v (t)) + φ(x) for every control v(•) ∈ V. Moreover, the very definition of V yields V (t, x v (t)) ≤ C t (v(•)). Therefore, V (t, x) ≤ C t (v(•))-φ(x v (t))+φ(x), for every control v(•) ∈ V. In particular, u(•) is a solution of the minimization problem min v(•)∈V t 0 L(x v (s), v(s))ds -φ(x v (t)) + φ(x) .
By the Pontryagin Maximum Principle, we deduce the existence of an absolutely continuous arc p(•) satisfying (47) such that p(t) = ∇ x V (t, x). Now, let (t, x) be any point in Ω and (ζ t , ζ x ) ∈ D * V (t, x). By definition, there exists a sequence

{(t k , x k )} k in Ω such that V is differentiable at (t k , x k ) and lim ∇V (t k , x k ) = (ζ t , ζ x ).
For each k, we denote by u k (•) a minimizing control joining x 0 to x k . On account of the first part of this proof, we know that, for each k, there exists an adjoint arc

p k (•) : [0, t k ] → R n satisfying p k (t k ) = ζ x k .
Passing to the limit as k → ∞ gives the result.

Theorem 3. Under assumptions (A1)-(A5), for every (t, x) ∈ Ω and every

u(•) ∈ U steering x 0 to x in time t such that V (t, x) = C t (u(•)), the function V is differentiable at (s, x u (s)) for every s ∈ (0, t). Moreover, u(•) is the unique control in L 1 ([0, s]; R m ) steering x 0 to x u (s) and such that V (s, x u (s)) = C s (u(•)). Furthermore, if p(•) : [0, s] → R n \ {0} satisfies (47) on [0, s], then p(s) = ∇ x V (s, x u (s)).
Proof. We argue by contradiction. If V is not differentiable at (s, x(s)) for some s ∈ (0, t), then, by semiconcavity, V possesses at least two distinct limiting subgradients (

ζ 1 s , ζ 1 x(s) ), (ζ 1 s , ζ 1 x(s)
) at the point (s, x(s)). Since V is a viscosity solution of (46), we have that

ζ i s + H x(s), ζ i x(s) = 0, ∀i = 1, 2. Thus, necessarly, ζ 1 x(s) = ζ 2
x(s) , and the above lemma yields the first statement. The second assertion follows from Lemma 9. Lemma 10 ensures the existence of p(•) : [0, s] → R n such that (47) is satisfied on [0, s], and p(s) = ∇ x V (s, x u (s)). If there is another adjoint arc for which (47) is satisfied on [0, s], then, as in the proof of Lemma 9, we deduce that u(•) is singular for E x 0 ,s , which contradicts assumption (A3).

Theorem 4. Under assumptions (A1)-(A5), for every (t, x) ∈ Ω, V is differentiable at (t, x) if and only if there is a unique u(•) ∈ L 1 ([0, t]; R m ) steering x 0 to x in time t such that V (t, x) = C t (u(•)).
Proof. Assume that V is differentiable at (t, x) ∈ Ω, and suppose there are two distinct controls u

1 (•) = u 2 (•) steering x 0 to x in time t such that V (t, x) = C t (u i (•)) for i = 1, 2. Then there exist two arcs p 1 (•), p 2 (•) : [0, t] → R n \ {0} satisfying (47) on [0, t]. Both vectors p 1 (t) and p 2 (t) being equal to ∇ x V (t, x), we have that p 1 (t) = p 2 (t). This implies that u 1 (•) = u 2 (•).
Assume now that there is a unique u(

•) ∈ L 1 ([0, t]; R m ) steering x 0 to x in time t such that V (t, x) = C t (u(•)). If V is not differentiable at (t, x),
then it possesses at least two distinct elements in D *

x V (t, x). The conclusion easily follows.

In view of the above results, one concludes that, for every (t, x) ∈ Ω, we have a one-to-one mapping between the set of minimizing controls steering x 0 to x in time t, and the set of limiting gradients D * V (t, x).

Strongly bracket generating control systems

Throught this section, we assume that f 0 ≡ 0 and that f 1 , • • • , f m are smooth vector fields satisfying (A1). We recall that if X, Y are two smooth vector fields on R n , then the Lie bracket

[X, Y ] at x ∈ R n is defined by [X, Y ](x) := dX(x)(Y (x)) -dY (x)(X(x)).
The control system is said to be strongly bracket generating on R n if the following assumption is satisfied:

(A6) For every x ∈ R n and every (v 1 , • • • , v m ) ∈ R m \ {0 m }, span f j (x) 1 ≤ j ≤ m +span m i=1 v i f i , f j (x) 1 ≤ j ≤ m = R n . Whenever f 1 (x), • • • , f m (x) are linearly independent for any x ∈ R n , the family f 1 , • • • , f m defines a so-called nonsingular distribution ∆ on R n , i.e., ∆(x) := span {f 1 (x), • • • , f m (x)} , ∀x ∈ R n .
If vector fields f 1 , • • • , f m satisfy assumption (A6), then the corresponding distribution ∆ is said to be fat (cf. [START_REF] Ge | Horizontal path spaces and Carnot-Carathéodory metrics[END_REF], [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF], [START_REF] Weinstein | Fat bundles and symplectic manifolds[END_REF]). It can be proved that, given a pair (m, n), there may be no fat distributions of rank m in R n , see [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF], [START_REF] Rayer | The exponential map for the Lagrange problem on differentiable manifold[END_REF]. We have the following well-known result.

Proposition 5.1. If assumption (A6) hold, then, for any x ∈ R n and any t > 0, any control u(•) ∈ U which is not identically zero on the interval [0, t] is nonsingular for E x,t . Proof. We use the characterization of singular controls given by Proposition 2.4. Let us argue by contradiction and assume that there exists a solution (x(•), p(•), u(•)) of ( 6)-( 7) on [0, t]. Then, for every i = 1, . . . , m,

p(s), f i (x(s)) = 0, ∀s ∈ [0, t].
Differentiating the above equality and using (6) yields, for a.e. s ∈ [0, t],

0 = d ds ( p(s), f i (x(s))) = ṗ(s), f i (x(s)) + p(s), df i (x(s))( ẋ(s)) = - m j=1 u j (s)df j (x(s)) * p(s), f i (x(s)) + p(s), m j=1 u j (s)df i (x(s))(f j (x(s))) = m j=1 u j (s) (-p(s), df j (x(s))(f i (x(s)) + p(s), df i (x(s))(f j (x(s))) ) = m j=1 u j (s) p(s), [f i , f j ](x(s)) = p(s),   f i , m j=1 f j   (x(s)) .
Fix s ∈ [0, t] such that p(•) and x(•) are differentiable at s and such that u(s) = 0, and set v := u(s) ∈ R m . We obtain

p(s),   m j=1 f j , f i   (x(s)) = 0,
for every i = 1, . . . , m, which contradicts assumption (A6).

Furthermore, the Chow-Rashevsky Theorem (see [START_REF] Bellaiche | The tangent space in sub-Riemannian geometry[END_REF], [START_REF] Chow | Über systeme von linearen partiellen differentialgleichungen ester ordnung[END_REF], [START_REF] Rashevsky | About connecting two points of a completely nonholonomic space by admissible curve[END_REF]) asserts that if system (3) has no drift, then under assumption (A6), for any pair (x, y) ∈ R n and any t > 0 there exists some control u(•) ∈ U such that x(t; x, u(•)) = y. Hence, we obtain the following result as a corollary.

Corollary 5.2. If assumptions (A1)-(A2) and (A6) hold and if f 0 ≡ 0, then the value function V is continuous on (0, ∞) × R n and semiconcave on (0, ∞) × (R n \ {x 0 }).

Example 5.3. The nonholonomic integrator of Example 2.5 is strongly bracket generating. Indeed, it is easy to check that

[f 1 , f 2 ](x) =   0 0 2   , ∀x ∈ R 3
So, the three vectors

f 1 (x), f 2 (x), [f 1 , f 2 ](x) form a basis of R 3 .

The sub-Riemannian distance

Throught this section, we assume that f 0 ≡ 0, that f 1 , . . . , f m are smooth vector fields satisfying (A1), and that the following assumption is satisfied:

(A7) for every x ∈ R n , f 1 (x), . . . , f m (x) are linearly independent. For any family F of smooth vector fields (i.e., F ⊂ C ∞ (R n , R n )), we denote by Lie(F) the Lie algebra of all vector fields generated by F, that is, the smallest vector subspace

S of C ∞ (R n , R n ) satisfying [f, g] ∈ S, ∀f ∈ F, ∀g ∈ S.
For any point x ∈ R n , Lie(F)(x) denotes the set of all vectors f (x) ∈ R n with f ∈ F. We say that {f 1 , . . . , f m } satisfy Hörmander's bracket generating condition on R n if the following assumption is satisfied:

(A8) for every x ∈ R n , Lie {f 1 , . . . , f m }(x) = R n . Hereafter, we assume that (A7)-(A8) are satisfied and set

∆(x) := span {f 1 (x), • • • , f m (x)} , ∀x ∈ R n .
According to the classical Chow-Rashevsky theorem (see [START_REF] Bellaiche | The tangent space in sub-Riemannian geometry[END_REF], [START_REF] Chow | Über systeme von linearen partiellen differentialgleichungen ester ordnung[END_REF], [START_REF] Rashevsky | About connecting two points of a completely nonholonomic space by admissible curve[END_REF]), the control system (3) is small time locally controllable at any point of R n .

Let g(•, •) be a Riemannian metric on R n , associated with a smooth positive definite symmetric matrix Q(x), that is

g x (v, w) = Q(x)v, w , ∀x ∈ R n , ∀v, w ∈ R n .
The pair (∆, g) defines what we call a sub-Riemannian distribution of rank m on R n , that is a smooth distribution of constant rank m which satisfies Hörmander's bracket generating condition on R n . We refer the reader to [START_REF] Kupka | Géométrie sous-riemannienne[END_REF], [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF] for an extensive study of sub-Riemannian distributions.

An absolutely continuous arc γ : [0, 1] → R n is said to be horizontal if γ(t) ∈ ∆(x) for a.e. t ∈ [0, 1]. For any given x 0 ∈ R n , we denote by H x 0 the set of horizontal arcs satisfying γ(0) = x 0 . For any x ∈ R n , the sub-Riemannian distance between x 0 and x, denoted by d SR (x 0 , •), is defined as the minimal length of an horizontal arc joining x 0 to x, that is,

d SR (x 0 , x) := inf length(γ) γ ∈ H x 0 , γ(1) = x where length(γ) := 1 0 g γ(t) ( γ(t), γ(t))dt .
We note that, since system (3) is small time locally controllable, it is easy to prove that the map x → d SR (x 0 , x) is well defined and continuous in R n . Furthermore, denoting by F (x) the set {v ∈ ∆(x) | g x (v, v) ≤ 1} for any x ∈ R n , it is straightforward to show that d SR (x 0 , •) coincides with the minimum time T x 0 (x) needed to steer x to x 0 along a trajectory of the differential inclusion ẋ(t) ∈ F (x(t)).

(50)

For any x ∈ R n , the sub-Riemannian energy between x 0 and x, denoted by e SR (x 0 , x), is defined by

e SR (x 0 , x) := inf 1 0 g γ(t) ( γ(t), γ(t))dt γ ∈ H x 0 s.t. γ(1) = x .
The following lemma is fundamental. For sake of completeness, we provide its easy proof.

Lemma 11. For every x ∈ R n , d SR (x 0 , x) = e SR (x 0 , x).

Proof. First, we observe that, for every horizontal arc γ(•) satisfying γ(0) = x 0 and γ(1) = x, the Cauchy-Schwarz inequality yields

1 0 g γ(t) ( γ(t), γ(t))dt 2 ≤ 1 0 g γ(t) ( γ(t), γ(t))dt .
Taking the infimum over γ, the above inequality implies d SR (x 0 , x) 2 ≤ e x 0 (x) for every x ∈ R n . On the other hand, for all x ∈ R n and every ǫ > 0, there exists a horizontal curve γ ∈ H x 0 , with γ(1) = x, such that length(γ) = Consequently,

e SR (x 0 , x) ≤ 1 0 g ξ(t) ξ(t), ξ(t) dt = length(γ) 2 = (d SR (x 0 , x) + ǫ) 2 .
Letting ǫ tend to 0 completes the proof of the lemma.

Since

f 1 , • • • , f m satisfy (A7), for every γ ∈ H x 0 , there is a unique control u(•) ∈ L 1 ([0, 1]; R m ) such that γ(t) = m i=1 u i (t)f i (γ(t)) for a.e. t ∈ [0, 1] . Hence, g γ(t) ( γ(t), γ(t)) = m i=1 u i (t) 2 g γ(t) (f i (γ(t)), f i (γ(t))) + m i,j=1,i =j u i (t)u j (t)g γ(t) (f i (γ(t)), f i (γ(t))). Define the Lagrangian L : R n × R m → R by L(x, u) := m i=1 u 2 i g x (f i (x), f i (x)) + m i,j=1,i =j u i u j g x (f i (x), f j (x)).
Under the above assumptions, it is easy to show that L satisfies (A2). Moreover, by Lemma 11,

d SR (x 0 , x) 2 = inf 1 0 L(x u (s), u(s))ds | u(•) ∈ U s.t. x u (1) = x ,
for every x ∈ R n . Furthermore, by (A8) together with Chow-Rashevsky's Theorem, d SR (x 0 , x) is finite for every x ∈ R n . Therefore, Proposition 3.1 implies that, for every x ∈ R n , there is a minimizing control u(

•) ∈ L 1 ([0, 1]; R m ) steering x 0 to x such that d SR (x 0 , x) 2 = 1 0 L(x u (s), u(s))ds.
We now need the following assumption. (A9) Every minimizing control steering x 0 to x = x 0 is regular. Note that, under assumption (A9), Pontryagin's Maximum Principle ensures that all minimizing controls are smooth. Moreover, applying Theorem 1 and Chow-Rashevsky's Theorem, we obtain the following result. Theorem 5 provides useful information on the regularity of the sub-Riemannian distance function in the smooth case. For example, using classical results on the structure of the singular sets of locally semiconcave functions (see [START_REF] Alberti | On the singularities of convex functions[END_REF], [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]), we can deduce that the Hausdorff dimension of the set of points at which d SR (x 0 , •) fails to be differentiable does not exceed n -1. Furthermore, the semiconcavity of the sub-Riemannian distance is fundamental to study the stabilization problem for nonholonomic distributions, see [START_REF] Rifford | On the stabilization problem for nonholonomic distributions[END_REF]. Finally, we observe that, since the Lagrangian associated to (∆, g) is smooth in the x variable, one can show that the sub-Riemannian distance function can be written locally as an infimum of "uniformly" smooth functions. Such an approach leads to further regularity results, see [START_REF] Rifford | A Morse-Sard theorem for the distance function on Riemannian manifolds[END_REF] and [START_REF] Rifford | À propos des sphères sous-riemanniennes[END_REF].

for every x ′ ∈ R n . Now, for every

x ′ ∈ R n satisfying |x ′ -x| ≤ 1, f (x ′ , u) -f (x, u) ≤ f 0 (x ′ ) -f 0 (x) + m i=1 |u i | f i (x ′ ) -f i (x) = 1 0 d dλ f 0 (x + λ(x ′ -x)) dλ + m i=1 |u i | 1 0 d dλ f i (x + λ(x ′ -x)) dλ ≤ 1 0 df 0 (x + λ(x ′ -x)) |x ′ -x|dλ+ m i=1 |u i | 1 0 df i (x + λ(x ′ -x)) |x ′ -x|dλ ≤ K|x ′ -x| + √ mK|u| m |x ′ -x|,
where K is a positive constant such that |df i (x ′ )| ≤ K for all i = 0, . . . , m and x ′ ∈ x + B. We also obtain, by (A2) (ii),

L(x ′ , u) -L(x, u) ≤ K(|x| + 1)θ (|u| m ) |x ′ -x| for every x ′ ∈ x + B. Since, for every x ′ ∈ R n , f (x ′ , u) -f (x, u) = m i=1 u i df i (x)(x ′ -x) + o(x ′ -x),
we obtain that, for every

x ′ ∈ x + B, L(x ′ , u) -L(x, u) + σ 1 + K 1 + √ m|u| m + K(|x| + 1)θ (|u| m ) |x ′ -x| 2 ≥ α 1 (-β 2 ) , x ′ -x + β 1 (-β 2 ) , m i=1 u i df i (x)(x ′ -x) + o(x ′ -x).
Therefore,

1 (-β 2 ) (α 1 + A * β 1 ) ∈ ∂ x L(x, u) where A := m i=1 u i df i (x) . Now, apply (51) to ((x, y, z), (f (x, u ′ ), L(x, u ′ ), u ′ )) ∈ G, for any u ′ ∈ R m , to obtain β 1 , f (x, u ′ ) -f (x, u) + β 2 L(x, u ′ ) -L(x, u) + β 3 , u ′ -u m ≤ σ f (x, u ′ ) -f (x, u) 2 + σ L(x, u ′ ) -L(x, u) 2 + σ|u ′ -u| 2 m , (53 
) which can be written as

L(x, u ′ )-L(x, u)+σ f (x, u ′ ) -f (x, u) 2 +σ L(x, u ′ ) -L(x, u) 2 +σ|u ′ -u| 2 m ≥ β 1 (-β 2 ) , f (x ′ , u) -f (x, u) + β 3 (-β 2 ) , u ′ -u m for every u ′ ∈ R m . Also, for every u ′ ∈ R m , f (x, u ′ ) -f (x, u) ≤ √ m max {|f i (x)| | i = 1, . . . , m} |u ′ -u| m .
Thus, denoting by K a Lipschitz constant for u ′ → L(x, u) on the ball centered at u with radius 1, we have L(x, u ′ ) -L(x, u) ≤ K|u ′ -u| m for every u ′ ∈ R m with |u ′ -u| m ≤ 1. As above, this implies that 1 (-β 2 )

β 1 + β 3 = ∇ u L(x, u) where β 1 := ( β 1 , f 1 (x) , . . . , β 1 , f m (x) ) *
Suppose now β 2 = 0. By (52) and the above estimates, we easily deduce that

α 1 + A * β 1 = 0, where A := m i=1 u i df i (x).
On the other hand, (53) yields

1 (-β 2 ) β 1 + β 3 = 0 where β 1 := ( β 1 , f 1 (x) , • • • , β 1 , f m (x) ) * .
The fact that the same properties are satisfied whenever (α, β)

∈ N P G (Z, V ) is easy to prove. 6.2. Proof of Lemma 6. Let t 1 ≤ t 2 ∈ I := [0, t + δ] and let u 1 (•), u 2 (•) ∈ U ∞ be such that u 1 (•) ∞ , u 2 (•) ∞ ≤ K. Define x 1 (•) := x u 1 (•), x 2 (•) := x u 2 (•) .
Observ e that, assumptions (A1)-(A2), there is a constant C > 0 such that Therefore, estimate (40) can be derived as follows

x 1 (•) ∞ , ẋ1 (•) ∞ , x 2 (•) ∞ , ẋ2 (•) ∞ ≤ C.
|C t 1 (u 1 (•)) -C t 2 (u 2 (•))| ≤ t 2 t 1 L(x 2 (s), u 2 (s))ds + t 1 0 L(x 1 (s), u 1 (s)) -L(x 2 (s), u 2 (s)) ds ≤ C|t 1 -t 2 | + C t 1 0 |x 1 (s) -x 2 (s)| + |u 1 (s) -u 2 (s)| ds ≤ C |t 1 -t 2 | + u 2 (•) -u 1 (•) ∞
Now, in order to prove (41), let µ ∈ [0, 1] and define

t µ = µt 1 + (1 -µ)t 2 u µ (•) = µu 1 (•) + (1 -µ)u 2 (•) x µ (•) = x u µ (•)
We note that L(x µ (s), u µ (s))ds

µC t 1 (u 1 (•)) + (1 -µ)C t 2 (u 2 (•)) -C tµ (u µ (•)) = µC t 1 (u 1 (•)) + (1 -µ)C t 1 (u 2 (•)) -C t 1 (u µ (•)) + (1 -µ)
≤ Cµ(1 -µ)(t 2 -t 1 ) u 2 (•) -u 1 (•) ∞ + Cµ(1 -µ)(t 2 -t 1 ) 2 (55) 
The quantity µC t 1 (u 1 (•)) + (1 -µ)C t 1 (u 2 (•)) -C t 1 (u µ (•)) can be written as On the other hand, denoting by h(s) the difference u 1 (s) -u 2 (s) for all s ∈ [0, t 1 ], we have that 

  and set v := u/|u| m ∈ B m (0, 1). Define the convex function of class C 2 , L : [0, ∞) → R, by ∀α ≥ 0, L(α) := L(x, αv), and define h : [0, ∞) → R by ∀α ≥ 0, h(α) := α L ′ (α) -L(α).
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 0 s) m ds, for every v(•) ∈ L 2 ([0, t]; R m ). Moreover, the first term of the above righthand side can be written ast 0 η(s), dE x 0 ,s (u(•))(v(•)) ds = )S(r) -1 B(r)v(r)dr ds = ), S(s)S(r) -1 B(r)v(r) drds = ), S(s)S(r) -1 B(r)v(r) dsdr = )S(s) -1 B(s) * η(r)dr, v(s) m ds = t(s) * S(s) -1 * t s S(r) * η(r)dr, v(s) m ds.

  Let us set p(s) := S(s) -1 * S(t) * pu -S(s) -1 * t s S(r) * η(r)dr, ∀s ∈ [0, t].

1 0g

 1 γ(t) ( γ(t), γ(t))dt ≤ d SR (x 0 , x) + ǫ. Define φ : [0, 1] → [0, length(γ)] by φ(s) := s 0 g γ(t) ( γ(t), γ(t))dt, ∀s ∈ [0, 1].Note that φ is strictly increasing, hence one-to-one from [0, 1] to [0, length(γ)]. Set ψ := φ -1 : [0, length(γ)] → [0, 1], and define ξ : [0, 1] → R n by ξ(t) := γ (ψ (length(γ)t)) for any t ∈ [0, 1]. It clear that ξ ∈ H x 0 and ξ(1) = x. Moreover, one can easily check that g ξ(t) ξ(t), ξ(t) = length(γ) 2 for a.e. t ∈ [0, 1] .
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 5 Let x 0 ∈ R n . If f 0 ≡ 0 and assumptions (A1), (A7)-(A9) hold, then the function d SR (x 0 , •) = T x 0 is continuous on R n and locally semiconcave on R n \ {x 0 }.Hence, in the special case of fat distributions, Corollary 5.2 yields the result below. Corollary 6.1. Let x 0 ∈ R n and (∆, g) be a sub-Riemannian distribution on R n such that ∆ is fat on R n . Then the function d SR (x 0 , •) = T x 0 is continuous on R n and locally semiconcave on R n \ {x 0 }.

  Moreover, by regularity of the lagrangian in both variables, we have that|L(x, u) -L(x ′ , u ′ )| ≤ C |x -x ′ | + |u -u ′ | m for every x, x ′ ∈ R n and u, u ′ ∈ R m satisfying |x|, |x ′ | ≤ C and |u| m , |u ′ | m ≤ K.In addition, by Gronwall's Lemma we conclude that|x 2 (s) -x 1 (s)| ≤ C u 2 (•) -u 1 (•) ∞ , ∀s ∈ [0, t 1 ].

t 2 t 1 L 1 L 1 L

 111 (x 2 (s), u 2 (s))ds -tµ t (x µ (s), u µ (s))ds (54)The change of variables s := µt 1 + (1 -µ)t gives tµ t (x µ (s), u µ (s))ds = (1-µ)

µC t 1 1 0 1 0 1 0L

 1111 (u 1 (•)) + (1 -µ)C t 1 (u 2 (•)) -C t 1 (u µ (•)) = t µL(x 1 (s), u 1 (s)) + (1 -µ)L(x 2 (s), u 2 (s)) -L(x µ (s), u µ (s)) ds = t µL(x 1 (s), u µ (s)) + (1 -µ)L(x 2 (s), u µ (s)) -L(x µ (s), u µ (s)) ds +µ t (x 1 (s), u 1 (s)) -L(x 1 (s), u µ (s)) ds +(1 -µ)

t 1 0L(x 2 2 ∞ 1 0 1 0 1 0L µx 1 1 0|x 1 1 0

 1221111111 (s), u 2 (s)) -L(x 2 (s), u µ (s)) dsFrom assumption (A2)(ii), we know that, for some constantC ′ > 0, µL(x, u) + (1 -µ)L(x ′ , u) -L µx + (1 -µ)x ′ , u ≤ C ′ µ(1 -µ)|x -x ′ | 2 for every every µ ∈ [0, 1], every x, x ′ ∈ R n satisfying |x|, |x ′ | ≤ C and every u, u ′ ∈ R m satisfying |u| m , |u ′ | m ≤ K. Moreover, since the end-point mapping E x 0 ,t 1 is of class C 1,1, we can also assume that,|µx 1 (s) + (1 -µ)x 2 (s) -x µ (s)| ≤ Cµ(1-µ) u 1 (•) -u 2 (•) , ∀s ∈ [0, t 1 ].Hence we obtain,t µL(x 1 (s), u µ (s)) + (1 -µ)L(x 2 (s), u µ (s)) -L(x µ (s), u µ (s)) ds = t [µL(x 1 (s), u µ (s)) + (1 -µ)L(x 2 (s), u µ (s)) -L µx 1 (s) + (1 -µ)x 2 (s), u µ (s) ds + t (s) + (1 -µ)x 2 (s), u µ (s) -L(x µ (s), u µ (s)) ds ≤ C ′ µ(1 -µ) t (s) -x 2 (s)| 2 ds +C t |µx 1 (s) + (1 -µ)x 2 (s) -x µ (s)| ds ≤ Cµ(1 -µ) u 1 (•) -u 2 (•) 2 ∞ .

t 1 0L(x 1

 11 (s), u 1 (s)) -L(x 1 (s), u µ (s)) ds = (1 -µ)

∇ 1 0L(x 2 1 0 1 0 1 0L(x 1

 121111 u L (x 1 (s), u µ (s) + λ(1 -µ)h(s)) , h(s) dλds, and t (s), u 2 (s)) -L(x 2 (s), u µ (s)) ds = -µ t ∇ u L (x 2 (s), u µ (s) -λµh(s)) , h(s) dλds Thus, µ t (s), u 1 (s)) -L(x 1 (s), u µ (s)) ds + (1 -µ)

t 1 0L(x 2

 12 (s), u 2 (s)) -L(x 2 (s), u µ (s)) ds = µ(1 -µ) , s), h(s) dλds, where Λ(λ, s) = ∇ u L (x 1 (s), u µ (s) + λ(1 -µ)h(s)) -∇ u L (x 2 (s), u µ (s) -λµh(s)) for every λ ∈ [0, 1] and every s ∈ [0, t 1 ]. Since ∇ u L(x, u) -∇ u L(x ′ , u ′ ) ≤ C |x -x ′ | + |u -u ′ | m for every x, x ′ ∈ R n satisfying |x|, |x ′ | ≤ C and every u, u ′ ∈ R m satisfying |u| m , |u ′ | m ≤ K, we obtain that, for every λ ∈ [0, 1] and every s ∈ [0, t 1 ], Λ(λ, s) ≤ C |h(s)| m + C |x 1 (s) -x 2 (s)| ≤ C u 2 (•) -u 1 (•) ∞ . 1 (s), u 1 (s)) -L(x 1 (s), u µ (s)) ds + (1 -µ)

t 1 0L(x 2 2 ∞

 122 (s), u 2 (s)) -L(x 2 (s), u µ (s)) ds ≤ µ(1 -µ) u 2 (•) -u 1 (•) (56)The conclusion follows from (54), (55), (56).

  L x µ µt 1 +(1-µ)t , u µ µt 1 +(1-µ)t dt . L(x 2 (t), u 2 (t)) -L x µ µt 1 + (1 -µ)t , u µ µt 1 + (1 -µ)t dt = (1 -µ) I 1 + I 2 + I 3 + I 4 (t) -u µ (t) m dt ≤ Cµ|t 2 -t 1 | u 2 (•) -u 1 (•) ∞ for all s ∈ [t 1 , t µ ]. Therefore, 2 µt 1 + (1 -µ)t -x µ µt 1 + (1 -µ)t dt ≤ Cµ(t 2 -t 1 ) u 2 (•) -u 1 (•) ∞ . µ (t) -u µ µt 1 + (1 -µ)t dt ≤ KC 2 µ(t 2 -t 1 ) 2

	t 2		
	t 2 t 1 L(x 2 (s), u 2 -t 1 tµ x 2 (t) -x 2 µt 1 + (1 -µ)t ds L(x µ (s), u µ (s))ds ≤ Cµ t 2 t 1 (t -t 1 )dt = t 1 t 2 Finally, recalling (25), we obtain Hence, (1 -µ) t 2 t 1 = (1-µ) t 2 t 1 where I 1 := t 2 t 1 t 2 t 1 Moreover, I 2 ≤ C t 1 I 4 ≤ C t 2 t 1 Summing up, we conclude that t 2 u 2 I 3 ≤ C (1 -µ) t 1	C 2	µ(t 2 -t 1 ) 2

L(x 2 (t), u 2 (t)) -L x 2 µt 1 + (1 -µ)t , u 2 (t) dt I 2 := t 2 t 1 L x 2 µt 1 + (1 -µ)t , u 2 (t) -L x 2 µt 1 + (1 -µ)t , u µ (t) dt I 3 := t 2 t 1 L x 2 µt 1 + (1 -µ)t , u µ (t) -L x µ µt 1 + (1 -µ)t , u µ (t) dt and I 4 := t 2 t 1 L x µ µt 1 + (1 -µ)t , u µ (t) -L x µ µt 1 + (1 -µ)t , u µ mut 1 + (1 -µ)t dt

In view of our preliminary considerations, we have that

I 1 ≤ C ∞

Also, observe that, again by Gronwall's Lemma,

|x 2 (s) -x µ (s)| ≤ C u 2 (•) -u µ (•) ∞ ≤ Cµ u 2 (•) -u 1 (•)

x u L(x 2 (s), u 2 (s))ds -tµ t 1
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Let (t, x) ∈ Ω and u(•) ∈ U be a control steering x 0 to x in time t which minimizes C t (•). Under assumptions (A1)-(A4), Proposition 3.3 implies that there exists an absolutely continuous arc p(•) : [0, t] → R n such that the pair (x(•) := x u (•), p(•)) is a solution of the Hamiltonian differential system ẋ(s) = ∇ p H(x(s), p(s))

for almost every s ∈ [0, t]. Note that, in view of assumption (A4), (x(•), p(•)) is the solution of a locally Lipschitz differential equation. Hence, it is of class C 1,1 . Also, observe that the above Hamiltonian system can be rewritten as

for almost every s ∈ [0, t], where

Lemma 9. Under assumptions (A1)-(A5), for every (t, x) ∈ Ω and every control u(•) ∈ U steering x 0 to x in time t such that V (t, x) = C t (u(•)), we have that, for every s ∈ (0, t), u(•) is the unique control in

Proof. We argue by contradiction. Let s ∈ (0, t) and and let u ′ (•) be a control steering x 0 to x u (s) in time s which is minimizing and such that u 

) . Furthermore, by (49), we have that, for any s ∈ [s, t],

In other terms, u(•) is a singular control for E x(s),t-s . This contradicts assumption (A5) and proves the result.

We need now the following lemma.

Lemma 10. For every (t, x) ∈ Ω and every (ζ t , ζ x ) ∈ D * V (t, x), there exists a solution (x(•), p(•)) of the Hamiltonian system (47) such that the corresponding control given by (49) satisfies p(t) = ζ x and minimizes C t (•).

Proof. Let us first prove that for every (t, x) ∈ Ω at which V is differentiable, there exists a solution (x(•), p(•)) of the hamiltonian system (47) such that the corresponding control given by ( 49) is minimizing and

. By the definition of F , we have that v = m i=1 u i f i (x) and there exists δ ≥ 0 such that w = L(x, u) + δ. Since F is independent of y and z, α 2 = α 3 = 0. Moreover, by the definition of N P G (Z, V ), ther e exists σ > 0 such that

for every ((x ′ , y ′ , z ′ ), (v ′ , w ′ , u ′ )) ∈ (R n ×R×R m )×(R n ×R×R m ). Hence, it is easy to see that β 2 ≤ 0, and that β 2 = 0 whenever δ > 0. Assume, first, β 2 < 0 (so that δ = 0). Applying (51) at point ((x ′ , y, z), (f (x ′ , u), L(x ′ , u), u)) ∈ G, for every x ′ ∈ R n , gives

which can be written as L(x ′ , u) -L(x, u)

, f (x ′ , u) -f (x, u)